xref: /freebsd/sys/sys/mbuf.h (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	@(#)mbuf.h	8.5 (Berkeley) 2/19/95
31  * $FreeBSD$
32  */
33 
34 #ifndef _SYS_MBUF_H_
35 #define	_SYS_MBUF_H_
36 
37 /* XXX: These includes suck. Sorry! */
38 #include <sys/queue.h>
39 #ifdef _KERNEL
40 #include <sys/systm.h>
41 #include <vm/uma.h>
42 #ifdef WITNESS
43 #include <sys/lock.h>
44 #endif
45 #endif
46 
47 /*
48  * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead.
49  * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in
50  * sys/param.h), which has no additional overhead and is used instead of the
51  * internal data area; this is done when at least MINCLSIZE of data must be
52  * stored.  Additionally, it is possible to allocate a separate buffer
53  * externally and attach it to the mbuf in a way similar to that of mbuf
54  * clusters.
55  *
56  * NB: These calculation do not take actual compiler-induced alignment and
57  * padding inside the complete struct mbuf into account.  Appropriate
58  * attention is required when changing members of struct mbuf.
59  *
60  * MLEN is data length in a normal mbuf.
61  * MHLEN is data length in an mbuf with pktheader.
62  * MINCLSIZE is a smallest amount of data that should be put into cluster.
63  *
64  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
65  * they are sensible.
66  */
67 struct mbuf;
68 #define	MHSIZE		offsetof(struct mbuf, m_dat)
69 #define	MPKTHSIZE	offsetof(struct mbuf, m_pktdat)
70 #define	MLEN		((int)(MSIZE - MHSIZE))
71 #define	MHLEN		((int)(MSIZE - MPKTHSIZE))
72 #define	MINCLSIZE	(MHLEN + 1)
73 
74 #ifdef _KERNEL
75 /*-
76  * Macro for type conversion: convert mbuf pointer to data pointer of correct
77  * type:
78  *
79  * mtod(m, t)	-- Convert mbuf pointer to data pointer of correct type.
80  * mtodo(m, o) -- Same as above but with offset 'o' into data.
81  */
82 #define	mtod(m, t)	((t)((m)->m_data))
83 #define	mtodo(m, o)	((void *)(((m)->m_data) + (o)))
84 
85 /*
86  * Argument structure passed to UMA routines during mbuf and packet
87  * allocations.
88  */
89 struct mb_args {
90 	int	flags;	/* Flags for mbuf being allocated */
91 	short	type;	/* Type of mbuf being allocated */
92 };
93 #endif /* _KERNEL */
94 
95 /*
96  * Packet tag structure (see below for details).
97  */
98 struct m_tag {
99 	SLIST_ENTRY(m_tag)	m_tag_link;	/* List of packet tags */
100 	u_int16_t		m_tag_id;	/* Tag ID */
101 	u_int16_t		m_tag_len;	/* Length of data */
102 	u_int32_t		m_tag_cookie;	/* ABI/Module ID */
103 	void			(*m_tag_free)(struct m_tag *);
104 };
105 
106 /*
107  * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set.
108  * Size ILP32: 48
109  *	 LP64: 56
110  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
111  * they are correct.
112  */
113 struct pkthdr {
114 	struct ifnet	*rcvif;		/* rcv interface */
115 	SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */
116 	int32_t		 len;		/* total packet length */
117 
118 	/* Layer crossing persistent information. */
119 	uint32_t	 flowid;	/* packet's 4-tuple system */
120 	uint64_t	 csum_flags;	/* checksum and offload features */
121 	uint16_t	 fibnum;	/* this packet should use this fib */
122 	uint8_t		 cosqos;	/* class/quality of service */
123 	uint8_t		 rsstype;	/* hash type */
124 	uint8_t		 l2hlen;	/* layer 2 header length */
125 	uint8_t		 l3hlen;	/* layer 3 header length */
126 	uint8_t		 l4hlen;	/* layer 4 header length */
127 	uint8_t		 l5hlen;	/* layer 5 header length */
128 	union {
129 		uint8_t  eight[8];
130 		uint16_t sixteen[4];
131 		uint32_t thirtytwo[2];
132 		uint64_t sixtyfour[1];
133 		uintptr_t unintptr[1];
134 		void	*ptr;
135 	} PH_per;
136 
137 	/* Layer specific non-persistent local storage for reassembly, etc. */
138 	union {
139 		uint8_t  eight[8];
140 		uint16_t sixteen[4];
141 		uint32_t thirtytwo[2];
142 		uint64_t sixtyfour[1];
143 		uintptr_t unintptr[1];
144 		void 	*ptr;
145 	} PH_loc;
146 };
147 #define	ether_vtag	PH_per.sixteen[0]
148 #define	PH_vt		PH_per
149 #define	vt_nrecs	sixteen[0]
150 #define	tso_segsz	PH_per.sixteen[1]
151 #define	csum_phsum	PH_per.sixteen[2]
152 #define	csum_data	PH_per.thirtytwo[1]
153 #define	pkt_tcphdr	PH_loc.ptr
154 
155 /*
156  * Description of external storage mapped into mbuf; valid only if M_EXT is
157  * set.
158  * Size ILP32: 28
159  *	 LP64: 48
160  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
161  * they are correct.
162  */
163 struct m_ext {
164 	volatile u_int	*ext_cnt;	/* pointer to ref count info */
165 	caddr_t		 ext_buf;	/* start of buffer */
166 	uint32_t	 ext_size;	/* size of buffer, for ext_free */
167 	uint32_t	 ext_type:8,	/* type of external storage */
168 			 ext_flags:24;	/* external storage mbuf flags */
169 	void		(*ext_free)	/* free routine if not the usual */
170 			    (struct mbuf *, void *, void *);
171 	void		*ext_arg1;	/* optional argument pointer */
172 	void		*ext_arg2;	/* optional argument pointer */
173 };
174 
175 /*
176  * The core of the mbuf object along with some shortcut defines for practical
177  * purposes.
178  */
179 struct mbuf {
180 	/*
181 	 * Header present at the beginning of every mbuf.
182 	 * Size ILP32: 24
183 	 *      LP64: 32
184 	 * Compile-time assertions in uipc_mbuf.c test these values to ensure
185 	 * that they are correct.
186 	 */
187 	union {	/* next buffer in chain */
188 		struct mbuf		*m_next;
189 		SLIST_ENTRY(mbuf)	m_slist;
190 		STAILQ_ENTRY(mbuf)	m_stailq;
191 	};
192 	union {	/* next chain in queue/record */
193 		struct mbuf		*m_nextpkt;
194 		SLIST_ENTRY(mbuf)	m_slistpkt;
195 		STAILQ_ENTRY(mbuf)	m_stailqpkt;
196 	};
197 	caddr_t		 m_data;	/* location of data */
198 	int32_t		 m_len;		/* amount of data in this mbuf */
199 	uint32_t	 m_type:8,	/* type of data in this mbuf */
200 			 m_flags:24;	/* flags; see below */
201 #if !defined(__LP64__)
202 	uint32_t	 m_pad;		/* pad for 64bit alignment */
203 #endif
204 
205 	/*
206 	 * A set of optional headers (packet header, external storage header)
207 	 * and internal data storage.  Historically, these arrays were sized
208 	 * to MHLEN (space left after a packet header) and MLEN (space left
209 	 * after only a regular mbuf header); they are now variable size in
210 	 * order to support future work on variable-size mbufs.
211 	 */
212 	union {
213 		struct {
214 			struct pkthdr	m_pkthdr;	/* M_PKTHDR set */
215 			union {
216 				struct m_ext	m_ext;	/* M_EXT set */
217 				char		m_pktdat[0];
218 			};
219 		};
220 		char	m_dat[0];			/* !M_PKTHDR, !M_EXT */
221 	};
222 };
223 
224 /*
225  * mbuf flags of global significance and layer crossing.
226  * Those of only protocol/layer specific significance are to be mapped
227  * to M_PROTO[1-12] and cleared at layer handoff boundaries.
228  * NB: Limited to the lower 24 bits.
229  */
230 #define	M_EXT		0x00000001 /* has associated external storage */
231 #define	M_PKTHDR	0x00000002 /* start of record */
232 #define	M_EOR		0x00000004 /* end of record */
233 #define	M_RDONLY	0x00000008 /* associated data is marked read-only */
234 #define	M_BCAST		0x00000010 /* send/received as link-level broadcast */
235 #define	M_MCAST		0x00000020 /* send/received as link-level multicast */
236 #define	M_PROMISC	0x00000040 /* packet was not for us */
237 #define	M_VLANTAG	0x00000080 /* ether_vtag is valid */
238 #define	M_UNUSED_8	0x00000100 /* --available-- */
239 #define	M_NOFREE	0x00000200 /* do not free mbuf, embedded in cluster */
240 
241 #define	M_PROTO1	0x00001000 /* protocol-specific */
242 #define	M_PROTO2	0x00002000 /* protocol-specific */
243 #define	M_PROTO3	0x00004000 /* protocol-specific */
244 #define	M_PROTO4	0x00008000 /* protocol-specific */
245 #define	M_PROTO5	0x00010000 /* protocol-specific */
246 #define	M_PROTO6	0x00020000 /* protocol-specific */
247 #define	M_PROTO7	0x00040000 /* protocol-specific */
248 #define	M_PROTO8	0x00080000 /* protocol-specific */
249 #define	M_PROTO9	0x00100000 /* protocol-specific */
250 #define	M_PROTO10	0x00200000 /* protocol-specific */
251 #define	M_PROTO11	0x00400000 /* protocol-specific */
252 #define	M_PROTO12	0x00800000 /* protocol-specific */
253 
254 /*
255  * Flags to purge when crossing layers.
256  */
257 #define	M_PROTOFLAGS \
258     (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\
259      M_PROTO9|M_PROTO10|M_PROTO11|M_PROTO12)
260 
261 /*
262  * Flags preserved when copying m_pkthdr.
263  */
264 #define M_COPYFLAGS \
265     (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG| \
266      M_PROTOFLAGS)
267 
268 /*
269  * Mbuf flag description for use with printf(9) %b identifier.
270  */
271 #define	M_FLAG_BITS \
272     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \
273     "\7M_PROMISC\10M_VLANTAG"
274 #define	M_FLAG_PROTOBITS \
275     "\15M_PROTO1\16M_PROTO2\17M_PROTO3\20M_PROTO4\21M_PROTO5" \
276     "\22M_PROTO6\23M_PROTO7\24M_PROTO8\25M_PROTO9\26M_PROTO10" \
277     "\27M_PROTO11\30M_PROTO12"
278 #define	M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS)
279 
280 /*
281  * Network interface cards are able to hash protocol fields (such as IPv4
282  * addresses and TCP port numbers) classify packets into flows.  These flows
283  * can then be used to maintain ordering while delivering packets to the OS
284  * via parallel input queues, as well as to provide a stateless affinity
285  * model.  NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set
286  * m_flag fields to indicate how the hash should be interpreted by the
287  * network stack.
288  *
289  * Most NICs support RSS, which provides ordering and explicit affinity, and
290  * use the hash m_flag bits to indicate what header fields were covered by
291  * the hash.  M_HASHTYPE_OPAQUE can be set by non-RSS cards or configurations
292  * that provide an opaque flow identifier, allowing for ordering and
293  * distribution without explicit affinity.
294  */
295 /* Microsoft RSS standard hash types */
296 #define	M_HASHTYPE_NONE			0
297 #define	M_HASHTYPE_RSS_IPV4		1	/* IPv4 2-tuple */
298 #define	M_HASHTYPE_RSS_TCP_IPV4		2	/* TCPv4 4-tuple */
299 #define	M_HASHTYPE_RSS_IPV6		3	/* IPv6 2-tuple */
300 #define	M_HASHTYPE_RSS_TCP_IPV6		4	/* TCPv6 4-tuple */
301 #define	M_HASHTYPE_RSS_IPV6_EX		5	/* IPv6 2-tuple + ext hdrs */
302 #define	M_HASHTYPE_RSS_TCP_IPV6_EX	6	/* TCPv6 4-tiple + ext hdrs */
303 /* Non-standard RSS hash types */
304 #define	M_HASHTYPE_RSS_UDP_IPV4		7	/* IPv4 UDP 4-tuple */
305 #define	M_HASHTYPE_RSS_UDP_IPV4_EX	8	/* IPv4 UDP 4-tuple + ext hdrs */
306 #define	M_HASHTYPE_RSS_UDP_IPV6		9	/* IPv6 UDP 4-tuple */
307 #define	M_HASHTYPE_RSS_UDP_IPV6_EX	10	/* IPv6 UDP 4-tuple + ext hdrs */
308 
309 #define	M_HASHTYPE_OPAQUE		255	/* ordering, not affinity */
310 
311 #define	M_HASHTYPE_CLEAR(m)	((m)->m_pkthdr.rsstype = 0)
312 #define	M_HASHTYPE_GET(m)	((m)->m_pkthdr.rsstype)
313 #define	M_HASHTYPE_SET(m, v)	((m)->m_pkthdr.rsstype = (v))
314 #define	M_HASHTYPE_TEST(m, v)	(M_HASHTYPE_GET(m) == (v))
315 
316 /*
317  * COS/QOS class and quality of service tags.
318  * It uses DSCP code points as base.
319  */
320 #define	QOS_DSCP_CS0		0x00
321 #define	QOS_DSCP_DEF		QOS_DSCP_CS0
322 #define	QOS_DSCP_CS1		0x20
323 #define	QOS_DSCP_AF11		0x28
324 #define	QOS_DSCP_AF12		0x30
325 #define	QOS_DSCP_AF13		0x38
326 #define	QOS_DSCP_CS2		0x40
327 #define	QOS_DSCP_AF21		0x48
328 #define	QOS_DSCP_AF22		0x50
329 #define	QOS_DSCP_AF23		0x58
330 #define	QOS_DSCP_CS3		0x60
331 #define	QOS_DSCP_AF31		0x68
332 #define	QOS_DSCP_AF32		0x70
333 #define	QOS_DSCP_AF33		0x78
334 #define	QOS_DSCP_CS4		0x80
335 #define	QOS_DSCP_AF41		0x88
336 #define	QOS_DSCP_AF42		0x90
337 #define	QOS_DSCP_AF43		0x98
338 #define	QOS_DSCP_CS5		0xa0
339 #define	QOS_DSCP_EF		0xb8
340 #define	QOS_DSCP_CS6		0xc0
341 #define	QOS_DSCP_CS7		0xe0
342 
343 /*
344  * External mbuf storage buffer types.
345  */
346 #define	EXT_CLUSTER	1	/* mbuf cluster */
347 #define	EXT_SFBUF	2	/* sendfile(2)'s sf_bufs */
348 #define	EXT_JUMBOP	3	/* jumbo cluster 4096 bytes */
349 #define	EXT_JUMBO9	4	/* jumbo cluster 9216 bytes */
350 #define	EXT_JUMBO16	5	/* jumbo cluster 16184 bytes */
351 #define	EXT_PACKET	6	/* mbuf+cluster from packet zone */
352 #define	EXT_MBUF	7	/* external mbuf reference (M_IOVEC) */
353 
354 #define	EXT_VENDOR1	224	/* for vendor-internal use */
355 #define	EXT_VENDOR2	225	/* for vendor-internal use */
356 #define	EXT_VENDOR3	226	/* for vendor-internal use */
357 #define	EXT_VENDOR4	227	/* for vendor-internal use */
358 
359 #define	EXT_EXP1	244	/* for experimental use */
360 #define	EXT_EXP2	245	/* for experimental use */
361 #define	EXT_EXP3	246	/* for experimental use */
362 #define	EXT_EXP4	247	/* for experimental use */
363 
364 #define	EXT_NET_DRV	252	/* custom ext_buf provided by net driver(s) */
365 #define	EXT_MOD_TYPE	253	/* custom module's ext_buf type */
366 #define	EXT_DISPOSABLE	254	/* can throw this buffer away w/page flipping */
367 #define	EXT_EXTREF	255	/* has externally maintained ext_cnt ptr */
368 
369 /*
370  * Flags for external mbuf buffer types.
371  * NB: limited to the lower 24 bits.
372  */
373 #define	EXT_FLAG_EMBREF		0x000001	/* embedded ext_cnt, notyet */
374 #define	EXT_FLAG_EXTREF		0x000002	/* external ext_cnt, notyet */
375 #define	EXT_FLAG_NOFREE		0x000010	/* don't free mbuf to pool, notyet */
376 
377 #define	EXT_FLAG_VENDOR1	0x010000	/* for vendor-internal use */
378 #define	EXT_FLAG_VENDOR2	0x020000	/* for vendor-internal use */
379 #define	EXT_FLAG_VENDOR3	0x040000	/* for vendor-internal use */
380 #define	EXT_FLAG_VENDOR4	0x080000	/* for vendor-internal use */
381 
382 #define	EXT_FLAG_EXP1		0x100000	/* for experimental use */
383 #define	EXT_FLAG_EXP2		0x200000	/* for experimental use */
384 #define	EXT_FLAG_EXP3		0x400000	/* for experimental use */
385 #define	EXT_FLAG_EXP4		0x800000	/* for experimental use */
386 
387 /*
388  * EXT flag description for use with printf(9) %b identifier.
389  */
390 #define	EXT_FLAG_BITS \
391     "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \
392     "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \
393     "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \
394     "\30EXT_FLAG_EXP4"
395 
396 /*
397  * External reference/free functions.
398  */
399 void sf_ext_ref(void *, void *);
400 void sf_ext_free(void *, void *);
401 
402 /*
403  * Flags indicating checksum, segmentation and other offload work to be
404  * done, or already done, by hardware or lower layers.  It is split into
405  * separate inbound and outbound flags.
406  *
407  * Outbound flags that are set by upper protocol layers requesting lower
408  * layers, or ideally the hardware, to perform these offloading tasks.
409  * For outbound packets this field and its flags can be directly tested
410  * against ifnet if_hwassist.
411  */
412 #define	CSUM_IP			0x00000001	/* IP header checksum offload */
413 #define	CSUM_IP_UDP		0x00000002	/* UDP checksum offload */
414 #define	CSUM_IP_TCP		0x00000004	/* TCP checksum offload */
415 #define	CSUM_IP_SCTP		0x00000008	/* SCTP checksum offload */
416 #define	CSUM_IP_TSO		0x00000010	/* TCP segmentation offload */
417 #define	CSUM_IP_ISCSI		0x00000020	/* iSCSI checksum offload */
418 
419 #define	CSUM_IP6_UDP		0x00000200	/* UDP checksum offload */
420 #define	CSUM_IP6_TCP		0x00000400	/* TCP checksum offload */
421 #define	CSUM_IP6_SCTP		0x00000800	/* SCTP checksum offload */
422 #define	CSUM_IP6_TSO		0x00001000	/* TCP segmentation offload */
423 #define	CSUM_IP6_ISCSI		0x00002000	/* iSCSI checksum offload */
424 
425 /* Inbound checksum support where the checksum was verified by hardware. */
426 #define	CSUM_L3_CALC		0x01000000	/* calculated layer 3 csum */
427 #define	CSUM_L3_VALID		0x02000000	/* checksum is correct */
428 #define	CSUM_L4_CALC		0x04000000	/* calculated layer 4 csum */
429 #define	CSUM_L4_VALID		0x08000000	/* checksum is correct */
430 #define	CSUM_L5_CALC		0x10000000	/* calculated layer 5 csum */
431 #define	CSUM_L5_VALID		0x20000000	/* checksum is correct */
432 #define	CSUM_COALESED		0x40000000	/* contains merged segments */
433 
434 /*
435  * CSUM flag description for use with printf(9) %b identifier.
436  */
437 #define	CSUM_BITS \
438     "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \
439     "\6CSUM_IP_ISCSI" \
440     "\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP\15CSUM_IP6_TSO" \
441     "\16CSUM_IP6_ISCSI" \
442     "\31CSUM_L3_CALC\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID" \
443     "\35CSUM_L5_CALC\36CSUM_L5_VALID\37CSUM_COALESED"
444 
445 /* CSUM flags compatibility mappings. */
446 #define	CSUM_IP_CHECKED		CSUM_L3_CALC
447 #define	CSUM_IP_VALID		CSUM_L3_VALID
448 #define	CSUM_DATA_VALID		CSUM_L4_VALID
449 #define	CSUM_PSEUDO_HDR		CSUM_L4_CALC
450 #define	CSUM_SCTP_VALID		CSUM_L4_VALID
451 #define	CSUM_DELAY_DATA		(CSUM_TCP|CSUM_UDP)
452 #define	CSUM_DELAY_IP		CSUM_IP		/* Only v4, no v6 IP hdr csum */
453 #define	CSUM_DELAY_DATA_IPV6	(CSUM_TCP_IPV6|CSUM_UDP_IPV6)
454 #define	CSUM_DATA_VALID_IPV6	CSUM_DATA_VALID
455 #define	CSUM_TCP		CSUM_IP_TCP
456 #define	CSUM_UDP		CSUM_IP_UDP
457 #define	CSUM_SCTP		CSUM_IP_SCTP
458 #define	CSUM_TSO		(CSUM_IP_TSO|CSUM_IP6_TSO)
459 #define	CSUM_UDP_IPV6		CSUM_IP6_UDP
460 #define	CSUM_TCP_IPV6		CSUM_IP6_TCP
461 #define	CSUM_SCTP_IPV6		CSUM_IP6_SCTP
462 
463 /*
464  * mbuf types describing the content of the mbuf (including external storage).
465  */
466 #define	MT_NOTMBUF	0	/* USED INTERNALLY ONLY! Object is not mbuf */
467 #define	MT_DATA		1	/* dynamic (data) allocation */
468 #define	MT_HEADER	MT_DATA	/* packet header, use M_PKTHDR instead */
469 
470 #define	MT_VENDOR1	4	/* for vendor-internal use */
471 #define	MT_VENDOR2	5	/* for vendor-internal use */
472 #define	MT_VENDOR3	6	/* for vendor-internal use */
473 #define	MT_VENDOR4	7	/* for vendor-internal use */
474 
475 #define	MT_SONAME	8	/* socket name */
476 
477 #define	MT_EXP1		9	/* for experimental use */
478 #define	MT_EXP2		10	/* for experimental use */
479 #define	MT_EXP3		11	/* for experimental use */
480 #define	MT_EXP4		12	/* for experimental use */
481 
482 #define	MT_CONTROL	14	/* extra-data protocol message */
483 #define	MT_OOBDATA	15	/* expedited data  */
484 #define	MT_NTYPES	16	/* number of mbuf types for mbtypes[] */
485 
486 #define	MT_NOINIT	255	/* Not a type but a flag to allocate
487 				   a non-initialized mbuf */
488 
489 /*
490  * String names of mbuf-related UMA(9) and malloc(9) types.  Exposed to
491  * !_KERNEL so that monitoring tools can look up the zones with
492  * libmemstat(3).
493  */
494 #define	MBUF_MEM_NAME		"mbuf"
495 #define	MBUF_CLUSTER_MEM_NAME	"mbuf_cluster"
496 #define	MBUF_PACKET_MEM_NAME	"mbuf_packet"
497 #define	MBUF_JUMBOP_MEM_NAME	"mbuf_jumbo_page"
498 #define	MBUF_JUMBO9_MEM_NAME	"mbuf_jumbo_9k"
499 #define	MBUF_JUMBO16_MEM_NAME	"mbuf_jumbo_16k"
500 #define	MBUF_TAG_MEM_NAME	"mbuf_tag"
501 #define	MBUF_EXTREFCNT_MEM_NAME	"mbuf_ext_refcnt"
502 
503 #ifdef _KERNEL
504 
505 #ifdef WITNESS
506 #define	MBUF_CHECKSLEEP(how) do {					\
507 	if (how == M_WAITOK)						\
508 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,		\
509 		    "Sleeping in \"%s\"", __func__);			\
510 } while (0)
511 #else
512 #define	MBUF_CHECKSLEEP(how)
513 #endif
514 
515 /*
516  * Network buffer allocation API
517  *
518  * The rest of it is defined in kern/kern_mbuf.c
519  */
520 extern uma_zone_t	zone_mbuf;
521 extern uma_zone_t	zone_clust;
522 extern uma_zone_t	zone_pack;
523 extern uma_zone_t	zone_jumbop;
524 extern uma_zone_t	zone_jumbo9;
525 extern uma_zone_t	zone_jumbo16;
526 extern uma_zone_t	zone_ext_refcnt;
527 
528 void		 mb_free_ext(struct mbuf *);
529 int		 m_pkthdr_init(struct mbuf *, int);
530 
531 static __inline int
532 m_gettype(int size)
533 {
534 	int type;
535 
536 	switch (size) {
537 	case MSIZE:
538 		type = EXT_MBUF;
539 		break;
540 	case MCLBYTES:
541 		type = EXT_CLUSTER;
542 		break;
543 #if MJUMPAGESIZE != MCLBYTES
544 	case MJUMPAGESIZE:
545 		type = EXT_JUMBOP;
546 		break;
547 #endif
548 	case MJUM9BYTES:
549 		type = EXT_JUMBO9;
550 		break;
551 	case MJUM16BYTES:
552 		type = EXT_JUMBO16;
553 		break;
554 	default:
555 		panic("%s: invalid cluster size %d", __func__, size);
556 	}
557 
558 	return (type);
559 }
560 
561 /*
562  * Associated an external reference counted buffer with an mbuf.
563  */
564 static __inline void
565 m_extaddref(struct mbuf *m, caddr_t buf, u_int size, u_int *ref_cnt,
566     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2)
567 {
568 
569 	KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__));
570 
571 	atomic_add_int(ref_cnt, 1);
572 	m->m_flags |= M_EXT;
573 	m->m_ext.ext_buf = buf;
574 	m->m_ext.ext_cnt = ref_cnt;
575 	m->m_data = m->m_ext.ext_buf;
576 	m->m_ext.ext_size = size;
577 	m->m_ext.ext_free = freef;
578 	m->m_ext.ext_arg1 = arg1;
579 	m->m_ext.ext_arg2 = arg2;
580 	m->m_ext.ext_type = EXT_EXTREF;
581 	m->m_ext.ext_flags = 0;
582 }
583 
584 static __inline uma_zone_t
585 m_getzone(int size)
586 {
587 	uma_zone_t zone;
588 
589 	switch (size) {
590 	case MCLBYTES:
591 		zone = zone_clust;
592 		break;
593 #if MJUMPAGESIZE != MCLBYTES
594 	case MJUMPAGESIZE:
595 		zone = zone_jumbop;
596 		break;
597 #endif
598 	case MJUM9BYTES:
599 		zone = zone_jumbo9;
600 		break;
601 	case MJUM16BYTES:
602 		zone = zone_jumbo16;
603 		break;
604 	default:
605 		panic("%s: invalid cluster size %d", __func__, size);
606 	}
607 
608 	return (zone);
609 }
610 
611 /*
612  * Initialize an mbuf with linear storage.
613  *
614  * Inline because the consumer text overhead will be roughly the same to
615  * initialize or call a function with this many parameters and M_PKTHDR
616  * should go away with constant propagation for !MGETHDR.
617  */
618 static __inline int
619 m_init(struct mbuf *m, uma_zone_t zone __unused, int size __unused, int how,
620     short type, int flags)
621 {
622 	int error;
623 
624 	m->m_next = NULL;
625 	m->m_nextpkt = NULL;
626 	m->m_data = m->m_dat;
627 	m->m_len = 0;
628 	m->m_flags = flags;
629 	m->m_type = type;
630 	if (flags & M_PKTHDR) {
631 		if ((error = m_pkthdr_init(m, how)) != 0)
632 			return (error);
633 	}
634 
635 	return (0);
636 }
637 
638 static __inline struct mbuf *
639 m_get(int how, short type)
640 {
641 	struct mb_args args;
642 
643 	args.flags = 0;
644 	args.type = type;
645 	return (uma_zalloc_arg(zone_mbuf, &args, how));
646 }
647 
648 /*
649  * XXX This should be deprecated, very little use.
650  */
651 static __inline struct mbuf *
652 m_getclr(int how, short type)
653 {
654 	struct mbuf *m;
655 	struct mb_args args;
656 
657 	args.flags = 0;
658 	args.type = type;
659 	m = uma_zalloc_arg(zone_mbuf, &args, how);
660 	if (m != NULL)
661 		bzero(m->m_data, MLEN);
662 	return (m);
663 }
664 
665 static __inline struct mbuf *
666 m_gethdr(int how, short type)
667 {
668 	struct mb_args args;
669 
670 	args.flags = M_PKTHDR;
671 	args.type = type;
672 	return (uma_zalloc_arg(zone_mbuf, &args, how));
673 }
674 
675 static __inline struct mbuf *
676 m_getcl(int how, short type, int flags)
677 {
678 	struct mb_args args;
679 
680 	args.flags = flags;
681 	args.type = type;
682 	return (uma_zalloc_arg(zone_pack, &args, how));
683 }
684 
685 static __inline int
686 m_clget(struct mbuf *m, int how)
687 {
688 
689 	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
690 	    __func__, m));
691 	m->m_ext.ext_buf = (char *)NULL;
692 	uma_zalloc_arg(zone_clust, m, how);
693 	/*
694 	 * On a cluster allocation failure, drain the packet zone and retry,
695 	 * we might be able to loosen a few clusters up on the drain.
696 	 */
697 	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
698 		zone_drain(zone_pack);
699 		uma_zalloc_arg(zone_clust, m, how);
700 	}
701 	return (m->m_flags & M_EXT);
702 }
703 
704 /*
705  * m_cljget() is different from m_clget() as it can allocate clusters without
706  * attaching them to an mbuf.  In that case the return value is the pointer
707  * to the cluster of the requested size.  If an mbuf was specified, it gets
708  * the cluster attached to it and the return value can be safely ignored.
709  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
710  */
711 static __inline void *
712 m_cljget(struct mbuf *m, int how, int size)
713 {
714 	uma_zone_t zone;
715 
716 	if (m != NULL) {
717 		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
718 		    __func__, m));
719 		m->m_ext.ext_buf = NULL;
720 	}
721 
722 	zone = m_getzone(size);
723 	return (uma_zalloc_arg(zone, m, how));
724 }
725 
726 static __inline void
727 m_cljset(struct mbuf *m, void *cl, int type)
728 {
729 	uma_zone_t zone;
730 	int size;
731 
732 	switch (type) {
733 	case EXT_CLUSTER:
734 		size = MCLBYTES;
735 		zone = zone_clust;
736 		break;
737 #if MJUMPAGESIZE != MCLBYTES
738 	case EXT_JUMBOP:
739 		size = MJUMPAGESIZE;
740 		zone = zone_jumbop;
741 		break;
742 #endif
743 	case EXT_JUMBO9:
744 		size = MJUM9BYTES;
745 		zone = zone_jumbo9;
746 		break;
747 	case EXT_JUMBO16:
748 		size = MJUM16BYTES;
749 		zone = zone_jumbo16;
750 		break;
751 	default:
752 		panic("%s: unknown cluster type %d", __func__, type);
753 		break;
754 	}
755 
756 	m->m_data = m->m_ext.ext_buf = cl;
757 	m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL;
758 	m->m_ext.ext_size = size;
759 	m->m_ext.ext_type = type;
760 	m->m_ext.ext_flags = 0;
761 	m->m_ext.ext_cnt = uma_find_refcnt(zone, cl);
762 	m->m_flags |= M_EXT;
763 
764 }
765 
766 static __inline void
767 m_chtype(struct mbuf *m, short new_type)
768 {
769 
770 	m->m_type = new_type;
771 }
772 
773 static __inline void
774 m_clrprotoflags(struct mbuf *m)
775 {
776 
777 	while (m) {
778 		m->m_flags &= ~M_PROTOFLAGS;
779 		m = m->m_next;
780 	}
781 }
782 
783 static __inline struct mbuf *
784 m_last(struct mbuf *m)
785 {
786 
787 	while (m->m_next)
788 		m = m->m_next;
789 	return (m);
790 }
791 
792 /*
793  * mbuf, cluster, and external object allocation macros (for compatibility
794  * purposes).
795  */
796 #define	M_MOVE_PKTHDR(to, from)	m_move_pkthdr((to), (from))
797 #define	MGET(m, how, type)	((m) = m_get((how), (type)))
798 #define	MGETHDR(m, how, type)	((m) = m_gethdr((how), (type)))
799 #define	MCLGET(m, how)		m_clget((m), (how))
800 #define	MEXTADD(m, buf, size, free, arg1, arg2, flags, type)		\
801     (void )m_extadd((m), (caddr_t)(buf), (size), (free), (arg1), (arg2),\
802     (flags), (type), M_NOWAIT)
803 #define	m_getm(m, len, how, type)					\
804     m_getm2((m), (len), (how), (type), M_PKTHDR)
805 
806 /*
807  * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
808  * be both the local data payload, or an external buffer area, depending on
809  * whether M_EXT is set).
810  */
811 #define	M_WRITABLE(m)	(!((m)->m_flags & M_RDONLY) &&			\
812 			 (!(((m)->m_flags & M_EXT)) ||			\
813 			 (*((m)->m_ext.ext_cnt) == 1)) )		\
814 
815 /* Check if the supplied mbuf has a packet header, or else panic. */
816 #define	M_ASSERTPKTHDR(m)						\
817 	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR,			\
818 	    ("%s: no mbuf packet header!", __func__))
819 
820 /*
821  * Ensure that the supplied mbuf is a valid, non-free mbuf.
822  *
823  * XXX: Broken at the moment.  Need some UMA magic to make it work again.
824  */
825 #define	M_ASSERTVALID(m)						\
826 	KASSERT((((struct mbuf *)m)->m_flags & 0) == 0,			\
827 	    ("%s: attempted use of a free mbuf!", __func__))
828 
829 /*
830  * Return the address of the start of the buffer associated with an mbuf,
831  * handling external storage, packet-header mbufs, and regular data mbufs.
832  */
833 #define	M_START(m)							\
834 	(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf :			\
835 	 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] :		\
836 	 &(m)->m_dat[0])
837 
838 /*
839  * Return the size of the buffer associated with an mbuf, handling external
840  * storage, packet-header mbufs, and regular data mbufs.
841  */
842 #define	M_SIZE(m)							\
843 	(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size :			\
844 	 ((m)->m_flags & M_PKTHDR) ? MHLEN :				\
845 	 MLEN)
846 
847 /*
848  * Set the m_data pointer of a newly allocated mbuf to place an object of the
849  * specified size at the end of the mbuf, longword aligned.
850  *
851  * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
852  * separate macros, each asserting that it was called at the proper moment.
853  * This required callers to themselves test the storage type and call the
854  * right one.  Rather than require callers to be aware of those layout
855  * decisions, we centralize here.
856  */
857 static __inline void
858 m_align(struct mbuf *m, int len)
859 {
860 #ifdef INVARIANTS
861 	const char *msg = "%s: not a virgin mbuf";
862 #endif
863 	int adjust;
864 
865 	KASSERT(m->m_data == M_START(m), (msg, __func__));
866 
867 	adjust = M_SIZE(m) - len;
868 	m->m_data += adjust &~ (sizeof(long)-1);
869 }
870 
871 #define	M_ALIGN(m, len)		m_align(m, len)
872 #define	MH_ALIGN(m, len)	m_align(m, len)
873 #define	MEXT_ALIGN(m, len)	m_align(m, len)
874 
875 /*
876  * Compute the amount of space available before the current start of data in
877  * an mbuf.
878  *
879  * The M_WRITABLE() is a temporary, conservative safety measure: the burden
880  * of checking writability of the mbuf data area rests solely with the caller.
881  *
882  * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE()
883  * for mbufs with external storage.  We now allow mbuf-embedded data to be
884  * read-only as well.
885  */
886 #define	M_LEADINGSPACE(m)						\
887 	(M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0)
888 
889 /*
890  * Compute the amount of space available after the end of data in an mbuf.
891  *
892  * The M_WRITABLE() is a temporary, conservative safety measure: the burden
893  * of checking writability of the mbuf data area rests solely with the caller.
894  *
895  * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE()
896  * for mbufs with external storage.  We now allow mbuf-embedded data to be
897  * read-only as well.
898  */
899 #define	M_TRAILINGSPACE(m)						\
900 	(M_WRITABLE(m) ?						\
901 	    ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0)
902 
903 /*
904  * Arrange to prepend space of size plen to mbuf m.  If a new mbuf must be
905  * allocated, how specifies whether to wait.  If the allocation fails, the
906  * original mbuf chain is freed and m is set to NULL.
907  */
908 #define	M_PREPEND(m, plen, how) do {					\
909 	struct mbuf **_mmp = &(m);					\
910 	struct mbuf *_mm = *_mmp;					\
911 	int _mplen = (plen);						\
912 	int __mhow = (how);						\
913 									\
914 	MBUF_CHECKSLEEP(how);						\
915 	if (M_LEADINGSPACE(_mm) >= _mplen) {				\
916 		_mm->m_data -= _mplen;					\
917 		_mm->m_len += _mplen;					\
918 	} else								\
919 		_mm = m_prepend(_mm, _mplen, __mhow);			\
920 	if (_mm != NULL && _mm->m_flags & M_PKTHDR)			\
921 		_mm->m_pkthdr.len += _mplen;				\
922 	*_mmp = _mm;							\
923 } while (0)
924 
925 /*
926  * Change mbuf to new type.  This is a relatively expensive operation and
927  * should be avoided.
928  */
929 #define	MCHTYPE(m, t)	m_chtype((m), (t))
930 
931 /* Length to m_copy to copy all. */
932 #define	M_COPYALL	1000000000
933 
934 /* Compatibility with 4.3. */
935 #define	m_copy(m, o, l)	m_copym((m), (o), (l), M_NOWAIT)
936 
937 extern int		max_datalen;	/* MHLEN - max_hdr */
938 extern int		max_hdr;	/* Largest link + protocol header */
939 extern int		max_linkhdr;	/* Largest link-level header */
940 extern int		max_protohdr;	/* Largest protocol header */
941 extern int		nmbclusters;	/* Maximum number of clusters */
942 
943 struct uio;
944 
945 void		 m_adj(struct mbuf *, int);
946 int		 m_apply(struct mbuf *, int, int,
947 		    int (*)(void *, void *, u_int), void *);
948 int		 m_append(struct mbuf *, int, c_caddr_t);
949 void		 m_cat(struct mbuf *, struct mbuf *);
950 void		 m_catpkt(struct mbuf *, struct mbuf *);
951 int		 m_extadd(struct mbuf *, caddr_t, u_int,
952 		    void (*)(struct mbuf *, void *, void *), void *, void *,
953 		    int, int, int);
954 struct mbuf	*m_collapse(struct mbuf *, int, int);
955 void		 m_copyback(struct mbuf *, int, int, c_caddr_t);
956 void		 m_copydata(const struct mbuf *, int, int, caddr_t);
957 struct mbuf	*m_copym(struct mbuf *, int, int, int);
958 struct mbuf	*m_copypacket(struct mbuf *, int);
959 void		 m_copy_pkthdr(struct mbuf *, struct mbuf *);
960 struct mbuf	*m_copyup(struct mbuf *, int, int);
961 struct mbuf	*m_defrag(struct mbuf *, int);
962 void		 m_demote_pkthdr(struct mbuf *);
963 void		 m_demote(struct mbuf *, int, int);
964 struct mbuf	*m_devget(char *, int, int, struct ifnet *,
965 		    void (*)(char *, caddr_t, u_int));
966 struct mbuf	*m_dup(struct mbuf *, int);
967 int		 m_dup_pkthdr(struct mbuf *, struct mbuf *, int);
968 u_int		 m_fixhdr(struct mbuf *);
969 struct mbuf	*m_fragment(struct mbuf *, int, int);
970 void		 m_freem(struct mbuf *);
971 struct mbuf	*m_get2(int, int, short, int);
972 struct mbuf	*m_getjcl(int, short, int, int);
973 struct mbuf	*m_getm2(struct mbuf *, int, int, short, int);
974 struct mbuf	*m_getptr(struct mbuf *, int, int *);
975 u_int		 m_length(struct mbuf *, struct mbuf **);
976 int		 m_mbuftouio(struct uio *, struct mbuf *, int);
977 void		 m_move_pkthdr(struct mbuf *, struct mbuf *);
978 struct mbuf	*m_prepend(struct mbuf *, int, int);
979 void		 m_print(const struct mbuf *, int);
980 struct mbuf	*m_pulldown(struct mbuf *, int, int, int *);
981 struct mbuf	*m_pullup(struct mbuf *, int);
982 int		 m_sanity(struct mbuf *, int);
983 struct mbuf	*m_split(struct mbuf *, int, int);
984 struct mbuf	*m_uiotombuf(struct uio *, int, int, int, int);
985 struct mbuf	*m_unshare(struct mbuf *, int);
986 
987 /*-
988  * Network packets may have annotations attached by affixing a list of
989  * "packet tags" to the pkthdr structure.  Packet tags are dynamically
990  * allocated semi-opaque data structures that have a fixed header
991  * (struct m_tag) that specifies the size of the memory block and a
992  * <cookie,type> pair that identifies it.  The cookie is a 32-bit unique
993  * unsigned value used to identify a module or ABI.  By convention this value
994  * is chosen as the date+time that the module is created, expressed as the
995  * number of seconds since the epoch (e.g., using date -u +'%s').  The type
996  * value is an ABI/module-specific value that identifies a particular
997  * annotation and is private to the module.  For compatibility with systems
998  * like OpenBSD that define packet tags w/o an ABI/module cookie, the value
999  * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find
1000  * compatibility shim functions and several tag types are defined below.
1001  * Users that do not require compatibility should use a private cookie value
1002  * so that packet tag-related definitions can be maintained privately.
1003  *
1004  * Note that the packet tag returned by m_tag_alloc has the default memory
1005  * alignment implemented by malloc.  To reference private data one can use a
1006  * construct like:
1007  *
1008  *	struct m_tag *mtag = m_tag_alloc(...);
1009  *	struct foo *p = (struct foo *)(mtag+1);
1010  *
1011  * if the alignment of struct m_tag is sufficient for referencing members of
1012  * struct foo.  Otherwise it is necessary to embed struct m_tag within the
1013  * private data structure to insure proper alignment; e.g.,
1014  *
1015  *	struct foo {
1016  *		struct m_tag	tag;
1017  *		...
1018  *	};
1019  *	struct foo *p = (struct foo *) m_tag_alloc(...);
1020  *	struct m_tag *mtag = &p->tag;
1021  */
1022 
1023 /*
1024  * Persistent tags stay with an mbuf until the mbuf is reclaimed.  Otherwise
1025  * tags are expected to ``vanish'' when they pass through a network
1026  * interface.  For most interfaces this happens normally as the tags are
1027  * reclaimed when the mbuf is free'd.  However in some special cases
1028  * reclaiming must be done manually.  An example is packets that pass through
1029  * the loopback interface.  Also, one must be careful to do this when
1030  * ``turning around'' packets (e.g., icmp_reflect).
1031  *
1032  * To mark a tag persistent bit-or this flag in when defining the tag id.
1033  * The tag will then be treated as described above.
1034  */
1035 #define	MTAG_PERSISTENT				0x800
1036 
1037 #define	PACKET_TAG_NONE				0  /* Nadda */
1038 
1039 /* Packet tags for use with PACKET_ABI_COMPAT. */
1040 #define	PACKET_TAG_IPSEC_IN_DONE		1  /* IPsec applied, in */
1041 #define	PACKET_TAG_IPSEC_OUT_DONE		2  /* IPsec applied, out */
1042 #define	PACKET_TAG_IPSEC_IN_CRYPTO_DONE		3  /* NIC IPsec crypto done */
1043 #define	PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED	4  /* NIC IPsec crypto req'ed */
1044 #define	PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO	5  /* NIC notifies IPsec */
1045 #define	PACKET_TAG_IPSEC_PENDING_TDB		6  /* Reminder to do IPsec */
1046 #define	PACKET_TAG_BRIDGE			7  /* Bridge processing done */
1047 #define	PACKET_TAG_GIF				8  /* GIF processing done */
1048 #define	PACKET_TAG_GRE				9  /* GRE processing done */
1049 #define	PACKET_TAG_IN_PACKET_CHECKSUM		10 /* NIC checksumming done */
1050 #define	PACKET_TAG_ENCAP			11 /* Encap.  processing */
1051 #define	PACKET_TAG_IPSEC_SOCKET			12 /* IPSEC socket ref */
1052 #define	PACKET_TAG_IPSEC_HISTORY		13 /* IPSEC history */
1053 #define	PACKET_TAG_IPV6_INPUT			14 /* IPV6 input processing */
1054 #define	PACKET_TAG_DUMMYNET			15 /* dummynet info */
1055 #define	PACKET_TAG_DIVERT			17 /* divert info */
1056 #define	PACKET_TAG_IPFORWARD			18 /* ipforward info */
1057 #define	PACKET_TAG_MACLABEL	(19 | MTAG_PERSISTENT) /* MAC label */
1058 #define	PACKET_TAG_PF		(21 | MTAG_PERSISTENT) /* PF/ALTQ information */
1059 #define	PACKET_TAG_RTSOCKFAM			25 /* rtsock sa family */
1060 #define	PACKET_TAG_IPOPTIONS			27 /* Saved IP options */
1061 #define	PACKET_TAG_CARP				28 /* CARP info */
1062 #define	PACKET_TAG_IPSEC_NAT_T_PORTS		29 /* two uint16_t */
1063 #define	PACKET_TAG_ND_OUTGOING			30 /* ND outgoing */
1064 
1065 /* Specific cookies and tags. */
1066 
1067 /* Packet tag routines. */
1068 struct m_tag	*m_tag_alloc(u_int32_t, int, int, int);
1069 void		 m_tag_delete(struct mbuf *, struct m_tag *);
1070 void		 m_tag_delete_chain(struct mbuf *, struct m_tag *);
1071 void		 m_tag_free_default(struct m_tag *);
1072 struct m_tag	*m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *);
1073 struct m_tag	*m_tag_copy(struct m_tag *, int);
1074 int		 m_tag_copy_chain(struct mbuf *, struct mbuf *, int);
1075 void		 m_tag_delete_nonpersistent(struct mbuf *);
1076 
1077 /*
1078  * Initialize the list of tags associated with an mbuf.
1079  */
1080 static __inline void
1081 m_tag_init(struct mbuf *m)
1082 {
1083 
1084 	SLIST_INIT(&m->m_pkthdr.tags);
1085 }
1086 
1087 /*
1088  * Set up the contents of a tag.  Note that this does not fill in the free
1089  * method; the caller is expected to do that.
1090  *
1091  * XXX probably should be called m_tag_init, but that was already taken.
1092  */
1093 static __inline void
1094 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len)
1095 {
1096 
1097 	t->m_tag_id = type;
1098 	t->m_tag_len = len;
1099 	t->m_tag_cookie = cookie;
1100 }
1101 
1102 /*
1103  * Reclaim resources associated with a tag.
1104  */
1105 static __inline void
1106 m_tag_free(struct m_tag *t)
1107 {
1108 
1109 	(*t->m_tag_free)(t);
1110 }
1111 
1112 /*
1113  * Return the first tag associated with an mbuf.
1114  */
1115 static __inline struct m_tag *
1116 m_tag_first(struct mbuf *m)
1117 {
1118 
1119 	return (SLIST_FIRST(&m->m_pkthdr.tags));
1120 }
1121 
1122 /*
1123  * Return the next tag in the list of tags associated with an mbuf.
1124  */
1125 static __inline struct m_tag *
1126 m_tag_next(struct mbuf *m __unused, struct m_tag *t)
1127 {
1128 
1129 	return (SLIST_NEXT(t, m_tag_link));
1130 }
1131 
1132 /*
1133  * Prepend a tag to the list of tags associated with an mbuf.
1134  */
1135 static __inline void
1136 m_tag_prepend(struct mbuf *m, struct m_tag *t)
1137 {
1138 
1139 	SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
1140 }
1141 
1142 /*
1143  * Unlink a tag from the list of tags associated with an mbuf.
1144  */
1145 static __inline void
1146 m_tag_unlink(struct mbuf *m, struct m_tag *t)
1147 {
1148 
1149 	SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
1150 }
1151 
1152 /* These are for OpenBSD compatibility. */
1153 #define	MTAG_ABI_COMPAT		0		/* compatibility ABI */
1154 
1155 static __inline struct m_tag *
1156 m_tag_get(int type, int length, int wait)
1157 {
1158 	return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait));
1159 }
1160 
1161 static __inline struct m_tag *
1162 m_tag_find(struct mbuf *m, int type, struct m_tag *start)
1163 {
1164 	return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL :
1165 	    m_tag_locate(m, MTAG_ABI_COMPAT, type, start));
1166 }
1167 
1168 static __inline struct mbuf *
1169 m_free(struct mbuf *m)
1170 {
1171 	struct mbuf *n = m->m_next;
1172 
1173 	if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE))
1174 		m_tag_delete_chain(m, NULL);
1175 	if (m->m_flags & M_EXT)
1176 		mb_free_ext(m);
1177 	else if ((m->m_flags & M_NOFREE) == 0)
1178 		uma_zfree(zone_mbuf, m);
1179 	return (n);
1180 }
1181 
1182 static __inline int
1183 rt_m_getfib(struct mbuf *m)
1184 {
1185 	KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf."));
1186 	return (m->m_pkthdr.fibnum);
1187 }
1188 
1189 #define M_GETFIB(_m)   rt_m_getfib(_m)
1190 
1191 #define M_SETFIB(_m, _fib) do {						\
1192         KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf."));	\
1193 	((_m)->m_pkthdr.fibnum) = (_fib);				\
1194 } while (0)
1195 
1196 /* flags passed as first argument for "m_ether_tcpip_hash()" */
1197 #define	MBUF_HASHFLAG_L2	(1 << 2)
1198 #define	MBUF_HASHFLAG_L3	(1 << 3)
1199 #define	MBUF_HASHFLAG_L4	(1 << 4)
1200 
1201 /* mbuf hashing helper routines */
1202 uint32_t	m_ether_tcpip_hash_init(void);
1203 uint32_t	m_ether_tcpip_hash(const uint32_t, const struct mbuf *, const uint32_t);
1204 
1205 #ifdef MBUF_PROFILING
1206  void m_profile(struct mbuf *m);
1207  #define M_PROFILE(m) m_profile(m)
1208 #else
1209  #define M_PROFILE(m)
1210 #endif
1211 
1212 struct mbufq {
1213 	STAILQ_HEAD(, mbuf)	mq_head;
1214 	int			mq_len;
1215 	int			mq_maxlen;
1216 };
1217 
1218 static inline void
1219 mbufq_init(struct mbufq *mq, int maxlen)
1220 {
1221 
1222 	STAILQ_INIT(&mq->mq_head);
1223 	mq->mq_maxlen = maxlen;
1224 	mq->mq_len = 0;
1225 }
1226 
1227 static inline struct mbuf *
1228 mbufq_flush(struct mbufq *mq)
1229 {
1230 	struct mbuf *m;
1231 
1232 	m = STAILQ_FIRST(&mq->mq_head);
1233 	STAILQ_INIT(&mq->mq_head);
1234 	mq->mq_len = 0;
1235 	return (m);
1236 }
1237 
1238 static inline void
1239 mbufq_drain(struct mbufq *mq)
1240 {
1241 	struct mbuf *m, *n;
1242 
1243 	n = mbufq_flush(mq);
1244 	while ((m = n) != NULL) {
1245 		n = STAILQ_NEXT(m, m_stailqpkt);
1246 		m_freem(m);
1247 	}
1248 }
1249 
1250 static inline struct mbuf *
1251 mbufq_first(const struct mbufq *mq)
1252 {
1253 
1254 	return (STAILQ_FIRST(&mq->mq_head));
1255 }
1256 
1257 static inline struct mbuf *
1258 mbufq_last(const struct mbufq *mq)
1259 {
1260 
1261 	return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt));
1262 }
1263 
1264 static inline int
1265 mbufq_full(const struct mbufq *mq)
1266 {
1267 
1268 	return (mq->mq_len >= mq->mq_maxlen);
1269 }
1270 
1271 static inline int
1272 mbufq_len(const struct mbufq *mq)
1273 {
1274 
1275 	return (mq->mq_len);
1276 }
1277 
1278 static inline int
1279 mbufq_enqueue(struct mbufq *mq, struct mbuf *m)
1280 {
1281 
1282 	if (mbufq_full(mq))
1283 		return (ENOBUFS);
1284 	STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt);
1285 	mq->mq_len++;
1286 	return (0);
1287 }
1288 
1289 static inline struct mbuf *
1290 mbufq_dequeue(struct mbufq *mq)
1291 {
1292 	struct mbuf *m;
1293 
1294 	m = STAILQ_FIRST(&mq->mq_head);
1295 	if (m) {
1296 		STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt);
1297 		m->m_nextpkt = NULL;
1298 		mq->mq_len--;
1299 	}
1300 	return (m);
1301 }
1302 
1303 static inline void
1304 mbufq_prepend(struct mbufq *mq, struct mbuf *m)
1305 {
1306 
1307 	STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt);
1308 	mq->mq_len++;
1309 }
1310 #endif /* _KERNEL */
1311 #endif /* !_SYS_MBUF_H_ */
1312