1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 31 * $FreeBSD$ 32 */ 33 34 #ifndef _SYS_MBUF_H_ 35 #define _SYS_MBUF_H_ 36 37 /* XXX: These includes suck. Sorry! */ 38 #include <sys/queue.h> 39 #ifdef _KERNEL 40 #include <sys/systm.h> 41 #include <vm/uma.h> 42 #ifdef WITNESS 43 #include <sys/lock.h> 44 #endif 45 #endif 46 47 /* 48 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 49 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 50 * sys/param.h), which has no additional overhead and is used instead of the 51 * internal data area; this is done when at least MINCLSIZE of data must be 52 * stored. Additionally, it is possible to allocate a separate buffer 53 * externally and attach it to the mbuf in a way similar to that of mbuf 54 * clusters. 55 * 56 * MLEN is data length in a normal mbuf. 57 * MHLEN is data length in an mbuf with pktheader. 58 * MINCLSIZE is a smallest amount of data that should be put into cluster. 59 */ 60 #define MLEN ((int)(MSIZE - sizeof(struct m_hdr))) 61 #define MHLEN ((int)(MLEN - sizeof(struct pkthdr))) 62 #define MINCLSIZE (MHLEN + 1) 63 64 #ifdef _KERNEL 65 /*- 66 * Macro for type conversion: convert mbuf pointer to data pointer of correct 67 * type: 68 * 69 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 70 */ 71 #define mtod(m, t) ((t)((m)->m_data)) 72 73 /* 74 * Argument structure passed to UMA routines during mbuf and packet 75 * allocations. 76 */ 77 struct mb_args { 78 int flags; /* Flags for mbuf being allocated */ 79 short type; /* Type of mbuf being allocated */ 80 }; 81 #endif /* _KERNEL */ 82 83 #if defined(__LP64__) 84 #define M_HDR_PAD 6 85 #else 86 #define M_HDR_PAD 2 87 #endif 88 89 /* 90 * Header present at the beginning of every mbuf. 91 */ 92 struct m_hdr { 93 struct mbuf *mh_next; /* next buffer in chain */ 94 struct mbuf *mh_nextpkt; /* next chain in queue/record */ 95 caddr_t mh_data; /* location of data */ 96 int mh_len; /* amount of data in this mbuf */ 97 int mh_flags; /* flags; see below */ 98 short mh_type; /* type of data in this mbuf */ 99 uint8_t pad[M_HDR_PAD];/* word align */ 100 }; 101 102 /* 103 * Packet tag structure (see below for details). 104 */ 105 struct m_tag { 106 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 107 u_int16_t m_tag_id; /* Tag ID */ 108 u_int16_t m_tag_len; /* Length of data */ 109 u_int32_t m_tag_cookie; /* ABI/Module ID */ 110 void (*m_tag_free)(struct m_tag *); 111 }; 112 113 /* 114 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 115 */ 116 struct pkthdr { 117 struct ifnet *rcvif; /* rcv interface */ 118 /* variables for ip and tcp reassembly */ 119 void *header; /* pointer to packet header */ 120 int len; /* total packet length */ 121 uint32_t flowid; /* packet's 4-tuple system 122 * flow identifier 123 */ 124 /* variables for hardware checksum */ 125 int csum_flags; /* flags regarding checksum */ 126 int csum_data; /* data field used by csum routines */ 127 u_int16_t tso_segsz; /* TSO segment size */ 128 union { 129 u_int16_t vt_vtag; /* Ethernet 802.1p+q vlan tag */ 130 u_int16_t vt_nrecs; /* # of IGMPv3 records in this chain */ 131 } PH_vt; 132 u_int16_t fibnum; /* this packet should use this fib */ 133 u_int16_t pad2; /* align to 32 bits */ 134 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 135 }; 136 #define ether_vtag PH_vt.vt_vtag 137 138 /* 139 * Description of external storage mapped into mbuf; valid only if M_EXT is 140 * set. 141 */ 142 struct m_ext { 143 caddr_t ext_buf; /* start of buffer */ 144 void (*ext_free) /* free routine if not the usual */ 145 (void *, void *); 146 void *ext_arg1; /* optional argument pointer */ 147 void *ext_arg2; /* optional argument pointer */ 148 u_int ext_size; /* size of buffer, for ext_free */ 149 volatile u_int *ref_cnt; /* pointer to ref count info */ 150 int ext_type; /* type of external storage */ 151 }; 152 153 /* 154 * The core of the mbuf object along with some shortcut defines for practical 155 * purposes. 156 */ 157 struct mbuf { 158 struct m_hdr m_hdr; 159 union { 160 struct { 161 struct pkthdr MH_pkthdr; /* M_PKTHDR set */ 162 union { 163 struct m_ext MH_ext; /* M_EXT set */ 164 char MH_databuf[MHLEN]; 165 } MH_dat; 166 } MH; 167 char M_databuf[MLEN]; /* !M_PKTHDR, !M_EXT */ 168 } M_dat; 169 }; 170 #define m_next m_hdr.mh_next 171 #define m_len m_hdr.mh_len 172 #define m_data m_hdr.mh_data 173 #define m_type m_hdr.mh_type 174 #define m_flags m_hdr.mh_flags 175 #define m_nextpkt m_hdr.mh_nextpkt 176 #define m_act m_nextpkt 177 #define m_pkthdr M_dat.MH.MH_pkthdr 178 #define m_ext M_dat.MH.MH_dat.MH_ext 179 #define m_pktdat M_dat.MH.MH_dat.MH_databuf 180 #define m_dat M_dat.M_databuf 181 182 /* 183 * mbuf flags. 184 */ 185 #define M_EXT 0x00000001 /* has associated external storage */ 186 #define M_PKTHDR 0x00000002 /* start of record */ 187 #define M_EOR 0x00000004 /* end of record */ 188 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 189 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 190 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 191 #define M_PROMISC 0x00000040 /* packet was not for us */ 192 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 193 #define M_FLOWID 0x00000100 /* deprecated: flowid is valid */ 194 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 195 196 #define M_PROTO1 0x00001000 /* protocol-specific */ 197 #define M_PROTO2 0x00002000 /* protocol-specific */ 198 #define M_PROTO3 0x00004000 /* protocol-specific */ 199 #define M_PROTO4 0x00008000 /* protocol-specific */ 200 #define M_PROTO5 0x00010000 /* protocol-specific */ 201 #define M_PROTO6 0x00020000 /* protocol-specific */ 202 #define M_PROTO7 0x00040000 /* protocol-specific */ 203 #define M_PROTO8 0x00080000 /* protocol-specific */ 204 #define M_PROTO9 0x00100000 /* protocol-specific */ 205 #define M_PROTO10 0x00200000 /* protocol-specific */ 206 #define M_PROTO11 0x00400000 /* protocol-specific */ 207 #define M_PROTO12 0x00800000 /* protocol-specific */ 208 209 #define M_HASHTYPEBITS 0x0F000000 /* mask of bits holding flowid hash type */ 210 211 /* 212 * Flags to purge when crossing layers. 213 */ 214 #define M_PROTOFLAGS \ 215 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 216 M_PROTO9|M_PROTO10|M_PROTO11|M_PROTO12) 217 218 /* 219 * Mbuf flag description for use with printf(9) %b identifier. 220 */ 221 #define M_FLAG_BITS \ 222 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 223 "\7M_PROMISC\10M_VLANTAG\11M_FLOWID" 224 #define M_FLAG_PROTOBITS \ 225 "\15M_PROTO1\16M_PROTO2\17M_PROTO3\20M_PROTO4\21M_PROTO5" \ 226 "\22M_PROTO6\23M_PROTO7\24M_PROTO8\25M_PROTO9\26M_PROTO10" \ 227 "\27M_PROTO11\30M_PROTO12" 228 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 229 230 /* 231 * Network interface cards are able to hash protocol fields (such as IPv4 232 * addresses and TCP port numbers) classify packets into flows. These flows 233 * can then be used to maintain ordering while delivering packets to the OS 234 * via parallel input queues, as well as to provide a stateless affinity 235 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 236 * m_flag fields to indicate how the hash should be interpreted by the 237 * network stack. 238 * 239 * Most NICs support RSS, which provides ordering and explicit affinity, and 240 * use the hash m_flag bits to indicate what header fields were covered by 241 * the hash. M_HASHTYPE_OPAQUE can be set by non-RSS cards or configurations 242 * that provide an opaque flow identifier, allowing for ordering and 243 * distribution without explicit affinity. 244 */ 245 #define M_HASHTYPE_SHIFT 24 246 #define M_HASHTYPE_NONE 0x0 247 #define M_HASHTYPE_RSS_IPV4 0x1 /* IPv4 2-tuple */ 248 #define M_HASHTYPE_RSS_TCP_IPV4 0x2 /* TCPv4 4-tuple */ 249 #define M_HASHTYPE_RSS_IPV6 0x3 /* IPv6 2-tuple */ 250 #define M_HASHTYPE_RSS_TCP_IPV6 0x4 /* TCPv6 4-tuple */ 251 #define M_HASHTYPE_RSS_IPV6_EX 0x5 /* IPv6 2-tuple + ext hdrs */ 252 #define M_HASHTYPE_RSS_TCP_IPV6_EX 0x6 /* TCPv6 4-tiple + ext hdrs */ 253 #define M_HASHTYPE_OPAQUE 0xf /* ordering, not affinity */ 254 255 #define M_HASHTYPE_CLEAR(m) (m)->m_flags &= ~(M_HASHTYPEBITS) 256 #define M_HASHTYPE_GET(m) (((m)->m_flags & M_HASHTYPEBITS) >> \ 257 M_HASHTYPE_SHIFT) 258 #define M_HASHTYPE_SET(m, v) do { \ 259 (m)->m_flags &= ~M_HASHTYPEBITS; \ 260 (m)->m_flags |= ((v) << M_HASHTYPE_SHIFT); \ 261 } while (0) 262 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 263 264 /* 265 * Flags preserved when copying m_pkthdr. 266 */ 267 #define M_COPYFLAGS \ 268 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_VLANTAG|M_PROMISC| \ 269 M_PROTOFLAGS|M_HASHTYPEBITS) 270 271 /* 272 * External buffer types: identify ext_buf type. 273 */ 274 #define EXT_CLUSTER 1 /* mbuf cluster */ 275 #define EXT_SFBUF 2 /* sendfile(2)'s sf_bufs */ 276 #define EXT_JUMBOP 3 /* jumbo cluster 4096 bytes */ 277 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 278 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 279 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 280 #define EXT_MBUF 7 /* external mbuf reference (M_IOVEC) */ 281 #define EXT_NET_DRV 100 /* custom ext_buf provided by net driver(s) */ 282 #define EXT_MOD_TYPE 200 /* custom module's ext_buf type */ 283 #define EXT_DISPOSABLE 300 /* can throw this buffer away w/page flipping */ 284 #define EXT_EXTREF 400 /* has externally maintained ref_cnt ptr */ 285 286 /* 287 * Flags indicating hw checksum support and sw checksum requirements. This 288 * field can be directly tested against if_data.ifi_hwassist. 289 */ 290 #define CSUM_IP 0x0001 /* will csum IP */ 291 #define CSUM_TCP 0x0002 /* will csum TCP */ 292 #define CSUM_UDP 0x0004 /* will csum UDP */ 293 #define CSUM_FRAGMENT 0x0010 /* will do IP fragmentation */ 294 #define CSUM_TSO 0x0020 /* will do TSO */ 295 #define CSUM_SCTP 0x0040 /* will csum SCTP */ 296 #define CSUM_SCTP_IPV6 0x0080 /* will csum IPv6/SCTP */ 297 298 #define CSUM_IP_CHECKED 0x0100 /* did csum IP */ 299 #define CSUM_IP_VALID 0x0200 /* ... the csum is valid */ 300 #define CSUM_DATA_VALID 0x0400 /* csum_data field is valid */ 301 #define CSUM_PSEUDO_HDR 0x0800 /* csum_data has pseudo hdr */ 302 #define CSUM_SCTP_VALID 0x1000 /* SCTP checksum is valid */ 303 #define CSUM_UDP_IPV6 0x2000 /* will csum IPv6/UDP */ 304 #define CSUM_TCP_IPV6 0x4000 /* will csum IPv6/TCP */ 305 /* CSUM_TSO_IPV6 0x8000 will do IPv6/TSO */ 306 307 /* CSUM_FRAGMENT_IPV6 0x10000 will do IPv6 fragementation */ 308 309 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6 | CSUM_UDP_IPV6) 310 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 311 312 #define CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP) 313 #define CSUM_DELAY_IP (CSUM_IP) /* Only v4, no v6 IP hdr csum */ 314 315 /* 316 * mbuf types. 317 */ 318 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 319 #define MT_DATA 1 /* dynamic (data) allocation */ 320 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 321 #define MT_SONAME 8 /* socket name */ 322 #define MT_CONTROL 14 /* extra-data protocol message */ 323 #define MT_OOBDATA 15 /* expedited data */ 324 #define MT_NTYPES 16 /* number of mbuf types for mbtypes[] */ 325 326 #define MT_NOINIT 255 /* Not a type but a flag to allocate 327 a non-initialized mbuf */ 328 329 #define MB_NOTAGS 0x1UL /* no tags attached to mbuf */ 330 331 /* 332 * Compatibility with historic mbuf allocator. 333 */ 334 #define MBTOM(how) (how) 335 #define M_DONTWAIT M_NOWAIT 336 #define M_TRYWAIT M_WAITOK 337 #define M_WAIT M_WAITOK 338 339 /* 340 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 341 * !_KERNEL so that monitoring tools can look up the zones with 342 * libmemstat(3). 343 */ 344 #define MBUF_MEM_NAME "mbuf" 345 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 346 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 347 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 348 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 349 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 350 #define MBUF_TAG_MEM_NAME "mbuf_tag" 351 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 352 353 #ifdef _KERNEL 354 355 #ifdef WITNESS 356 #define MBUF_CHECKSLEEP(how) do { \ 357 if (how == M_WAITOK) \ 358 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 359 "Sleeping in \"%s\"", __func__); \ 360 } while (0) 361 #else 362 #define MBUF_CHECKSLEEP(how) 363 #endif 364 365 /* 366 * Network buffer allocation API 367 * 368 * The rest of it is defined in kern/kern_mbuf.c 369 */ 370 extern uma_zone_t zone_mbuf; 371 extern uma_zone_t zone_clust; 372 extern uma_zone_t zone_pack; 373 extern uma_zone_t zone_jumbop; 374 extern uma_zone_t zone_jumbo9; 375 extern uma_zone_t zone_jumbo16; 376 extern uma_zone_t zone_ext_refcnt; 377 378 void mb_free_ext(struct mbuf *); 379 int m_pkthdr_init(struct mbuf *, int); 380 381 static __inline int 382 m_gettype(int size) 383 { 384 int type; 385 386 switch (size) { 387 case MSIZE: 388 type = EXT_MBUF; 389 break; 390 case MCLBYTES: 391 type = EXT_CLUSTER; 392 break; 393 #if MJUMPAGESIZE != MCLBYTES 394 case MJUMPAGESIZE: 395 type = EXT_JUMBOP; 396 break; 397 #endif 398 case MJUM9BYTES: 399 type = EXT_JUMBO9; 400 break; 401 case MJUM16BYTES: 402 type = EXT_JUMBO16; 403 break; 404 default: 405 panic("%s: invalid cluster size", __func__); 406 } 407 408 return (type); 409 } 410 411 static __inline uma_zone_t 412 m_getzone(int size) 413 { 414 uma_zone_t zone; 415 416 switch (size) { 417 case MCLBYTES: 418 zone = zone_clust; 419 break; 420 #if MJUMPAGESIZE != MCLBYTES 421 case MJUMPAGESIZE: 422 zone = zone_jumbop; 423 break; 424 #endif 425 case MJUM9BYTES: 426 zone = zone_jumbo9; 427 break; 428 case MJUM16BYTES: 429 zone = zone_jumbo16; 430 break; 431 default: 432 panic("%s: invalid cluster size", __func__); 433 } 434 435 return (zone); 436 } 437 438 /* 439 * Initialize an mbuf with linear storage. 440 * 441 * Inline because the consumer text overhead will be roughly the same to 442 * initialize or call a function with this many parameters and M_PKTHDR 443 * should go away with constant propagation for !MGETHDR. 444 */ 445 static __inline int 446 m_init(struct mbuf *m, uma_zone_t zone, int size, int how, short type, 447 int flags) 448 { 449 int error; 450 451 m->m_next = NULL; 452 m->m_nextpkt = NULL; 453 m->m_data = m->m_dat; 454 m->m_len = 0; 455 m->m_flags = flags; 456 m->m_type = type; 457 if (flags & M_PKTHDR) { 458 if ((error = m_pkthdr_init(m, how)) != 0) 459 return (error); 460 } 461 462 return (0); 463 } 464 465 static __inline struct mbuf * 466 m_get(int how, short type) 467 { 468 struct mb_args args; 469 470 args.flags = 0; 471 args.type = type; 472 return (uma_zalloc_arg(zone_mbuf, &args, how)); 473 } 474 475 /* 476 * XXX This should be deprecated, very little use. 477 */ 478 static __inline struct mbuf * 479 m_getclr(int how, short type) 480 { 481 struct mbuf *m; 482 struct mb_args args; 483 484 args.flags = 0; 485 args.type = type; 486 m = uma_zalloc_arg(zone_mbuf, &args, how); 487 if (m != NULL) 488 bzero(m->m_data, MLEN); 489 return (m); 490 } 491 492 static __inline struct mbuf * 493 m_gethdr(int how, short type) 494 { 495 struct mb_args args; 496 497 args.flags = M_PKTHDR; 498 args.type = type; 499 return (uma_zalloc_arg(zone_mbuf, &args, how)); 500 } 501 502 static __inline struct mbuf * 503 m_getcl(int how, short type, int flags) 504 { 505 struct mb_args args; 506 507 args.flags = flags; 508 args.type = type; 509 return (uma_zalloc_arg(zone_pack, &args, how)); 510 } 511 512 static __inline void 513 m_free_fast(struct mbuf *m) 514 { 515 #ifdef INVARIANTS 516 if (m->m_flags & M_PKTHDR) 517 KASSERT(SLIST_EMPTY(&m->m_pkthdr.tags), ("doing fast free of mbuf with tags")); 518 #endif 519 520 uma_zfree_arg(zone_mbuf, m, (void *)MB_NOTAGS); 521 } 522 523 static __inline struct mbuf * 524 m_free(struct mbuf *m) 525 { 526 struct mbuf *n = m->m_next; 527 528 if (m->m_flags & M_EXT) 529 mb_free_ext(m); 530 else if ((m->m_flags & M_NOFREE) == 0) 531 uma_zfree(zone_mbuf, m); 532 return (n); 533 } 534 535 static __inline void 536 m_clget(struct mbuf *m, int how) 537 { 538 539 if (m->m_flags & M_EXT) 540 printf("%s: %p mbuf already has cluster\n", __func__, m); 541 m->m_ext.ext_buf = (char *)NULL; 542 uma_zalloc_arg(zone_clust, m, how); 543 /* 544 * On a cluster allocation failure, drain the packet zone and retry, 545 * we might be able to loosen a few clusters up on the drain. 546 */ 547 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { 548 zone_drain(zone_pack); 549 uma_zalloc_arg(zone_clust, m, how); 550 } 551 } 552 553 /* 554 * m_cljget() is different from m_clget() as it can allocate clusters without 555 * attaching them to an mbuf. In that case the return value is the pointer 556 * to the cluster of the requested size. If an mbuf was specified, it gets 557 * the cluster attached to it and the return value can be safely ignored. 558 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 559 */ 560 static __inline void * 561 m_cljget(struct mbuf *m, int how, int size) 562 { 563 uma_zone_t zone; 564 565 if (m && m->m_flags & M_EXT) 566 printf("%s: %p mbuf already has cluster\n", __func__, m); 567 if (m != NULL) 568 m->m_ext.ext_buf = NULL; 569 570 zone = m_getzone(size); 571 return (uma_zalloc_arg(zone, m, how)); 572 } 573 574 static __inline void 575 m_cljset(struct mbuf *m, void *cl, int type) 576 { 577 uma_zone_t zone; 578 int size; 579 580 switch (type) { 581 case EXT_CLUSTER: 582 size = MCLBYTES; 583 zone = zone_clust; 584 break; 585 #if MJUMPAGESIZE != MCLBYTES 586 case EXT_JUMBOP: 587 size = MJUMPAGESIZE; 588 zone = zone_jumbop; 589 break; 590 #endif 591 case EXT_JUMBO9: 592 size = MJUM9BYTES; 593 zone = zone_jumbo9; 594 break; 595 case EXT_JUMBO16: 596 size = MJUM16BYTES; 597 zone = zone_jumbo16; 598 break; 599 default: 600 panic("%s: unknown cluster type", __func__); 601 break; 602 } 603 604 m->m_data = m->m_ext.ext_buf = cl; 605 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 606 m->m_ext.ext_size = size; 607 m->m_ext.ext_type = type; 608 m->m_ext.ref_cnt = uma_find_refcnt(zone, cl); 609 m->m_flags |= M_EXT; 610 611 } 612 613 static __inline void 614 m_chtype(struct mbuf *m, short new_type) 615 { 616 617 m->m_type = new_type; 618 } 619 620 static __inline void 621 m_clrprotoflags(struct mbuf *m) 622 { 623 624 m->m_flags &= ~M_PROTOFLAGS; 625 } 626 627 static __inline struct mbuf * 628 m_last(struct mbuf *m) 629 { 630 631 while (m->m_next) 632 m = m->m_next; 633 return (m); 634 } 635 636 /* 637 * mbuf, cluster, and external object allocation macros (for compatibility 638 * purposes). 639 */ 640 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 641 #define MGET(m, how, type) ((m) = m_get((how), (type))) 642 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 643 #define MCLGET(m, how) m_clget((m), (how)) 644 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 645 (void )m_extadd((m), (caddr_t)(buf), (size), (free), (arg1), (arg2),\ 646 (flags), (type), M_NOWAIT) 647 #define m_getm(m, len, how, type) \ 648 m_getm2((m), (len), (how), (type), M_PKTHDR) 649 650 /* 651 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 652 * be both the local data payload, or an external buffer area, depending on 653 * whether M_EXT is set). 654 */ 655 #define M_WRITABLE(m) (!((m)->m_flags & M_RDONLY) && \ 656 (!(((m)->m_flags & M_EXT)) || \ 657 (*((m)->m_ext.ref_cnt) == 1)) ) \ 658 659 /* Check if the supplied mbuf has a packet header, or else panic. */ 660 #define M_ASSERTPKTHDR(m) \ 661 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 662 ("%s: no mbuf packet header!", __func__)) 663 664 /* 665 * Ensure that the supplied mbuf is a valid, non-free mbuf. 666 * 667 * XXX: Broken at the moment. Need some UMA magic to make it work again. 668 */ 669 #define M_ASSERTVALID(m) \ 670 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 671 ("%s: attempted use of a free mbuf!", __func__)) 672 673 /* 674 * Set the m_data pointer of a newly-allocated mbuf (m_get/MGET) to place an 675 * object of the specified size at the end of the mbuf, longword aligned. 676 */ 677 #define M_ALIGN(m, len) do { \ 678 KASSERT(!((m)->m_flags & (M_PKTHDR|M_EXT)), \ 679 ("%s: M_ALIGN not normal mbuf", __func__)); \ 680 KASSERT((m)->m_data == (m)->m_dat, \ 681 ("%s: M_ALIGN not a virgin mbuf", __func__)); \ 682 (m)->m_data += (MLEN - (len)) & ~(sizeof(long) - 1); \ 683 } while (0) 684 685 /* 686 * As above, for mbufs allocated with m_gethdr/MGETHDR or initialized by 687 * M_DUP/MOVE_PKTHDR. 688 */ 689 #define MH_ALIGN(m, len) do { \ 690 KASSERT((m)->m_flags & M_PKTHDR && !((m)->m_flags & M_EXT), \ 691 ("%s: MH_ALIGN not PKTHDR mbuf", __func__)); \ 692 KASSERT((m)->m_data == (m)->m_pktdat, \ 693 ("%s: MH_ALIGN not a virgin mbuf", __func__)); \ 694 (m)->m_data += (MHLEN - (len)) & ~(sizeof(long) - 1); \ 695 } while (0) 696 697 /* 698 * As above, for mbuf with external storage. 699 */ 700 #define MEXT_ALIGN(m, len) do { \ 701 KASSERT((m)->m_flags & M_EXT, \ 702 ("%s: MEXT_ALIGN not an M_EXT mbuf", __func__)); \ 703 KASSERT((m)->m_data == (m)->m_ext.ext_buf, \ 704 ("%s: MEXT_ALIGN not a virgin mbuf", __func__)); \ 705 (m)->m_data += ((m)->m_ext.ext_size - (len)) & \ 706 ~(sizeof(long) - 1); \ 707 } while (0) 708 709 /* 710 * Compute the amount of space available before the current start of data in 711 * an mbuf. 712 * 713 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 714 * of checking writability of the mbuf data area rests solely with the caller. 715 */ 716 #define M_LEADINGSPACE(m) \ 717 ((m)->m_flags & M_EXT ? \ 718 (M_WRITABLE(m) ? (m)->m_data - (m)->m_ext.ext_buf : 0): \ 719 (m)->m_flags & M_PKTHDR ? (m)->m_data - (m)->m_pktdat : \ 720 (m)->m_data - (m)->m_dat) 721 722 /* 723 * Compute the amount of space available after the end of data in an mbuf. 724 * 725 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 726 * of checking writability of the mbuf data area rests solely with the caller. 727 */ 728 #define M_TRAILINGSPACE(m) \ 729 ((m)->m_flags & M_EXT ? \ 730 (M_WRITABLE(m) ? (m)->m_ext.ext_buf + (m)->m_ext.ext_size \ 731 - ((m)->m_data + (m)->m_len) : 0) : \ 732 &(m)->m_dat[MLEN] - ((m)->m_data + (m)->m_len)) 733 734 /* 735 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 736 * allocated, how specifies whether to wait. If the allocation fails, the 737 * original mbuf chain is freed and m is set to NULL. 738 */ 739 #define M_PREPEND(m, plen, how) do { \ 740 struct mbuf **_mmp = &(m); \ 741 struct mbuf *_mm = *_mmp; \ 742 int _mplen = (plen); \ 743 int __mhow = (how); \ 744 \ 745 MBUF_CHECKSLEEP(how); \ 746 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 747 _mm->m_data -= _mplen; \ 748 _mm->m_len += _mplen; \ 749 } else \ 750 _mm = m_prepend(_mm, _mplen, __mhow); \ 751 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 752 _mm->m_pkthdr.len += _mplen; \ 753 *_mmp = _mm; \ 754 } while (0) 755 756 /* 757 * Change mbuf to new type. This is a relatively expensive operation and 758 * should be avoided. 759 */ 760 #define MCHTYPE(m, t) m_chtype((m), (t)) 761 762 /* Length to m_copy to copy all. */ 763 #define M_COPYALL 1000000000 764 765 /* Compatibility with 4.3. */ 766 #define m_copy(m, o, l) m_copym((m), (o), (l), M_NOWAIT) 767 768 extern int max_datalen; /* MHLEN - max_hdr */ 769 extern int max_hdr; /* Largest link + protocol header */ 770 extern int max_linkhdr; /* Largest link-level header */ 771 extern int max_protohdr; /* Largest protocol header */ 772 extern int nmbclusters; /* Maximum number of clusters */ 773 774 struct uio; 775 776 void m_adj(struct mbuf *, int); 777 void m_align(struct mbuf *, int); 778 int m_apply(struct mbuf *, int, int, 779 int (*)(void *, void *, u_int), void *); 780 int m_append(struct mbuf *, int, c_caddr_t); 781 void m_cat(struct mbuf *, struct mbuf *); 782 int m_extadd(struct mbuf *, caddr_t, u_int, 783 void (*)(void *, void *), void *, void *, int, int, int); 784 struct mbuf *m_collapse(struct mbuf *, int, int); 785 void m_copyback(struct mbuf *, int, int, c_caddr_t); 786 void m_copydata(const struct mbuf *, int, int, caddr_t); 787 struct mbuf *m_copym(struct mbuf *, int, int, int); 788 struct mbuf *m_copymdata(struct mbuf *, struct mbuf *, 789 int, int, int, int); 790 struct mbuf *m_copypacket(struct mbuf *, int); 791 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 792 struct mbuf *m_copyup(struct mbuf *, int, int); 793 struct mbuf *m_defrag(struct mbuf *, int); 794 void m_demote(struct mbuf *, int); 795 struct mbuf *m_devget(char *, int, int, struct ifnet *, 796 void (*)(char *, caddr_t, u_int)); 797 struct mbuf *m_dup(struct mbuf *, int); 798 int m_dup_pkthdr(struct mbuf *, struct mbuf *, int); 799 u_int m_fixhdr(struct mbuf *); 800 struct mbuf *m_fragment(struct mbuf *, int, int); 801 void m_freem(struct mbuf *); 802 struct mbuf *m_get2(int, int, short, int); 803 struct mbuf *m_getjcl(int, short, int, int); 804 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 805 struct mbuf *m_getptr(struct mbuf *, int, int *); 806 u_int m_length(struct mbuf *, struct mbuf **); 807 int m_mbuftouio(struct uio *, struct mbuf *, int); 808 void m_move_pkthdr(struct mbuf *, struct mbuf *); 809 struct mbuf *m_prepend(struct mbuf *, int, int); 810 void m_print(const struct mbuf *, int); 811 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 812 struct mbuf *m_pullup(struct mbuf *, int); 813 int m_sanity(struct mbuf *, int); 814 struct mbuf *m_split(struct mbuf *, int, int); 815 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 816 struct mbuf *m_unshare(struct mbuf *, int); 817 818 /*- 819 * Network packets may have annotations attached by affixing a list of 820 * "packet tags" to the pkthdr structure. Packet tags are dynamically 821 * allocated semi-opaque data structures that have a fixed header 822 * (struct m_tag) that specifies the size of the memory block and a 823 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 824 * unsigned value used to identify a module or ABI. By convention this value 825 * is chosen as the date+time that the module is created, expressed as the 826 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 827 * value is an ABI/module-specific value that identifies a particular 828 * annotation and is private to the module. For compatibility with systems 829 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 830 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 831 * compatibility shim functions and several tag types are defined below. 832 * Users that do not require compatibility should use a private cookie value 833 * so that packet tag-related definitions can be maintained privately. 834 * 835 * Note that the packet tag returned by m_tag_alloc has the default memory 836 * alignment implemented by malloc. To reference private data one can use a 837 * construct like: 838 * 839 * struct m_tag *mtag = m_tag_alloc(...); 840 * struct foo *p = (struct foo *)(mtag+1); 841 * 842 * if the alignment of struct m_tag is sufficient for referencing members of 843 * struct foo. Otherwise it is necessary to embed struct m_tag within the 844 * private data structure to insure proper alignment; e.g., 845 * 846 * struct foo { 847 * struct m_tag tag; 848 * ... 849 * }; 850 * struct foo *p = (struct foo *) m_tag_alloc(...); 851 * struct m_tag *mtag = &p->tag; 852 */ 853 854 /* 855 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 856 * tags are expected to ``vanish'' when they pass through a network 857 * interface. For most interfaces this happens normally as the tags are 858 * reclaimed when the mbuf is free'd. However in some special cases 859 * reclaiming must be done manually. An example is packets that pass through 860 * the loopback interface. Also, one must be careful to do this when 861 * ``turning around'' packets (e.g., icmp_reflect). 862 * 863 * To mark a tag persistent bit-or this flag in when defining the tag id. 864 * The tag will then be treated as described above. 865 */ 866 #define MTAG_PERSISTENT 0x800 867 868 #define PACKET_TAG_NONE 0 /* Nadda */ 869 870 /* Packet tags for use with PACKET_ABI_COMPAT. */ 871 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 872 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 873 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 874 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 875 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 876 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 877 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 878 #define PACKET_TAG_GIF 8 /* GIF processing done */ 879 #define PACKET_TAG_GRE 9 /* GRE processing done */ 880 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 881 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 882 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 883 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 884 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 885 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 886 #define PACKET_TAG_DIVERT 17 /* divert info */ 887 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 888 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 889 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 890 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 891 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 892 #define PACKET_TAG_CARP 28 /* CARP info */ 893 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 894 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 895 896 /* Specific cookies and tags. */ 897 898 /* Packet tag routines. */ 899 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 900 void m_tag_delete(struct mbuf *, struct m_tag *); 901 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 902 void m_tag_free_default(struct m_tag *); 903 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 904 struct m_tag *m_tag_copy(struct m_tag *, int); 905 int m_tag_copy_chain(struct mbuf *, struct mbuf *, int); 906 void m_tag_delete_nonpersistent(struct mbuf *); 907 908 /* 909 * Initialize the list of tags associated with an mbuf. 910 */ 911 static __inline void 912 m_tag_init(struct mbuf *m) 913 { 914 915 SLIST_INIT(&m->m_pkthdr.tags); 916 } 917 918 /* 919 * Set up the contents of a tag. Note that this does not fill in the free 920 * method; the caller is expected to do that. 921 * 922 * XXX probably should be called m_tag_init, but that was already taken. 923 */ 924 static __inline void 925 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 926 { 927 928 t->m_tag_id = type; 929 t->m_tag_len = len; 930 t->m_tag_cookie = cookie; 931 } 932 933 /* 934 * Reclaim resources associated with a tag. 935 */ 936 static __inline void 937 m_tag_free(struct m_tag *t) 938 { 939 940 (*t->m_tag_free)(t); 941 } 942 943 /* 944 * Return the first tag associated with an mbuf. 945 */ 946 static __inline struct m_tag * 947 m_tag_first(struct mbuf *m) 948 { 949 950 return (SLIST_FIRST(&m->m_pkthdr.tags)); 951 } 952 953 /* 954 * Return the next tag in the list of tags associated with an mbuf. 955 */ 956 static __inline struct m_tag * 957 m_tag_next(struct mbuf *m, struct m_tag *t) 958 { 959 960 return (SLIST_NEXT(t, m_tag_link)); 961 } 962 963 /* 964 * Prepend a tag to the list of tags associated with an mbuf. 965 */ 966 static __inline void 967 m_tag_prepend(struct mbuf *m, struct m_tag *t) 968 { 969 970 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 971 } 972 973 /* 974 * Unlink a tag from the list of tags associated with an mbuf. 975 */ 976 static __inline void 977 m_tag_unlink(struct mbuf *m, struct m_tag *t) 978 { 979 980 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 981 } 982 983 /* These are for OpenBSD compatibility. */ 984 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 985 986 static __inline struct m_tag * 987 m_tag_get(int type, int length, int wait) 988 { 989 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 990 } 991 992 static __inline struct m_tag * 993 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 994 { 995 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 996 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 997 } 998 999 static int inline 1000 rt_m_getfib(struct mbuf *m) 1001 { 1002 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1003 return (m->m_pkthdr.fibnum); 1004 } 1005 1006 #define M_GETFIB(_m) rt_m_getfib(_m) 1007 1008 #define M_SETFIB(_m, _fib) do { \ 1009 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1010 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1011 } while (0) 1012 1013 #endif /* _KERNEL */ 1014 1015 #ifdef MBUF_PROFILING 1016 void m_profile(struct mbuf *m); 1017 #define M_PROFILE(m) m_profile(m) 1018 #else 1019 #define M_PROFILE(m) 1020 #endif 1021 1022 1023 #endif /* !_SYS_MBUF_H_ */ 1024