1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 33 * $FreeBSD$ 34 */ 35 36 #ifndef _SYS_MBUF_H_ 37 #define _SYS_MBUF_H_ 38 39 /* XXX: These includes suck. Sorry! */ 40 #include <sys/queue.h> 41 #ifdef _KERNEL 42 #include <sys/systm.h> 43 #include <sys/refcount.h> 44 #include <vm/uma.h> 45 #ifdef WITNESS 46 #include <sys/lock.h> 47 #endif 48 #endif 49 50 #ifdef _KERNEL 51 #include <sys/sdt.h> 52 53 #define MBUF_PROBE1(probe, arg0) \ 54 SDT_PROBE1(sdt, , , probe, arg0) 55 #define MBUF_PROBE2(probe, arg0, arg1) \ 56 SDT_PROBE2(sdt, , , probe, arg0, arg1) 57 #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ 58 SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) 59 #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ 60 SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) 61 #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ 62 SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) 63 64 SDT_PROBE_DECLARE(sdt, , , m__init); 65 SDT_PROBE_DECLARE(sdt, , , m__gethdr); 66 SDT_PROBE_DECLARE(sdt, , , m__get); 67 SDT_PROBE_DECLARE(sdt, , , m__getcl); 68 SDT_PROBE_DECLARE(sdt, , , m__clget); 69 SDT_PROBE_DECLARE(sdt, , , m__cljget); 70 SDT_PROBE_DECLARE(sdt, , , m__cljset); 71 SDT_PROBE_DECLARE(sdt, , , m__free); 72 SDT_PROBE_DECLARE(sdt, , , m__freem); 73 74 #endif /* _KERNEL */ 75 76 /* 77 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 78 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 79 * sys/param.h), which has no additional overhead and is used instead of the 80 * internal data area; this is done when at least MINCLSIZE of data must be 81 * stored. Additionally, it is possible to allocate a separate buffer 82 * externally and attach it to the mbuf in a way similar to that of mbuf 83 * clusters. 84 * 85 * NB: These calculation do not take actual compiler-induced alignment and 86 * padding inside the complete struct mbuf into account. Appropriate 87 * attention is required when changing members of struct mbuf. 88 * 89 * MLEN is data length in a normal mbuf. 90 * MHLEN is data length in an mbuf with pktheader. 91 * MINCLSIZE is a smallest amount of data that should be put into cluster. 92 * 93 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 94 * they are sensible. 95 */ 96 struct mbuf; 97 #define MHSIZE offsetof(struct mbuf, m_dat) 98 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 99 #define MLEN ((int)(MSIZE - MHSIZE)) 100 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 101 #define MINCLSIZE (MHLEN + 1) 102 #define M_NODOM 255 103 104 #ifdef _KERNEL 105 /*- 106 * Macro for type conversion: convert mbuf pointer to data pointer of correct 107 * type: 108 * 109 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 110 * mtodo(m, o) -- Same as above but with offset 'o' into data. 111 */ 112 #define mtod(m, t) ((t)((m)->m_data)) 113 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 114 115 /* 116 * Argument structure passed to UMA routines during mbuf and packet 117 * allocations. 118 */ 119 struct mb_args { 120 int flags; /* Flags for mbuf being allocated */ 121 short type; /* Type of mbuf being allocated */ 122 }; 123 #endif /* _KERNEL */ 124 125 /* 126 * Packet tag structure (see below for details). 127 */ 128 struct m_tag { 129 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 130 u_int16_t m_tag_id; /* Tag ID */ 131 u_int16_t m_tag_len; /* Length of data */ 132 u_int32_t m_tag_cookie; /* ABI/Module ID */ 133 void (*m_tag_free)(struct m_tag *); 134 }; 135 136 /* 137 * Static network interface owned tag. 138 * Allocated through ifp->if_snd_tag_alloc(). 139 */ 140 struct m_snd_tag { 141 struct ifnet *ifp; /* network interface tag belongs to */ 142 volatile u_int refcount; 143 }; 144 145 /* 146 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 147 * Size ILP32: 48 148 * LP64: 56 149 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 150 * they are correct. 151 */ 152 struct pkthdr { 153 union { 154 struct m_snd_tag *snd_tag; /* send tag, if any */ 155 struct ifnet *rcvif; /* rcv interface */ 156 }; 157 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 158 int32_t len; /* total packet length */ 159 160 /* Layer crossing persistent information. */ 161 uint32_t flowid; /* packet's 4-tuple system */ 162 uint32_t csum_flags; /* checksum and offload features */ 163 uint16_t fibnum; /* this packet should use this fib */ 164 uint8_t numa_domain; /* NUMA domain of recvd pkt */ 165 uint8_t rsstype; /* hash type */ 166 union { 167 uint64_t rcv_tstmp; /* timestamp in ns */ 168 struct { 169 uint8_t l2hlen; /* layer 2 hdr len */ 170 uint8_t l3hlen; /* layer 3 hdr len */ 171 uint8_t l4hlen; /* layer 4 hdr len */ 172 uint8_t l5hlen; /* layer 5 hdr len */ 173 uint32_t spare; 174 }; 175 }; 176 union { 177 uint8_t eight[8]; 178 uint16_t sixteen[4]; 179 uint32_t thirtytwo[2]; 180 uint64_t sixtyfour[1]; 181 uintptr_t unintptr[1]; 182 void *ptr; 183 } PH_per; 184 185 /* Layer specific non-persistent local storage for reassembly, etc. */ 186 union { 187 uint8_t eight[8]; 188 uint16_t sixteen[4]; 189 uint32_t thirtytwo[2]; 190 uint64_t sixtyfour[1]; 191 uintptr_t unintptr[1]; 192 void *ptr; 193 } PH_loc; 194 }; 195 #define ether_vtag PH_per.sixteen[0] 196 #define PH_vt PH_per 197 #define vt_nrecs sixteen[0] 198 #define tso_segsz PH_per.sixteen[1] 199 #define lro_nsegs tso_segsz 200 #define csum_phsum PH_per.sixteen[2] 201 #define csum_data PH_per.thirtytwo[1] 202 #define pace_thoff PH_loc.sixteen[0] 203 #define pace_tlen PH_loc.sixteen[1] 204 #define pace_drphdrlen PH_loc.sixteen[2] 205 #define pace_tos PH_loc.eight[6] 206 #define pace_lock PH_loc.eight[7] 207 208 /* 209 * Description of external storage mapped into mbuf; valid only if M_EXT is 210 * set. 211 * Size ILP32: 28 212 * LP64: 48 213 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 214 * they are correct. 215 */ 216 typedef void m_ext_free_t(struct mbuf *); 217 struct m_ext { 218 union { 219 /* 220 * If EXT_FLAG_EMBREF is set, then we use refcount in the 221 * mbuf, the 'ext_count' member. Otherwise, we have a 222 * shadow copy and we use pointer 'ext_cnt'. The original 223 * mbuf is responsible to carry the pointer to free routine 224 * and its arguments. They aren't copied into shadows in 225 * mb_dupcl() to avoid dereferencing next cachelines. 226 */ 227 volatile u_int ext_count; 228 volatile u_int *ext_cnt; 229 }; 230 char *ext_buf; /* start of buffer */ 231 uint32_t ext_size; /* size of buffer, for ext_free */ 232 uint32_t ext_type:8, /* type of external storage */ 233 ext_flags:24; /* external storage mbuf flags */ 234 /* 235 * Fields below store the free context for the external storage. 236 * They are valid only in the refcount carrying mbuf, the one with 237 * EXT_FLAG_EMBREF flag, with exclusion for EXT_EXTREF type, where 238 * the free context is copied into all mbufs that use same external 239 * storage. 240 */ 241 #define m_ext_copylen offsetof(struct m_ext, ext_free) 242 m_ext_free_t *ext_free; /* free routine if not the usual */ 243 void *ext_arg1; /* optional argument pointer */ 244 void *ext_arg2; /* optional argument pointer */ 245 }; 246 247 /* 248 * The core of the mbuf object along with some shortcut defines for practical 249 * purposes. 250 */ 251 struct mbuf { 252 /* 253 * Header present at the beginning of every mbuf. 254 * Size ILP32: 24 255 * LP64: 32 256 * Compile-time assertions in uipc_mbuf.c test these values to ensure 257 * that they are correct. 258 */ 259 union { /* next buffer in chain */ 260 struct mbuf *m_next; 261 SLIST_ENTRY(mbuf) m_slist; 262 STAILQ_ENTRY(mbuf) m_stailq; 263 }; 264 union { /* next chain in queue/record */ 265 struct mbuf *m_nextpkt; 266 SLIST_ENTRY(mbuf) m_slistpkt; 267 STAILQ_ENTRY(mbuf) m_stailqpkt; 268 }; 269 caddr_t m_data; /* location of data */ 270 int32_t m_len; /* amount of data in this mbuf */ 271 uint32_t m_type:8, /* type of data in this mbuf */ 272 m_flags:24; /* flags; see below */ 273 #if !defined(__LP64__) 274 uint32_t m_pad; /* pad for 64bit alignment */ 275 #endif 276 277 /* 278 * A set of optional headers (packet header, external storage header) 279 * and internal data storage. Historically, these arrays were sized 280 * to MHLEN (space left after a packet header) and MLEN (space left 281 * after only a regular mbuf header); they are now variable size in 282 * order to support future work on variable-size mbufs. 283 */ 284 union { 285 struct { 286 struct pkthdr m_pkthdr; /* M_PKTHDR set */ 287 union { 288 struct m_ext m_ext; /* M_EXT set */ 289 char m_pktdat[0]; 290 }; 291 }; 292 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 293 }; 294 }; 295 296 /* 297 * mbuf flags of global significance and layer crossing. 298 * Those of only protocol/layer specific significance are to be mapped 299 * to M_PROTO[1-12] and cleared at layer handoff boundaries. 300 * NB: Limited to the lower 24 bits. 301 */ 302 #define M_EXT 0x00000001 /* has associated external storage */ 303 #define M_PKTHDR 0x00000002 /* start of record */ 304 #define M_EOR 0x00000004 /* end of record */ 305 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 306 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 307 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 308 #define M_PROMISC 0x00000040 /* packet was not for us */ 309 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 310 #define M_NOMAP 0x00000100 /* mbuf data is unmapped (soon from Drew) */ 311 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 312 #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ 313 #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically 314 hw-stamped on port (useful for IEEE 1588 315 and 802.1AS) */ 316 317 #define M_PROTO1 0x00001000 /* protocol-specific */ 318 #define M_PROTO2 0x00002000 /* protocol-specific */ 319 #define M_PROTO3 0x00004000 /* protocol-specific */ 320 #define M_PROTO4 0x00008000 /* protocol-specific */ 321 #define M_PROTO5 0x00010000 /* protocol-specific */ 322 #define M_PROTO6 0x00020000 /* protocol-specific */ 323 #define M_PROTO7 0x00040000 /* protocol-specific */ 324 #define M_PROTO8 0x00080000 /* protocol-specific */ 325 #define M_PROTO9 0x00100000 /* protocol-specific */ 326 #define M_PROTO10 0x00200000 /* protocol-specific */ 327 #define M_PROTO11 0x00400000 /* protocol-specific */ 328 #define M_PROTO12 0x00800000 /* protocol-specific */ 329 330 #define MB_DTOR_SKIP 0x1 /* don't pollute the cache by touching a freed mbuf */ 331 332 /* 333 * Flags to purge when crossing layers. 334 */ 335 #define M_PROTOFLAGS \ 336 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 337 M_PROTO9|M_PROTO10|M_PROTO11|M_PROTO12) 338 339 /* 340 * Flags preserved when copying m_pkthdr. 341 */ 342 #define M_COPYFLAGS \ 343 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ 344 M_TSTMP_HPREC|M_PROTOFLAGS) 345 346 /* 347 * Mbuf flag description for use with printf(9) %b identifier. 348 */ 349 #define M_FLAG_BITS \ 350 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 351 "\7M_PROMISC\10M_VLANTAG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC" 352 #define M_FLAG_PROTOBITS \ 353 "\15M_PROTO1\16M_PROTO2\17M_PROTO3\20M_PROTO4\21M_PROTO5" \ 354 "\22M_PROTO6\23M_PROTO7\24M_PROTO8\25M_PROTO9\26M_PROTO10" \ 355 "\27M_PROTO11\30M_PROTO12" 356 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 357 358 /* 359 * Network interface cards are able to hash protocol fields (such as IPv4 360 * addresses and TCP port numbers) classify packets into flows. These flows 361 * can then be used to maintain ordering while delivering packets to the OS 362 * via parallel input queues, as well as to provide a stateless affinity 363 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 364 * m_flag fields to indicate how the hash should be interpreted by the 365 * network stack. 366 * 367 * Most NICs support RSS, which provides ordering and explicit affinity, and 368 * use the hash m_flag bits to indicate what header fields were covered by 369 * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- 370 * RSS cards or configurations that provide an opaque flow identifier, allowing 371 * for ordering and distribution without explicit affinity. Additionally, 372 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash 373 * properties. 374 * 375 * The meaning of the IPV6_EX suffix: 376 * "o Home address from the home address option in the IPv6 destination 377 * options header. If the extension header is not present, use the Source 378 * IPv6 Address. 379 * o IPv6 address that is contained in the Routing-Header-Type-2 from the 380 * associated extension header. If the extension header is not present, 381 * use the Destination IPv6 Address." 382 * Quoted from: 383 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex 384 */ 385 #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ 386 #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) 387 /* Microsoft RSS standard hash types */ 388 #define M_HASHTYPE_NONE 0 389 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ 390 #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ 391 #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ 392 #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ 393 #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + 394 * ext hdrs */ 395 #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + 396 * ext hdrs */ 397 #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ 398 #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ 399 #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + 400 * ext hdrs */ 401 402 #define M_HASHTYPE_OPAQUE 63 /* ordering, not affinity */ 403 #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) 404 /* ordering+hash, not affinity*/ 405 406 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 407 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype) 408 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 409 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 410 #define M_HASHTYPE_ISHASH(m) (M_HASHTYPE_GET(m) & M_HASHTYPE_HASHPROP) 411 412 /* 413 * External mbuf storage buffer types. 414 */ 415 #define EXT_CLUSTER 1 /* mbuf cluster */ 416 #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ 417 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 418 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 419 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 420 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 421 #define EXT_MBUF 7 /* external mbuf reference */ 422 #define EXT_RXRING 8 /* data in NIC receive ring */ 423 424 #define EXT_VENDOR1 224 /* for vendor-internal use */ 425 #define EXT_VENDOR2 225 /* for vendor-internal use */ 426 #define EXT_VENDOR3 226 /* for vendor-internal use */ 427 #define EXT_VENDOR4 227 /* for vendor-internal use */ 428 429 #define EXT_EXP1 244 /* for experimental use */ 430 #define EXT_EXP2 245 /* for experimental use */ 431 #define EXT_EXP3 246 /* for experimental use */ 432 #define EXT_EXP4 247 /* for experimental use */ 433 434 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 435 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 436 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 437 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 438 439 /* 440 * Flags for external mbuf buffer types. 441 * NB: limited to the lower 24 bits. 442 */ 443 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ 444 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 445 446 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 447 448 #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ 449 #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ 450 #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ 451 #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ 452 453 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 454 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 455 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 456 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 457 458 /* 459 * EXT flag description for use with printf(9) %b identifier. 460 */ 461 #define EXT_FLAG_BITS \ 462 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 463 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 464 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 465 "\30EXT_FLAG_EXP4" 466 467 /* 468 * Flags indicating checksum, segmentation and other offload work to be 469 * done, or already done, by hardware or lower layers. It is split into 470 * separate inbound and outbound flags. 471 * 472 * Outbound flags that are set by upper protocol layers requesting lower 473 * layers, or ideally the hardware, to perform these offloading tasks. 474 * For outbound packets this field and its flags can be directly tested 475 * against ifnet if_hwassist. 476 */ 477 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 478 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 479 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 480 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 481 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 482 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 483 484 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 485 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 486 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 487 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 488 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 489 490 /* Inbound checksum support where the checksum was verified by hardware. */ 491 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 492 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 493 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 494 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 495 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 496 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 497 #define CSUM_COALESCED 0x40000000 /* contains merged segments */ 498 499 #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ 500 501 /* 502 * CSUM flag description for use with printf(9) %b identifier. 503 */ 504 #define CSUM_BITS \ 505 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 506 "\6CSUM_IP_ISCSI" \ 507 "\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP\15CSUM_IP6_TSO" \ 508 "\16CSUM_IP6_ISCSI" \ 509 "\31CSUM_L3_CALC\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID" \ 510 "\35CSUM_L5_CALC\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" 511 512 /* CSUM flags compatibility mappings. */ 513 #define CSUM_IP_CHECKED CSUM_L3_CALC 514 #define CSUM_IP_VALID CSUM_L3_VALID 515 #define CSUM_DATA_VALID CSUM_L4_VALID 516 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 517 #define CSUM_SCTP_VALID CSUM_L4_VALID 518 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 519 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 520 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 521 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 522 #define CSUM_TCP CSUM_IP_TCP 523 #define CSUM_UDP CSUM_IP_UDP 524 #define CSUM_SCTP CSUM_IP_SCTP 525 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 526 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 527 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 528 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 529 530 /* 531 * mbuf types describing the content of the mbuf (including external storage). 532 */ 533 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 534 #define MT_DATA 1 /* dynamic (data) allocation */ 535 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 536 537 #define MT_VENDOR1 4 /* for vendor-internal use */ 538 #define MT_VENDOR2 5 /* for vendor-internal use */ 539 #define MT_VENDOR3 6 /* for vendor-internal use */ 540 #define MT_VENDOR4 7 /* for vendor-internal use */ 541 542 #define MT_SONAME 8 /* socket name */ 543 544 #define MT_EXP1 9 /* for experimental use */ 545 #define MT_EXP2 10 /* for experimental use */ 546 #define MT_EXP3 11 /* for experimental use */ 547 #define MT_EXP4 12 /* for experimental use */ 548 549 #define MT_CONTROL 14 /* extra-data protocol message */ 550 #define MT_EXTCONTROL 15 /* control message with externalized contents */ 551 #define MT_OOBDATA 16 /* expedited data */ 552 553 #define MT_NOINIT 255 /* Not a type but a flag to allocate 554 a non-initialized mbuf */ 555 556 /* 557 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 558 * !_KERNEL so that monitoring tools can look up the zones with 559 * libmemstat(3). 560 */ 561 #define MBUF_MEM_NAME "mbuf" 562 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 563 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 564 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 565 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 566 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 567 #define MBUF_TAG_MEM_NAME "mbuf_tag" 568 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 569 570 #ifdef _KERNEL 571 572 #ifdef WITNESS 573 #define MBUF_CHECKSLEEP(how) do { \ 574 if (how == M_WAITOK) \ 575 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 576 "Sleeping in \"%s\"", __func__); \ 577 } while (0) 578 #else 579 #define MBUF_CHECKSLEEP(how) 580 #endif 581 582 /* 583 * Network buffer allocation API 584 * 585 * The rest of it is defined in kern/kern_mbuf.c 586 */ 587 extern uma_zone_t zone_mbuf; 588 extern uma_zone_t zone_clust; 589 extern uma_zone_t zone_pack; 590 extern uma_zone_t zone_jumbop; 591 extern uma_zone_t zone_jumbo9; 592 extern uma_zone_t zone_jumbo16; 593 594 void mb_dupcl(struct mbuf *, struct mbuf *); 595 void mb_free_ext(struct mbuf *); 596 void m_adj(struct mbuf *, int); 597 int m_apply(struct mbuf *, int, int, 598 int (*)(void *, void *, u_int), void *); 599 int m_append(struct mbuf *, int, c_caddr_t); 600 void m_cat(struct mbuf *, struct mbuf *); 601 void m_catpkt(struct mbuf *, struct mbuf *); 602 int m_clget(struct mbuf *m, int how); 603 void *m_cljget(struct mbuf *m, int how, int size); 604 struct mbuf *m_collapse(struct mbuf *, int, int); 605 void m_copyback(struct mbuf *, int, int, c_caddr_t); 606 void m_copydata(const struct mbuf *, int, int, caddr_t); 607 struct mbuf *m_copym(struct mbuf *, int, int, int); 608 struct mbuf *m_copypacket(struct mbuf *, int); 609 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 610 struct mbuf *m_copyup(struct mbuf *, int, int); 611 struct mbuf *m_defrag(struct mbuf *, int); 612 void m_demote_pkthdr(struct mbuf *); 613 void m_demote(struct mbuf *, int, int); 614 struct mbuf *m_devget(char *, int, int, struct ifnet *, 615 void (*)(char *, caddr_t, u_int)); 616 void m_dispose_extcontrolm(struct mbuf *m); 617 struct mbuf *m_dup(const struct mbuf *, int); 618 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 619 void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, 620 void *, void *, int, int); 621 u_int m_fixhdr(struct mbuf *); 622 struct mbuf *m_fragment(struct mbuf *, int, int); 623 void m_freem(struct mbuf *); 624 struct mbuf *m_get2(int, int, short, int); 625 struct mbuf *m_getjcl(int, short, int, int); 626 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 627 struct mbuf *m_getptr(struct mbuf *, int, int *); 628 u_int m_length(struct mbuf *, struct mbuf **); 629 int m_mbuftouio(struct uio *, const struct mbuf *, int); 630 void m_move_pkthdr(struct mbuf *, struct mbuf *); 631 int m_pkthdr_init(struct mbuf *, int); 632 struct mbuf *m_prepend(struct mbuf *, int, int); 633 void m_print(const struct mbuf *, int); 634 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 635 struct mbuf *m_pullup(struct mbuf *, int); 636 int m_sanity(struct mbuf *, int); 637 struct mbuf *m_split(struct mbuf *, int, int); 638 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 639 struct mbuf *m_unshare(struct mbuf *, int); 640 void m_snd_tag_init(struct m_snd_tag *, struct ifnet *); 641 void m_snd_tag_destroy(struct m_snd_tag *); 642 643 static __inline int 644 m_gettype(int size) 645 { 646 int type; 647 648 switch (size) { 649 case MSIZE: 650 type = EXT_MBUF; 651 break; 652 case MCLBYTES: 653 type = EXT_CLUSTER; 654 break; 655 #if MJUMPAGESIZE != MCLBYTES 656 case MJUMPAGESIZE: 657 type = EXT_JUMBOP; 658 break; 659 #endif 660 case MJUM9BYTES: 661 type = EXT_JUMBO9; 662 break; 663 case MJUM16BYTES: 664 type = EXT_JUMBO16; 665 break; 666 default: 667 panic("%s: invalid cluster size %d", __func__, size); 668 } 669 670 return (type); 671 } 672 673 /* 674 * Associated an external reference counted buffer with an mbuf. 675 */ 676 static __inline void 677 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, 678 m_ext_free_t freef, void *arg1, void *arg2) 679 { 680 681 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 682 683 atomic_add_int(ref_cnt, 1); 684 m->m_flags |= M_EXT; 685 m->m_ext.ext_buf = buf; 686 m->m_ext.ext_cnt = ref_cnt; 687 m->m_data = m->m_ext.ext_buf; 688 m->m_ext.ext_size = size; 689 m->m_ext.ext_free = freef; 690 m->m_ext.ext_arg1 = arg1; 691 m->m_ext.ext_arg2 = arg2; 692 m->m_ext.ext_type = EXT_EXTREF; 693 m->m_ext.ext_flags = 0; 694 } 695 696 static __inline uma_zone_t 697 m_getzone(int size) 698 { 699 uma_zone_t zone; 700 701 switch (size) { 702 case MCLBYTES: 703 zone = zone_clust; 704 break; 705 #if MJUMPAGESIZE != MCLBYTES 706 case MJUMPAGESIZE: 707 zone = zone_jumbop; 708 break; 709 #endif 710 case MJUM9BYTES: 711 zone = zone_jumbo9; 712 break; 713 case MJUM16BYTES: 714 zone = zone_jumbo16; 715 break; 716 default: 717 panic("%s: invalid cluster size %d", __func__, size); 718 } 719 720 return (zone); 721 } 722 723 /* 724 * Initialize an mbuf with linear storage. 725 * 726 * Inline because the consumer text overhead will be roughly the same to 727 * initialize or call a function with this many parameters and M_PKTHDR 728 * should go away with constant propagation for !MGETHDR. 729 */ 730 static __inline int 731 m_init(struct mbuf *m, int how, short type, int flags) 732 { 733 int error; 734 735 m->m_next = NULL; 736 m->m_nextpkt = NULL; 737 m->m_data = m->m_dat; 738 m->m_len = 0; 739 m->m_flags = flags; 740 m->m_type = type; 741 if (flags & M_PKTHDR) 742 error = m_pkthdr_init(m, how); 743 else 744 error = 0; 745 746 MBUF_PROBE5(m__init, m, how, type, flags, error); 747 return (error); 748 } 749 750 static __inline struct mbuf * 751 m_get(int how, short type) 752 { 753 struct mbuf *m; 754 struct mb_args args; 755 756 args.flags = 0; 757 args.type = type; 758 m = uma_zalloc_arg(zone_mbuf, &args, how); 759 MBUF_PROBE3(m__get, how, type, m); 760 return (m); 761 } 762 763 static __inline struct mbuf * 764 m_gethdr(int how, short type) 765 { 766 struct mbuf *m; 767 struct mb_args args; 768 769 args.flags = M_PKTHDR; 770 args.type = type; 771 m = uma_zalloc_arg(zone_mbuf, &args, how); 772 MBUF_PROBE3(m__gethdr, how, type, m); 773 return (m); 774 } 775 776 static __inline struct mbuf * 777 m_getcl(int how, short type, int flags) 778 { 779 struct mbuf *m; 780 struct mb_args args; 781 782 args.flags = flags; 783 args.type = type; 784 m = uma_zalloc_arg(zone_pack, &args, how); 785 MBUF_PROBE4(m__getcl, how, type, flags, m); 786 return (m); 787 } 788 789 /* 790 * XXX: m_cljset() is a dangerous API. One must attach only a new, 791 * unreferenced cluster to an mbuf(9). It is not possible to assert 792 * that, so care can be taken only by users of the API. 793 */ 794 static __inline void 795 m_cljset(struct mbuf *m, void *cl, int type) 796 { 797 int size; 798 799 switch (type) { 800 case EXT_CLUSTER: 801 size = MCLBYTES; 802 break; 803 #if MJUMPAGESIZE != MCLBYTES 804 case EXT_JUMBOP: 805 size = MJUMPAGESIZE; 806 break; 807 #endif 808 case EXT_JUMBO9: 809 size = MJUM9BYTES; 810 break; 811 case EXT_JUMBO16: 812 size = MJUM16BYTES; 813 break; 814 default: 815 panic("%s: unknown cluster type %d", __func__, type); 816 break; 817 } 818 819 m->m_data = m->m_ext.ext_buf = cl; 820 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 821 m->m_ext.ext_size = size; 822 m->m_ext.ext_type = type; 823 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 824 m->m_ext.ext_count = 1; 825 m->m_flags |= M_EXT; 826 MBUF_PROBE3(m__cljset, m, cl, type); 827 } 828 829 static __inline void 830 m_chtype(struct mbuf *m, short new_type) 831 { 832 833 m->m_type = new_type; 834 } 835 836 static __inline void 837 m_clrprotoflags(struct mbuf *m) 838 { 839 840 while (m) { 841 m->m_flags &= ~M_PROTOFLAGS; 842 m = m->m_next; 843 } 844 } 845 846 static __inline struct mbuf * 847 m_last(struct mbuf *m) 848 { 849 850 while (m->m_next) 851 m = m->m_next; 852 return (m); 853 } 854 855 static inline u_int 856 m_extrefcnt(struct mbuf *m) 857 { 858 859 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); 860 861 return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : 862 *m->m_ext.ext_cnt); 863 } 864 865 /* 866 * mbuf, cluster, and external object allocation macros (for compatibility 867 * purposes). 868 */ 869 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 870 #define MGET(m, how, type) ((m) = m_get((how), (type))) 871 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 872 #define MCLGET(m, how) m_clget((m), (how)) 873 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 874 m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ 875 (flags), (type)) 876 #define m_getm(m, len, how, type) \ 877 m_getm2((m), (len), (how), (type), M_PKTHDR) 878 879 /* 880 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 881 * be both the local data payload, or an external buffer area, depending on 882 * whether M_EXT is set). 883 */ 884 #define M_WRITABLE(m) (!((m)->m_flags & M_RDONLY) && \ 885 (!(((m)->m_flags & M_EXT)) || \ 886 (m_extrefcnt(m) == 1))) 887 888 /* Check if the supplied mbuf has a packet header, or else panic. */ 889 #define M_ASSERTPKTHDR(m) \ 890 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 891 ("%s: no mbuf packet header!", __func__)) 892 893 /* 894 * Ensure that the supplied mbuf is a valid, non-free mbuf. 895 * 896 * XXX: Broken at the moment. Need some UMA magic to make it work again. 897 */ 898 #define M_ASSERTVALID(m) \ 899 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 900 ("%s: attempted use of a free mbuf!", __func__)) 901 902 /* 903 * Return the address of the start of the buffer associated with an mbuf, 904 * handling external storage, packet-header mbufs, and regular data mbufs. 905 */ 906 #define M_START(m) \ 907 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 908 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 909 &(m)->m_dat[0]) 910 911 /* 912 * Return the size of the buffer associated with an mbuf, handling external 913 * storage, packet-header mbufs, and regular data mbufs. 914 */ 915 #define M_SIZE(m) \ 916 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 917 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 918 MLEN) 919 920 /* 921 * Set the m_data pointer of a newly allocated mbuf to place an object of the 922 * specified size at the end of the mbuf, longword aligned. 923 * 924 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 925 * separate macros, each asserting that it was called at the proper moment. 926 * This required callers to themselves test the storage type and call the 927 * right one. Rather than require callers to be aware of those layout 928 * decisions, we centralize here. 929 */ 930 static __inline void 931 m_align(struct mbuf *m, int len) 932 { 933 #ifdef INVARIANTS 934 const char *msg = "%s: not a virgin mbuf"; 935 #endif 936 int adjust; 937 938 KASSERT(m->m_data == M_START(m), (msg, __func__)); 939 940 adjust = M_SIZE(m) - len; 941 m->m_data += adjust &~ (sizeof(long)-1); 942 } 943 944 #define M_ALIGN(m, len) m_align(m, len) 945 #define MH_ALIGN(m, len) m_align(m, len) 946 #define MEXT_ALIGN(m, len) m_align(m, len) 947 948 /* 949 * Compute the amount of space available before the current start of data in 950 * an mbuf. 951 * 952 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 953 * of checking writability of the mbuf data area rests solely with the caller. 954 * 955 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 956 * for mbufs with external storage. We now allow mbuf-embedded data to be 957 * read-only as well. 958 */ 959 #define M_LEADINGSPACE(m) \ 960 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 961 962 /* 963 * Compute the amount of space available after the end of data in an mbuf. 964 * 965 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 966 * of checking writability of the mbuf data area rests solely with the caller. 967 * 968 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 969 * for mbufs with external storage. We now allow mbuf-embedded data to be 970 * read-only as well. 971 */ 972 #define M_TRAILINGSPACE(m) \ 973 (M_WRITABLE(m) ? \ 974 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 975 976 /* 977 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 978 * allocated, how specifies whether to wait. If the allocation fails, the 979 * original mbuf chain is freed and m is set to NULL. 980 */ 981 #define M_PREPEND(m, plen, how) do { \ 982 struct mbuf **_mmp = &(m); \ 983 struct mbuf *_mm = *_mmp; \ 984 int _mplen = (plen); \ 985 int __mhow = (how); \ 986 \ 987 MBUF_CHECKSLEEP(how); \ 988 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 989 _mm->m_data -= _mplen; \ 990 _mm->m_len += _mplen; \ 991 } else \ 992 _mm = m_prepend(_mm, _mplen, __mhow); \ 993 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 994 _mm->m_pkthdr.len += _mplen; \ 995 *_mmp = _mm; \ 996 } while (0) 997 998 /* 999 * Change mbuf to new type. This is a relatively expensive operation and 1000 * should be avoided. 1001 */ 1002 #define MCHTYPE(m, t) m_chtype((m), (t)) 1003 1004 /* Return the rcvif of a packet header. */ 1005 static __inline struct ifnet * 1006 m_rcvif(struct mbuf *m) 1007 { 1008 1009 M_ASSERTPKTHDR(m); 1010 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1011 return (NULL); 1012 return (m->m_pkthdr.rcvif); 1013 } 1014 1015 /* Length to m_copy to copy all. */ 1016 #define M_COPYALL 1000000000 1017 1018 extern int max_datalen; /* MHLEN - max_hdr */ 1019 extern int max_hdr; /* Largest link + protocol header */ 1020 extern int max_linkhdr; /* Largest link-level header */ 1021 extern int max_protohdr; /* Largest protocol header */ 1022 extern int nmbclusters; /* Maximum number of clusters */ 1023 1024 /*- 1025 * Network packets may have annotations attached by affixing a list of 1026 * "packet tags" to the pkthdr structure. Packet tags are dynamically 1027 * allocated semi-opaque data structures that have a fixed header 1028 * (struct m_tag) that specifies the size of the memory block and a 1029 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 1030 * unsigned value used to identify a module or ABI. By convention this value 1031 * is chosen as the date+time that the module is created, expressed as the 1032 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 1033 * value is an ABI/module-specific value that identifies a particular 1034 * annotation and is private to the module. For compatibility with systems 1035 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 1036 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1037 * compatibility shim functions and several tag types are defined below. 1038 * Users that do not require compatibility should use a private cookie value 1039 * so that packet tag-related definitions can be maintained privately. 1040 * 1041 * Note that the packet tag returned by m_tag_alloc has the default memory 1042 * alignment implemented by malloc. To reference private data one can use a 1043 * construct like: 1044 * 1045 * struct m_tag *mtag = m_tag_alloc(...); 1046 * struct foo *p = (struct foo *)(mtag+1); 1047 * 1048 * if the alignment of struct m_tag is sufficient for referencing members of 1049 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1050 * private data structure to insure proper alignment; e.g., 1051 * 1052 * struct foo { 1053 * struct m_tag tag; 1054 * ... 1055 * }; 1056 * struct foo *p = (struct foo *) m_tag_alloc(...); 1057 * struct m_tag *mtag = &p->tag; 1058 */ 1059 1060 /* 1061 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1062 * tags are expected to ``vanish'' when they pass through a network 1063 * interface. For most interfaces this happens normally as the tags are 1064 * reclaimed when the mbuf is free'd. However in some special cases 1065 * reclaiming must be done manually. An example is packets that pass through 1066 * the loopback interface. Also, one must be careful to do this when 1067 * ``turning around'' packets (e.g., icmp_reflect). 1068 * 1069 * To mark a tag persistent bit-or this flag in when defining the tag id. 1070 * The tag will then be treated as described above. 1071 */ 1072 #define MTAG_PERSISTENT 0x800 1073 1074 #define PACKET_TAG_NONE 0 /* Nadda */ 1075 1076 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1077 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1078 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1079 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1080 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1081 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1082 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1083 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1084 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1085 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1086 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1087 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1088 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1089 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1090 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1091 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1092 #define PACKET_TAG_DIVERT 17 /* divert info */ 1093 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1094 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1095 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 1096 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1097 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1098 #define PACKET_TAG_CARP 28 /* CARP info */ 1099 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1100 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1101 1102 /* Specific cookies and tags. */ 1103 1104 /* Packet tag routines. */ 1105 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 1106 void m_tag_delete(struct mbuf *, struct m_tag *); 1107 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1108 void m_tag_free_default(struct m_tag *); 1109 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 1110 struct m_tag *m_tag_copy(struct m_tag *, int); 1111 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1112 void m_tag_delete_nonpersistent(struct mbuf *); 1113 1114 /* 1115 * Initialize the list of tags associated with an mbuf. 1116 */ 1117 static __inline void 1118 m_tag_init(struct mbuf *m) 1119 { 1120 1121 SLIST_INIT(&m->m_pkthdr.tags); 1122 } 1123 1124 /* 1125 * Set up the contents of a tag. Note that this does not fill in the free 1126 * method; the caller is expected to do that. 1127 * 1128 * XXX probably should be called m_tag_init, but that was already taken. 1129 */ 1130 static __inline void 1131 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1132 { 1133 1134 t->m_tag_id = type; 1135 t->m_tag_len = len; 1136 t->m_tag_cookie = cookie; 1137 } 1138 1139 /* 1140 * Reclaim resources associated with a tag. 1141 */ 1142 static __inline void 1143 m_tag_free(struct m_tag *t) 1144 { 1145 1146 (*t->m_tag_free)(t); 1147 } 1148 1149 /* 1150 * Return the first tag associated with an mbuf. 1151 */ 1152 static __inline struct m_tag * 1153 m_tag_first(struct mbuf *m) 1154 { 1155 1156 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1157 } 1158 1159 /* 1160 * Return the next tag in the list of tags associated with an mbuf. 1161 */ 1162 static __inline struct m_tag * 1163 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1164 { 1165 1166 return (SLIST_NEXT(t, m_tag_link)); 1167 } 1168 1169 /* 1170 * Prepend a tag to the list of tags associated with an mbuf. 1171 */ 1172 static __inline void 1173 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1174 { 1175 1176 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1177 } 1178 1179 /* 1180 * Unlink a tag from the list of tags associated with an mbuf. 1181 */ 1182 static __inline void 1183 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1184 { 1185 1186 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1187 } 1188 1189 /* These are for OpenBSD compatibility. */ 1190 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1191 1192 static __inline struct m_tag * 1193 m_tag_get(int type, int length, int wait) 1194 { 1195 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1196 } 1197 1198 static __inline struct m_tag * 1199 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1200 { 1201 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1202 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1203 } 1204 1205 static inline struct m_snd_tag * 1206 m_snd_tag_ref(struct m_snd_tag *mst) 1207 { 1208 1209 refcount_acquire(&mst->refcount); 1210 return (mst); 1211 } 1212 1213 static inline void 1214 m_snd_tag_rele(struct m_snd_tag *mst) 1215 { 1216 1217 if (refcount_release(&mst->refcount)) 1218 m_snd_tag_destroy(mst); 1219 } 1220 1221 static __inline struct mbuf * 1222 m_free(struct mbuf *m) 1223 { 1224 struct mbuf *n = m->m_next; 1225 1226 MBUF_PROBE1(m__free, m); 1227 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1228 m_tag_delete_chain(m, NULL); 1229 if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1230 m_snd_tag_rele(m->m_pkthdr.snd_tag); 1231 if (m->m_flags & M_EXT) 1232 mb_free_ext(m); 1233 else if ((m->m_flags & M_NOFREE) == 0) 1234 uma_zfree(zone_mbuf, m); 1235 return (n); 1236 } 1237 1238 static __inline int 1239 rt_m_getfib(struct mbuf *m) 1240 { 1241 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1242 return (m->m_pkthdr.fibnum); 1243 } 1244 1245 #define M_GETFIB(_m) rt_m_getfib(_m) 1246 1247 #define M_SETFIB(_m, _fib) do { \ 1248 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1249 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1250 } while (0) 1251 1252 /* flags passed as first argument for "m_ether_tcpip_hash()" */ 1253 #define MBUF_HASHFLAG_L2 (1 << 2) 1254 #define MBUF_HASHFLAG_L3 (1 << 3) 1255 #define MBUF_HASHFLAG_L4 (1 << 4) 1256 1257 /* mbuf hashing helper routines */ 1258 uint32_t m_ether_tcpip_hash_init(void); 1259 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, const uint32_t); 1260 1261 #ifdef MBUF_PROFILING 1262 void m_profile(struct mbuf *m); 1263 #define M_PROFILE(m) m_profile(m) 1264 #else 1265 #define M_PROFILE(m) 1266 #endif 1267 1268 struct mbufq { 1269 STAILQ_HEAD(, mbuf) mq_head; 1270 int mq_len; 1271 int mq_maxlen; 1272 }; 1273 1274 static inline void 1275 mbufq_init(struct mbufq *mq, int maxlen) 1276 { 1277 1278 STAILQ_INIT(&mq->mq_head); 1279 mq->mq_maxlen = maxlen; 1280 mq->mq_len = 0; 1281 } 1282 1283 static inline struct mbuf * 1284 mbufq_flush(struct mbufq *mq) 1285 { 1286 struct mbuf *m; 1287 1288 m = STAILQ_FIRST(&mq->mq_head); 1289 STAILQ_INIT(&mq->mq_head); 1290 mq->mq_len = 0; 1291 return (m); 1292 } 1293 1294 static inline void 1295 mbufq_drain(struct mbufq *mq) 1296 { 1297 struct mbuf *m, *n; 1298 1299 n = mbufq_flush(mq); 1300 while ((m = n) != NULL) { 1301 n = STAILQ_NEXT(m, m_stailqpkt); 1302 m_freem(m); 1303 } 1304 } 1305 1306 static inline struct mbuf * 1307 mbufq_first(const struct mbufq *mq) 1308 { 1309 1310 return (STAILQ_FIRST(&mq->mq_head)); 1311 } 1312 1313 static inline struct mbuf * 1314 mbufq_last(const struct mbufq *mq) 1315 { 1316 1317 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1318 } 1319 1320 static inline int 1321 mbufq_full(const struct mbufq *mq) 1322 { 1323 1324 return (mq->mq_len >= mq->mq_maxlen); 1325 } 1326 1327 static inline int 1328 mbufq_len(const struct mbufq *mq) 1329 { 1330 1331 return (mq->mq_len); 1332 } 1333 1334 static inline int 1335 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1336 { 1337 1338 if (mbufq_full(mq)) 1339 return (ENOBUFS); 1340 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1341 mq->mq_len++; 1342 return (0); 1343 } 1344 1345 static inline struct mbuf * 1346 mbufq_dequeue(struct mbufq *mq) 1347 { 1348 struct mbuf *m; 1349 1350 m = STAILQ_FIRST(&mq->mq_head); 1351 if (m) { 1352 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1353 m->m_nextpkt = NULL; 1354 mq->mq_len--; 1355 } 1356 return (m); 1357 } 1358 1359 static inline void 1360 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1361 { 1362 1363 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1364 mq->mq_len++; 1365 } 1366 1367 /* 1368 * Note: this doesn't enforce the maximum list size for dst. 1369 */ 1370 static inline void 1371 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) 1372 { 1373 1374 mq_dst->mq_len += mq_src->mq_len; 1375 STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); 1376 mq_src->mq_len = 0; 1377 } 1378 1379 #ifdef _SYS_TIMESPEC_H_ 1380 static inline void 1381 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) 1382 { 1383 1384 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1385 KASSERT((m->m_flags & M_TSTMP) != 0, ("mbuf %p no M_TSTMP", m)); 1386 ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1387 ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; 1388 } 1389 #endif 1390 1391 #ifdef NETDUMP 1392 /* Invoked from the netdump client code. */ 1393 void netdump_mbuf_drain(void); 1394 void netdump_mbuf_dump(void); 1395 void netdump_mbuf_reinit(int nmbuf, int nclust, int clsize); 1396 #endif 1397 1398 #endif /* _KERNEL */ 1399 #endif /* !_SYS_MBUF_H_ */ 1400