1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 33 * $FreeBSD$ 34 */ 35 36 #ifndef _SYS_MBUF_H_ 37 #define _SYS_MBUF_H_ 38 39 /* XXX: These includes suck. Sorry! */ 40 #include <sys/queue.h> 41 #ifdef _KERNEL 42 #include <sys/systm.h> 43 #include <sys/refcount.h> 44 #include <vm/uma.h> 45 #ifdef WITNESS 46 #include <sys/lock.h> 47 #endif 48 #endif 49 50 #ifdef _KERNEL 51 #include <sys/sdt.h> 52 53 #define MBUF_PROBE1(probe, arg0) \ 54 SDT_PROBE1(sdt, , , probe, arg0) 55 #define MBUF_PROBE2(probe, arg0, arg1) \ 56 SDT_PROBE2(sdt, , , probe, arg0, arg1) 57 #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ 58 SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) 59 #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ 60 SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) 61 #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ 62 SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) 63 64 SDT_PROBE_DECLARE(sdt, , , m__init); 65 SDT_PROBE_DECLARE(sdt, , , m__gethdr); 66 SDT_PROBE_DECLARE(sdt, , , m__get); 67 SDT_PROBE_DECLARE(sdt, , , m__getcl); 68 SDT_PROBE_DECLARE(sdt, , , m__getjcl); 69 SDT_PROBE_DECLARE(sdt, , , m__clget); 70 SDT_PROBE_DECLARE(sdt, , , m__cljget); 71 SDT_PROBE_DECLARE(sdt, , , m__cljset); 72 SDT_PROBE_DECLARE(sdt, , , m__free); 73 SDT_PROBE_DECLARE(sdt, , , m__freem); 74 75 #endif /* _KERNEL */ 76 77 /* 78 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 79 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 80 * sys/param.h), which has no additional overhead and is used instead of the 81 * internal data area; this is done when at least MINCLSIZE of data must be 82 * stored. Additionally, it is possible to allocate a separate buffer 83 * externally and attach it to the mbuf in a way similar to that of mbuf 84 * clusters. 85 * 86 * NB: These calculation do not take actual compiler-induced alignment and 87 * padding inside the complete struct mbuf into account. Appropriate 88 * attention is required when changing members of struct mbuf. 89 * 90 * MLEN is data length in a normal mbuf. 91 * MHLEN is data length in an mbuf with pktheader. 92 * MINCLSIZE is a smallest amount of data that should be put into cluster. 93 * 94 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 95 * they are sensible. 96 */ 97 struct mbuf; 98 #define MHSIZE offsetof(struct mbuf, m_dat) 99 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 100 #define MLEN ((int)(MSIZE - MHSIZE)) 101 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 102 #define MINCLSIZE (MHLEN + 1) 103 #define M_NODOM 255 104 105 #ifdef _KERNEL 106 /*- 107 * Macro for type conversion: convert mbuf pointer to data pointer of correct 108 * type: 109 * 110 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 111 * mtodo(m, o) -- Same as above but with offset 'o' into data. 112 */ 113 #define mtod(m, t) ((t)((m)->m_data)) 114 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 115 116 /* 117 * Argument structure passed to UMA routines during mbuf and packet 118 * allocations. 119 */ 120 struct mb_args { 121 int flags; /* Flags for mbuf being allocated */ 122 short type; /* Type of mbuf being allocated */ 123 }; 124 #endif /* _KERNEL */ 125 126 /* 127 * Packet tag structure (see below for details). 128 */ 129 struct m_tag { 130 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 131 u_int16_t m_tag_id; /* Tag ID */ 132 u_int16_t m_tag_len; /* Length of data */ 133 u_int32_t m_tag_cookie; /* ABI/Module ID */ 134 void (*m_tag_free)(struct m_tag *); 135 }; 136 137 /* 138 * Static network interface owned tag. 139 * Allocated through ifp->if_snd_tag_alloc(). 140 */ 141 struct m_snd_tag { 142 struct ifnet *ifp; /* network interface tag belongs to */ 143 volatile u_int refcount; 144 u_int type; /* One of IF_SND_TAG_TYPE_*. */ 145 }; 146 147 /* 148 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 149 * Size ILP32: 48 150 * LP64: 56 151 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 152 * they are correct. 153 */ 154 struct pkthdr { 155 union { 156 struct m_snd_tag *snd_tag; /* send tag, if any */ 157 struct ifnet *rcvif; /* rcv interface */ 158 }; 159 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 160 int32_t len; /* total packet length */ 161 162 /* Layer crossing persistent information. */ 163 uint32_t flowid; /* packet's 4-tuple system */ 164 uint32_t csum_flags; /* checksum and offload features */ 165 uint16_t fibnum; /* this packet should use this fib */ 166 uint8_t numa_domain; /* NUMA domain of recvd pkt */ 167 uint8_t rsstype; /* hash type */ 168 union { 169 uint64_t rcv_tstmp; /* timestamp in ns */ 170 struct { 171 uint8_t l2hlen; /* layer 2 hdr len */ 172 uint8_t l3hlen; /* layer 3 hdr len */ 173 uint8_t l4hlen; /* layer 4 hdr len */ 174 uint8_t l5hlen; /* layer 5 hdr len */ 175 uint8_t inner_l2hlen; 176 uint8_t inner_l3hlen; 177 uint8_t inner_l4hlen; 178 uint8_t inner_l5hlen; 179 }; 180 }; 181 union { 182 uint8_t eight[8]; 183 uint16_t sixteen[4]; 184 uint32_t thirtytwo[2]; 185 uint64_t sixtyfour[1]; 186 uintptr_t unintptr[1]; 187 void *ptr; 188 } PH_per; 189 190 /* Layer specific non-persistent local storage for reassembly, etc. */ 191 union { 192 uint8_t eight[8]; 193 uint16_t sixteen[4]; 194 uint32_t thirtytwo[2]; 195 uint64_t sixtyfour[1]; 196 uintptr_t unintptr[1]; 197 void *ptr; 198 } PH_loc; 199 }; 200 #define ether_vtag PH_per.sixteen[0] 201 #define PH_vt PH_per 202 #define vt_nrecs sixteen[0] /* mld and v6-ND */ 203 #define tso_segsz PH_per.sixteen[1] /* inbound after LRO */ 204 #define lro_nsegs tso_segsz /* inbound after LRO */ 205 #define csum_data PH_per.thirtytwo[1] /* inbound from hardware up */ 206 #define lro_len PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */ 207 #define lro_csum PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */ 208 #define lro_etype PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */ 209 /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */ 210 211 /* 212 * TLS records for TLS 1.0-1.2 can have the following header lengths: 213 * - 5 (AES-CBC with implicit IV) 214 * - 21 (AES-CBC with explicit IV) 215 * - 13 (AES-GCM with 8 byte explicit IV) 216 */ 217 #define MBUF_PEXT_HDR_LEN 23 218 219 /* 220 * TLS records for TLS 1.0-1.2 can have the following maximum trailer 221 * lengths: 222 * - 16 (AES-GCM) 223 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding) 224 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding) 225 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding) 226 */ 227 #define MBUF_PEXT_TRAIL_LEN 64 228 229 #if defined(__LP64__) 230 #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t)) 231 #else 232 #define MBUF_PEXT_MAX_PGS (72 / sizeof(vm_paddr_t)) 233 #endif 234 235 #define MBUF_PEXT_MAX_BYTES \ 236 (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN) 237 238 struct ktls_session; 239 struct socket; 240 241 /* 242 * Description of external storage mapped into mbuf; valid only if M_EXT is 243 * set. 244 * Size ILP32: 28 245 * LP64: 48 246 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 247 * they are correct. 248 */ 249 typedef void m_ext_free_t(struct mbuf *); 250 struct m_ext { 251 union { 252 /* 253 * If EXT_FLAG_EMBREF is set, then we use refcount in the 254 * mbuf, the 'ext_count' member. Otherwise, we have a 255 * shadow copy and we use pointer 'ext_cnt'. The original 256 * mbuf is responsible to carry the pointer to free routine 257 * and its arguments. They aren't copied into shadows in 258 * mb_dupcl() to avoid dereferencing next cachelines. 259 */ 260 volatile u_int ext_count; 261 volatile u_int *ext_cnt; 262 }; 263 uint32_t ext_size; /* size of buffer, for ext_free */ 264 uint32_t ext_type:8, /* type of external storage */ 265 ext_flags:24; /* external storage mbuf flags */ 266 union { 267 struct { 268 /* 269 * Regular M_EXT mbuf: 270 * o ext_buf always points to the external buffer. 271 * o ext_free (below) and two optional arguments 272 * ext_arg1 and ext_arg2 store the free context for 273 * the external storage. They are set only in the 274 * refcount carrying mbuf, the one with 275 * EXT_FLAG_EMBREF flag, with exclusion for 276 * EXT_EXTREF type, where the free context is copied 277 * into all mbufs that use same external storage. 278 */ 279 char *ext_buf; /* start of buffer */ 280 #define m_ext_copylen offsetof(struct m_ext, ext_arg2) 281 void *ext_arg2; 282 }; 283 struct { 284 /* 285 * Multi-page M_EXTPG mbuf: 286 * o extpg_pa - page vector. 287 * o extpg_trail and extpg_hdr - TLS trailer and 288 * header. 289 * Uses ext_free and may also use ext_arg1. 290 */ 291 vm_paddr_t extpg_pa[MBUF_PEXT_MAX_PGS]; 292 char extpg_trail[MBUF_PEXT_TRAIL_LEN]; 293 char extpg_hdr[MBUF_PEXT_HDR_LEN]; 294 /* Pretend these 3 fields are part of mbuf itself. */ 295 #define m_epg_pa m_ext.extpg_pa 296 #define m_epg_trail m_ext.extpg_trail 297 #define m_epg_hdr m_ext.extpg_hdr 298 #define m_epg_ext_copylen offsetof(struct m_ext, ext_free) 299 }; 300 }; 301 /* 302 * Free method and optional argument pointer, both 303 * used by M_EXT and M_EXTPG. 304 */ 305 m_ext_free_t *ext_free; 306 void *ext_arg1; 307 }; 308 309 /* 310 * The core of the mbuf object along with some shortcut defines for practical 311 * purposes. 312 */ 313 struct mbuf { 314 /* 315 * Header present at the beginning of every mbuf. 316 * Size ILP32: 24 317 * LP64: 32 318 * Compile-time assertions in uipc_mbuf.c test these values to ensure 319 * that they are correct. 320 */ 321 union { /* next buffer in chain */ 322 struct mbuf *m_next; 323 SLIST_ENTRY(mbuf) m_slist; 324 STAILQ_ENTRY(mbuf) m_stailq; 325 }; 326 union { /* next chain in queue/record */ 327 struct mbuf *m_nextpkt; 328 SLIST_ENTRY(mbuf) m_slistpkt; 329 STAILQ_ENTRY(mbuf) m_stailqpkt; 330 }; 331 caddr_t m_data; /* location of data */ 332 int32_t m_len; /* amount of data in this mbuf */ 333 uint32_t m_type:8, /* type of data in this mbuf */ 334 m_flags:24; /* flags; see below */ 335 #if !defined(__LP64__) 336 uint32_t m_pad; /* pad for 64bit alignment */ 337 #endif 338 339 /* 340 * A set of optional headers (packet header, external storage header) 341 * and internal data storage. Historically, these arrays were sized 342 * to MHLEN (space left after a packet header) and MLEN (space left 343 * after only a regular mbuf header); they are now variable size in 344 * order to support future work on variable-size mbufs. 345 */ 346 union { 347 struct { 348 union { 349 /* M_PKTHDR set. */ 350 struct pkthdr m_pkthdr; 351 352 /* M_EXTPG set. 353 * Multi-page M_EXTPG mbuf has its meta data 354 * split between the below anonymous structure 355 * and m_ext. It carries vector of pages, 356 * optional header and trailer char vectors 357 * and pointers to socket/TLS data. 358 */ 359 #define m_epg_startcopy m_epg_npgs 360 #define m_epg_endcopy m_epg_stailq 361 struct { 362 /* Overall count of pages and count of 363 * pages with I/O pending. */ 364 uint8_t m_epg_npgs; 365 uint8_t m_epg_nrdy; 366 /* TLS header and trailer lengths. 367 * The data itself resides in m_ext. */ 368 uint8_t m_epg_hdrlen; 369 uint8_t m_epg_trllen; 370 /* Offset into 1st page and length of 371 * data in the last page. */ 372 uint16_t m_epg_1st_off; 373 uint16_t m_epg_last_len; 374 uint8_t m_epg_flags; 375 #define EPG_FLAG_ANON 0x1 /* Data can be encrypted in place. */ 376 #define EPG_FLAG_2FREE 0x2 /* Scheduled for free. */ 377 uint8_t m_epg_record_type; 378 uint8_t __spare[2]; 379 int m_epg_enc_cnt; 380 struct ktls_session *m_epg_tls; 381 struct socket *m_epg_so; 382 uint64_t m_epg_seqno; 383 STAILQ_ENTRY(mbuf) m_epg_stailq; 384 }; 385 }; 386 union { 387 /* M_EXT or M_EXTPG set. */ 388 struct m_ext m_ext; 389 /* M_PKTHDR set, neither M_EXT nor M_EXTPG. */ 390 char m_pktdat[0]; 391 }; 392 }; 393 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 394 }; 395 }; 396 397 #ifdef _KERNEL 398 static inline int 399 m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff) 400 { 401 402 KASSERT(pgoff == 0 || pidx == 0, 403 ("page %d with non-zero offset %d in %p", pidx, pgoff, m)); 404 405 if (pidx == m->m_epg_npgs - 1) { 406 return (m->m_epg_last_len); 407 } else { 408 return (PAGE_SIZE - pgoff); 409 } 410 } 411 412 #ifdef INVARIANTS 413 #define MCHECK(ex, msg) KASSERT((ex), \ 414 ("Multi page mbuf %p with " #msg " at %s:%d", \ 415 m, __FILE__, __LINE__)) 416 /* 417 * NB: This expects a non-empty buffer (npgs > 0 and 418 * last_pg_len > 0). 419 */ 420 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do { \ 421 MCHECK(m->m_epg_npgs > 0, "no valid pages"); \ 422 MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa), \ 423 "too many pages"); \ 424 MCHECK(m->m_epg_nrdy <= m->m_epg_npgs, \ 425 "too many ready pages"); \ 426 MCHECK(m->m_epg_1st_off < PAGE_SIZE, \ 427 "too large page offset"); \ 428 MCHECK(m->m_epg_last_len > 0, "zero last page length"); \ 429 MCHECK(m->m_epg_last_len <= PAGE_SIZE, \ 430 "too large last page length"); \ 431 if (m->m_epg_npgs == 1) \ 432 MCHECK(m->m_epg_1st_off + \ 433 m->m_epg_last_len <= PAGE_SIZE, \ 434 "single page too large"); \ 435 MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr), \ 436 "too large header length"); \ 437 MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail), \ 438 "too large header length"); \ 439 } while (0) 440 #else 441 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do {} while (0); 442 #endif 443 #endif 444 445 /* 446 * mbuf flags of global significance and layer crossing. 447 * Those of only protocol/layer specific significance are to be mapped 448 * to M_PROTO[1-11] and cleared at layer handoff boundaries. 449 * NB: Limited to the lower 24 bits. 450 */ 451 #define M_EXT 0x00000001 /* has associated external storage */ 452 #define M_PKTHDR 0x00000002 /* start of record */ 453 #define M_EOR 0x00000004 /* end of record */ 454 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 455 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 456 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 457 #define M_PROMISC 0x00000040 /* packet was not for us */ 458 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 459 #define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */ 460 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 461 #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ 462 #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically 463 hw-stamped on port (useful for IEEE 1588 464 and 802.1AS) */ 465 #define M_TSTMP_LRO 0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */ 466 467 #define M_PROTO1 0x00002000 /* protocol-specific */ 468 #define M_PROTO2 0x00004000 /* protocol-specific */ 469 #define M_PROTO3 0x00008000 /* protocol-specific */ 470 #define M_PROTO4 0x00010000 /* protocol-specific */ 471 #define M_PROTO5 0x00020000 /* protocol-specific */ 472 #define M_PROTO6 0x00040000 /* protocol-specific */ 473 #define M_PROTO7 0x00080000 /* protocol-specific */ 474 #define M_PROTO8 0x00100000 /* protocol-specific */ 475 #define M_PROTO9 0x00200000 /* protocol-specific */ 476 #define M_PROTO10 0x00400000 /* protocol-specific */ 477 #define M_PROTO11 0x00800000 /* protocol-specific */ 478 479 #define MB_DTOR_SKIP 0x1 /* don't pollute the cache by touching a freed mbuf */ 480 481 /* 482 * Flags to purge when crossing layers. 483 */ 484 #define M_PROTOFLAGS \ 485 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 486 M_PROTO9|M_PROTO10|M_PROTO11) 487 488 /* 489 * Flags preserved when copying m_pkthdr. 490 */ 491 #define M_COPYFLAGS \ 492 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ 493 M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS) 494 495 /* 496 * Mbuf flag description for use with printf(9) %b identifier. 497 */ 498 #define M_FLAG_BITS \ 499 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 500 "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO" 501 #define M_FLAG_PROTOBITS \ 502 "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \ 503 "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \ 504 "\27M_PROTO10\28M_PROTO11" 505 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 506 507 /* 508 * Network interface cards are able to hash protocol fields (such as IPv4 509 * addresses and TCP port numbers) classify packets into flows. These flows 510 * can then be used to maintain ordering while delivering packets to the OS 511 * via parallel input queues, as well as to provide a stateless affinity 512 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 513 * m_flag fields to indicate how the hash should be interpreted by the 514 * network stack. 515 * 516 * Most NICs support RSS, which provides ordering and explicit affinity, and 517 * use the hash m_flag bits to indicate what header fields were covered by 518 * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- 519 * RSS cards or configurations that provide an opaque flow identifier, allowing 520 * for ordering and distribution without explicit affinity. Additionally, 521 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash 522 * properties. 523 * 524 * The meaning of the IPV6_EX suffix: 525 * "o Home address from the home address option in the IPv6 destination 526 * options header. If the extension header is not present, use the Source 527 * IPv6 Address. 528 * o IPv6 address that is contained in the Routing-Header-Type-2 from the 529 * associated extension header. If the extension header is not present, 530 * use the Destination IPv6 Address." 531 * Quoted from: 532 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex 533 */ 534 #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ 535 #define M_HASHTYPE_INNER 0x40 /* calculated from inner headers */ 536 #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) 537 /* Microsoft RSS standard hash types */ 538 #define M_HASHTYPE_NONE 0 539 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ 540 #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ 541 #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ 542 #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ 543 #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + 544 * ext hdrs */ 545 #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + 546 * ext hdrs */ 547 #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ 548 #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ 549 #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + 550 * ext hdrs */ 551 552 #define M_HASHTYPE_OPAQUE 0x3f /* ordering, not affinity */ 553 #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) 554 /* ordering+hash, not affinity*/ 555 556 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 557 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER) 558 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 559 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 560 #define M_HASHTYPE_ISHASH(m) \ 561 (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0) 562 #define M_HASHTYPE_SETINNER(m) do { \ 563 (m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER; \ 564 } while (0) 565 566 /* 567 * External mbuf storage buffer types. 568 */ 569 #define EXT_CLUSTER 1 /* mbuf cluster */ 570 #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ 571 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 572 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 573 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 574 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 575 #define EXT_MBUF 7 /* external mbuf reference */ 576 #define EXT_RXRING 8 /* data in NIC receive ring */ 577 578 #define EXT_VENDOR1 224 /* for vendor-internal use */ 579 #define EXT_VENDOR2 225 /* for vendor-internal use */ 580 #define EXT_VENDOR3 226 /* for vendor-internal use */ 581 #define EXT_VENDOR4 227 /* for vendor-internal use */ 582 583 #define EXT_EXP1 244 /* for experimental use */ 584 #define EXT_EXP2 245 /* for experimental use */ 585 #define EXT_EXP3 246 /* for experimental use */ 586 #define EXT_EXP4 247 /* for experimental use */ 587 588 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 589 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 590 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 591 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 592 593 /* 594 * Flags for external mbuf buffer types. 595 * NB: limited to the lower 24 bits. 596 */ 597 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ 598 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 599 600 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 601 602 #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ 603 #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ 604 #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ 605 #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ 606 607 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 608 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 609 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 610 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 611 612 /* 613 * EXT flag description for use with printf(9) %b identifier. 614 */ 615 #define EXT_FLAG_BITS \ 616 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 617 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 618 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 619 "\30EXT_FLAG_EXP4" 620 621 /* 622 * Flags indicating checksum, segmentation and other offload work to be 623 * done, or already done, by hardware or lower layers. It is split into 624 * separate inbound and outbound flags. 625 * 626 * Outbound flags that are set by upper protocol layers requesting lower 627 * layers, or ideally the hardware, to perform these offloading tasks. 628 * For outbound packets this field and its flags can be directly tested 629 * against ifnet if_hwassist. Note that the outbound and the inbound flags do 630 * not collide right now but they could be allowed to (as long as the flags are 631 * scrubbed appropriately when the direction of an mbuf changes). CSUM_BITS 632 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX. 633 * 634 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame. 635 * The CSUM_ENCAP_<x> bits identify the outer encapsulation. 636 */ 637 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 638 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 639 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 640 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 641 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 642 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 643 644 #define CSUM_INNER_IP6_UDP 0x00000040 645 #define CSUM_INNER_IP6_TCP 0x00000080 646 #define CSUM_INNER_IP6_TSO 0x00000100 647 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 648 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 649 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 650 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 651 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 652 653 #define CSUM_INNER_IP 0x00004000 654 #define CSUM_INNER_IP_UDP 0x00008000 655 #define CSUM_INNER_IP_TCP 0x00010000 656 #define CSUM_INNER_IP_TSO 0x00020000 657 658 #define CSUM_ENCAP_VXLAN 0x00040000 /* VXLAN outer encapsulation */ 659 #define CSUM_ENCAP_RSVD1 0x00080000 660 661 /* Inbound checksum support where the checksum was verified by hardware. */ 662 #define CSUM_INNER_L3_CALC 0x00100000 663 #define CSUM_INNER_L3_VALID 0x00200000 664 #define CSUM_INNER_L4_CALC 0x00400000 665 #define CSUM_INNER_L4_VALID 0x00800000 666 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 667 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 668 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 669 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 670 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 671 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 672 #define CSUM_COALESCED 0x40000000 /* contains merged segments */ 673 674 #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ 675 676 #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 677 CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \ 678 CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \ 679 CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \ 680 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \ 681 CSUM_ENCAP_RSVD1 | CSUM_SND_TAG) 682 683 #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \ 684 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \ 685 CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \ 686 CSUM_COALESCED) 687 688 /* 689 * CSUM flag description for use with printf(9) %b identifier. 690 */ 691 #define CSUM_BITS \ 692 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 693 "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \ 694 "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \ 695 "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \ 696 "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \ 697 "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \ 698 "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \ 699 "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \ 700 "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" 701 702 /* CSUM flags compatibility mappings. */ 703 #define CSUM_IP_CHECKED CSUM_L3_CALC 704 #define CSUM_IP_VALID CSUM_L3_VALID 705 #define CSUM_DATA_VALID CSUM_L4_VALID 706 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 707 #define CSUM_SCTP_VALID CSUM_L4_VALID 708 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 709 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 710 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 711 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 712 #define CSUM_TCP CSUM_IP_TCP 713 #define CSUM_UDP CSUM_IP_UDP 714 #define CSUM_SCTP CSUM_IP_SCTP 715 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 716 #define CSUM_INNER_TSO (CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO) 717 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 718 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 719 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 720 721 /* 722 * mbuf types describing the content of the mbuf (including external storage). 723 */ 724 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 725 #define MT_DATA 1 /* dynamic (data) allocation */ 726 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 727 728 #define MT_VENDOR1 4 /* for vendor-internal use */ 729 #define MT_VENDOR2 5 /* for vendor-internal use */ 730 #define MT_VENDOR3 6 /* for vendor-internal use */ 731 #define MT_VENDOR4 7 /* for vendor-internal use */ 732 733 #define MT_SONAME 8 /* socket name */ 734 735 #define MT_EXP1 9 /* for experimental use */ 736 #define MT_EXP2 10 /* for experimental use */ 737 #define MT_EXP3 11 /* for experimental use */ 738 #define MT_EXP4 12 /* for experimental use */ 739 740 #define MT_CONTROL 14 /* extra-data protocol message */ 741 #define MT_EXTCONTROL 15 /* control message with externalized contents */ 742 #define MT_OOBDATA 16 /* expedited data */ 743 744 #define MT_NOINIT 255 /* Not a type but a flag to allocate 745 a non-initialized mbuf */ 746 747 /* 748 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 749 * !_KERNEL so that monitoring tools can look up the zones with 750 * libmemstat(3). 751 */ 752 #define MBUF_MEM_NAME "mbuf" 753 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 754 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 755 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 756 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 757 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 758 #define MBUF_TAG_MEM_NAME "mbuf_tag" 759 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 760 #define MBUF_EXTPGS_MEM_NAME "mbuf_extpgs" 761 762 #ifdef _KERNEL 763 union if_snd_tag_alloc_params; 764 765 #ifdef WITNESS 766 #define MBUF_CHECKSLEEP(how) do { \ 767 if (how == M_WAITOK) \ 768 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 769 "Sleeping in \"%s\"", __func__); \ 770 } while (0) 771 #else 772 #define MBUF_CHECKSLEEP(how) 773 #endif 774 775 /* 776 * Network buffer allocation API 777 * 778 * The rest of it is defined in kern/kern_mbuf.c 779 */ 780 extern uma_zone_t zone_mbuf; 781 extern uma_zone_t zone_clust; 782 extern uma_zone_t zone_pack; 783 extern uma_zone_t zone_jumbop; 784 extern uma_zone_t zone_jumbo9; 785 extern uma_zone_t zone_jumbo16; 786 extern uma_zone_t zone_extpgs; 787 788 void mb_dupcl(struct mbuf *, struct mbuf *); 789 void mb_free_ext(struct mbuf *); 790 void mb_free_extpg(struct mbuf *); 791 void mb_free_mext_pgs(struct mbuf *); 792 struct mbuf *mb_alloc_ext_pgs(int, m_ext_free_t); 793 struct mbuf *mb_alloc_ext_plus_pages(int, int); 794 struct mbuf *mb_mapped_to_unmapped(struct mbuf *, int, int, int, 795 struct mbuf **); 796 int mb_unmapped_compress(struct mbuf *m); 797 struct mbuf *mb_unmapped_to_ext(struct mbuf *m); 798 void mb_free_notready(struct mbuf *m, int count); 799 void m_adj(struct mbuf *, int); 800 void m_adj_decap(struct mbuf *, int); 801 int m_apply(struct mbuf *, int, int, 802 int (*)(void *, void *, u_int), void *); 803 int m_append(struct mbuf *, int, c_caddr_t); 804 void m_cat(struct mbuf *, struct mbuf *); 805 void m_catpkt(struct mbuf *, struct mbuf *); 806 int m_clget(struct mbuf *m, int how); 807 void *m_cljget(struct mbuf *m, int how, int size); 808 struct mbuf *m_collapse(struct mbuf *, int, int); 809 void m_copyback(struct mbuf *, int, int, c_caddr_t); 810 void m_copydata(const struct mbuf *, int, int, caddr_t); 811 struct mbuf *m_copym(struct mbuf *, int, int, int); 812 struct mbuf *m_copypacket(struct mbuf *, int); 813 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 814 struct mbuf *m_copyup(struct mbuf *, int, int); 815 struct mbuf *m_defrag(struct mbuf *, int); 816 void m_demote_pkthdr(struct mbuf *); 817 void m_demote(struct mbuf *, int, int); 818 struct mbuf *m_devget(char *, int, int, struct ifnet *, 819 void (*)(char *, caddr_t, u_int)); 820 void m_dispose_extcontrolm(struct mbuf *m); 821 struct mbuf *m_dup(const struct mbuf *, int); 822 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 823 void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, 824 void *, void *, int, int); 825 u_int m_fixhdr(struct mbuf *); 826 struct mbuf *m_fragment(struct mbuf *, int, int); 827 void m_freem(struct mbuf *); 828 struct mbuf *m_get2(int, int, short, int); 829 struct mbuf *m_getjcl(int, short, int, int); 830 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 831 struct mbuf *m_getptr(struct mbuf *, int, int *); 832 u_int m_length(struct mbuf *, struct mbuf **); 833 int m_mbuftouio(struct uio *, const struct mbuf *, int); 834 int m_unmappedtouio(const struct mbuf *, int, struct uio *, int); 835 void m_move_pkthdr(struct mbuf *, struct mbuf *); 836 int m_pkthdr_init(struct mbuf *, int); 837 struct mbuf *m_prepend(struct mbuf *, int, int); 838 void m_print(const struct mbuf *, int); 839 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 840 struct mbuf *m_pullup(struct mbuf *, int); 841 int m_sanity(struct mbuf *, int); 842 struct mbuf *m_split(struct mbuf *, int, int); 843 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 844 struct mbuf *m_unshare(struct mbuf *, int); 845 int m_snd_tag_alloc(struct ifnet *, 846 union if_snd_tag_alloc_params *, struct m_snd_tag **); 847 void m_snd_tag_init(struct m_snd_tag *, struct ifnet *, u_int); 848 void m_snd_tag_destroy(struct m_snd_tag *); 849 850 static __inline int 851 m_gettype(int size) 852 { 853 int type; 854 855 switch (size) { 856 case MSIZE: 857 type = EXT_MBUF; 858 break; 859 case MCLBYTES: 860 type = EXT_CLUSTER; 861 break; 862 #if MJUMPAGESIZE != MCLBYTES 863 case MJUMPAGESIZE: 864 type = EXT_JUMBOP; 865 break; 866 #endif 867 case MJUM9BYTES: 868 type = EXT_JUMBO9; 869 break; 870 case MJUM16BYTES: 871 type = EXT_JUMBO16; 872 break; 873 default: 874 panic("%s: invalid cluster size %d", __func__, size); 875 } 876 877 return (type); 878 } 879 880 /* 881 * Associated an external reference counted buffer with an mbuf. 882 */ 883 static __inline void 884 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, 885 m_ext_free_t freef, void *arg1, void *arg2) 886 { 887 888 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 889 890 atomic_add_int(ref_cnt, 1); 891 m->m_flags |= M_EXT; 892 m->m_ext.ext_buf = buf; 893 m->m_ext.ext_cnt = ref_cnt; 894 m->m_data = m->m_ext.ext_buf; 895 m->m_ext.ext_size = size; 896 m->m_ext.ext_free = freef; 897 m->m_ext.ext_arg1 = arg1; 898 m->m_ext.ext_arg2 = arg2; 899 m->m_ext.ext_type = EXT_EXTREF; 900 m->m_ext.ext_flags = 0; 901 } 902 903 static __inline uma_zone_t 904 m_getzone(int size) 905 { 906 uma_zone_t zone; 907 908 switch (size) { 909 case MCLBYTES: 910 zone = zone_clust; 911 break; 912 #if MJUMPAGESIZE != MCLBYTES 913 case MJUMPAGESIZE: 914 zone = zone_jumbop; 915 break; 916 #endif 917 case MJUM9BYTES: 918 zone = zone_jumbo9; 919 break; 920 case MJUM16BYTES: 921 zone = zone_jumbo16; 922 break; 923 default: 924 panic("%s: invalid cluster size %d", __func__, size); 925 } 926 927 return (zone); 928 } 929 930 /* 931 * Initialize an mbuf with linear storage. 932 * 933 * Inline because the consumer text overhead will be roughly the same to 934 * initialize or call a function with this many parameters and M_PKTHDR 935 * should go away with constant propagation for !MGETHDR. 936 */ 937 static __inline int 938 m_init(struct mbuf *m, int how, short type, int flags) 939 { 940 int error; 941 942 m->m_next = NULL; 943 m->m_nextpkt = NULL; 944 m->m_data = m->m_dat; 945 m->m_len = 0; 946 m->m_flags = flags; 947 m->m_type = type; 948 if (flags & M_PKTHDR) 949 error = m_pkthdr_init(m, how); 950 else 951 error = 0; 952 953 MBUF_PROBE5(m__init, m, how, type, flags, error); 954 return (error); 955 } 956 957 static __inline struct mbuf * 958 m_get(int how, short type) 959 { 960 struct mbuf *m; 961 struct mb_args args; 962 963 args.flags = 0; 964 args.type = type; 965 m = uma_zalloc_arg(zone_mbuf, &args, how); 966 MBUF_PROBE3(m__get, how, type, m); 967 return (m); 968 } 969 970 static __inline struct mbuf * 971 m_gethdr(int how, short type) 972 { 973 struct mbuf *m; 974 struct mb_args args; 975 976 args.flags = M_PKTHDR; 977 args.type = type; 978 m = uma_zalloc_arg(zone_mbuf, &args, how); 979 MBUF_PROBE3(m__gethdr, how, type, m); 980 return (m); 981 } 982 983 static __inline struct mbuf * 984 m_getcl(int how, short type, int flags) 985 { 986 struct mbuf *m; 987 struct mb_args args; 988 989 args.flags = flags; 990 args.type = type; 991 m = uma_zalloc_arg(zone_pack, &args, how); 992 MBUF_PROBE4(m__getcl, how, type, flags, m); 993 return (m); 994 } 995 996 /* 997 * XXX: m_cljset() is a dangerous API. One must attach only a new, 998 * unreferenced cluster to an mbuf(9). It is not possible to assert 999 * that, so care can be taken only by users of the API. 1000 */ 1001 static __inline void 1002 m_cljset(struct mbuf *m, void *cl, int type) 1003 { 1004 int size; 1005 1006 switch (type) { 1007 case EXT_CLUSTER: 1008 size = MCLBYTES; 1009 break; 1010 #if MJUMPAGESIZE != MCLBYTES 1011 case EXT_JUMBOP: 1012 size = MJUMPAGESIZE; 1013 break; 1014 #endif 1015 case EXT_JUMBO9: 1016 size = MJUM9BYTES; 1017 break; 1018 case EXT_JUMBO16: 1019 size = MJUM16BYTES; 1020 break; 1021 default: 1022 panic("%s: unknown cluster type %d", __func__, type); 1023 break; 1024 } 1025 1026 m->m_data = m->m_ext.ext_buf = cl; 1027 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 1028 m->m_ext.ext_size = size; 1029 m->m_ext.ext_type = type; 1030 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 1031 m->m_ext.ext_count = 1; 1032 m->m_flags |= M_EXT; 1033 MBUF_PROBE3(m__cljset, m, cl, type); 1034 } 1035 1036 static __inline void 1037 m_chtype(struct mbuf *m, short new_type) 1038 { 1039 1040 m->m_type = new_type; 1041 } 1042 1043 static __inline void 1044 m_clrprotoflags(struct mbuf *m) 1045 { 1046 1047 while (m) { 1048 m->m_flags &= ~M_PROTOFLAGS; 1049 m = m->m_next; 1050 } 1051 } 1052 1053 static __inline struct mbuf * 1054 m_last(struct mbuf *m) 1055 { 1056 1057 while (m->m_next) 1058 m = m->m_next; 1059 return (m); 1060 } 1061 1062 static inline u_int 1063 m_extrefcnt(struct mbuf *m) 1064 { 1065 1066 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); 1067 1068 return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : 1069 *m->m_ext.ext_cnt); 1070 } 1071 1072 /* 1073 * mbuf, cluster, and external object allocation macros (for compatibility 1074 * purposes). 1075 */ 1076 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 1077 #define MGET(m, how, type) ((m) = m_get((how), (type))) 1078 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 1079 #define MCLGET(m, how) m_clget((m), (how)) 1080 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 1081 m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ 1082 (flags), (type)) 1083 #define m_getm(m, len, how, type) \ 1084 m_getm2((m), (len), (how), (type), M_PKTHDR) 1085 1086 /* 1087 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 1088 * be both the local data payload, or an external buffer area, depending on 1089 * whether M_EXT is set). 1090 */ 1091 #define M_WRITABLE(m) (((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 && \ 1092 (!(((m)->m_flags & M_EXT)) || \ 1093 (m_extrefcnt(m) == 1))) 1094 1095 /* Check if the supplied mbuf has a packet header, or else panic. */ 1096 #define M_ASSERTPKTHDR(m) \ 1097 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 1098 ("%s: no mbuf packet header!", __func__)) 1099 1100 /* Check if mbuf is multipage. */ 1101 #define M_ASSERTEXTPG(m) \ 1102 KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG, \ 1103 ("%s: m %p is not multipage!", __func__, m)) 1104 1105 /* 1106 * Ensure that the supplied mbuf is a valid, non-free mbuf. 1107 * 1108 * XXX: Broken at the moment. Need some UMA magic to make it work again. 1109 */ 1110 #define M_ASSERTVALID(m) \ 1111 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 1112 ("%s: attempted use of a free mbuf!", __func__)) 1113 1114 /* 1115 * Return the address of the start of the buffer associated with an mbuf, 1116 * handling external storage, packet-header mbufs, and regular data mbufs. 1117 */ 1118 #define M_START(m) \ 1119 (((m)->m_flags & M_EXTPG) ? NULL : \ 1120 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 1121 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 1122 &(m)->m_dat[0]) 1123 1124 /* 1125 * Return the size of the buffer associated with an mbuf, handling external 1126 * storage, packet-header mbufs, and regular data mbufs. 1127 */ 1128 #define M_SIZE(m) \ 1129 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 1130 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 1131 MLEN) 1132 1133 /* 1134 * Set the m_data pointer of a newly allocated mbuf to place an object of the 1135 * specified size at the end of the mbuf, longword aligned. 1136 * 1137 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 1138 * separate macros, each asserting that it was called at the proper moment. 1139 * This required callers to themselves test the storage type and call the 1140 * right one. Rather than require callers to be aware of those layout 1141 * decisions, we centralize here. 1142 */ 1143 static __inline void 1144 m_align(struct mbuf *m, int len) 1145 { 1146 #ifdef INVARIANTS 1147 const char *msg = "%s: not a virgin mbuf"; 1148 #endif 1149 int adjust; 1150 1151 KASSERT(m->m_data == M_START(m), (msg, __func__)); 1152 1153 adjust = M_SIZE(m) - len; 1154 m->m_data += adjust &~ (sizeof(long)-1); 1155 } 1156 1157 #define M_ALIGN(m, len) m_align(m, len) 1158 #define MH_ALIGN(m, len) m_align(m, len) 1159 #define MEXT_ALIGN(m, len) m_align(m, len) 1160 1161 /* 1162 * Compute the amount of space available before the current start of data in 1163 * an mbuf. 1164 * 1165 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1166 * of checking writability of the mbuf data area rests solely with the caller. 1167 * 1168 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 1169 * for mbufs with external storage. We now allow mbuf-embedded data to be 1170 * read-only as well. 1171 */ 1172 #define M_LEADINGSPACE(m) \ 1173 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 1174 1175 /* 1176 * Compute the amount of space available after the end of data in an mbuf. 1177 * 1178 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1179 * of checking writability of the mbuf data area rests solely with the caller. 1180 * 1181 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 1182 * for mbufs with external storage. We now allow mbuf-embedded data to be 1183 * read-only as well. 1184 */ 1185 #define M_TRAILINGSPACE(m) \ 1186 (M_WRITABLE(m) ? \ 1187 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 1188 1189 /* 1190 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 1191 * allocated, how specifies whether to wait. If the allocation fails, the 1192 * original mbuf chain is freed and m is set to NULL. 1193 */ 1194 #define M_PREPEND(m, plen, how) do { \ 1195 struct mbuf **_mmp = &(m); \ 1196 struct mbuf *_mm = *_mmp; \ 1197 int _mplen = (plen); \ 1198 int __mhow = (how); \ 1199 \ 1200 MBUF_CHECKSLEEP(how); \ 1201 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 1202 _mm->m_data -= _mplen; \ 1203 _mm->m_len += _mplen; \ 1204 } else \ 1205 _mm = m_prepend(_mm, _mplen, __mhow); \ 1206 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 1207 _mm->m_pkthdr.len += _mplen; \ 1208 *_mmp = _mm; \ 1209 } while (0) 1210 1211 /* 1212 * Change mbuf to new type. This is a relatively expensive operation and 1213 * should be avoided. 1214 */ 1215 #define MCHTYPE(m, t) m_chtype((m), (t)) 1216 1217 /* Return the rcvif of a packet header. */ 1218 static __inline struct ifnet * 1219 m_rcvif(struct mbuf *m) 1220 { 1221 1222 M_ASSERTPKTHDR(m); 1223 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1224 return (NULL); 1225 return (m->m_pkthdr.rcvif); 1226 } 1227 1228 /* Length to m_copy to copy all. */ 1229 #define M_COPYALL 1000000000 1230 1231 extern int max_datalen; /* MHLEN - max_hdr */ 1232 extern int max_hdr; /* Largest link + protocol header */ 1233 extern int max_linkhdr; /* Largest link-level header */ 1234 extern int max_protohdr; /* Largest protocol header */ 1235 extern int nmbclusters; /* Maximum number of clusters */ 1236 extern bool mb_use_ext_pgs; /* Use ext_pgs for sendfile */ 1237 1238 /*- 1239 * Network packets may have annotations attached by affixing a list of 1240 * "packet tags" to the pkthdr structure. Packet tags are dynamically 1241 * allocated semi-opaque data structures that have a fixed header 1242 * (struct m_tag) that specifies the size of the memory block and a 1243 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 1244 * unsigned value used to identify a module or ABI. By convention this value 1245 * is chosen as the date+time that the module is created, expressed as the 1246 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 1247 * value is an ABI/module-specific value that identifies a particular 1248 * annotation and is private to the module. For compatibility with systems 1249 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 1250 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1251 * compatibility shim functions and several tag types are defined below. 1252 * Users that do not require compatibility should use a private cookie value 1253 * so that packet tag-related definitions can be maintained privately. 1254 * 1255 * Note that the packet tag returned by m_tag_alloc has the default memory 1256 * alignment implemented by malloc. To reference private data one can use a 1257 * construct like: 1258 * 1259 * struct m_tag *mtag = m_tag_alloc(...); 1260 * struct foo *p = (struct foo *)(mtag+1); 1261 * 1262 * if the alignment of struct m_tag is sufficient for referencing members of 1263 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1264 * private data structure to insure proper alignment; e.g., 1265 * 1266 * struct foo { 1267 * struct m_tag tag; 1268 * ... 1269 * }; 1270 * struct foo *p = (struct foo *) m_tag_alloc(...); 1271 * struct m_tag *mtag = &p->tag; 1272 */ 1273 1274 /* 1275 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1276 * tags are expected to ``vanish'' when they pass through a network 1277 * interface. For most interfaces this happens normally as the tags are 1278 * reclaimed when the mbuf is free'd. However in some special cases 1279 * reclaiming must be done manually. An example is packets that pass through 1280 * the loopback interface. Also, one must be careful to do this when 1281 * ``turning around'' packets (e.g., icmp_reflect). 1282 * 1283 * To mark a tag persistent bit-or this flag in when defining the tag id. 1284 * The tag will then be treated as described above. 1285 */ 1286 #define MTAG_PERSISTENT 0x800 1287 1288 #define PACKET_TAG_NONE 0 /* Nadda */ 1289 1290 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1291 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1292 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1293 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1294 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1295 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1296 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1297 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1298 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1299 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1300 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1301 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1302 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1303 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1304 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1305 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1306 #define PACKET_TAG_DIVERT 17 /* divert info */ 1307 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1308 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1309 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 1310 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1311 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1312 #define PACKET_TAG_CARP 28 /* CARP info */ 1313 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1314 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1315 1316 /* Specific cookies and tags. */ 1317 1318 /* Packet tag routines. */ 1319 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 1320 void m_tag_delete(struct mbuf *, struct m_tag *); 1321 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1322 void m_tag_free_default(struct m_tag *); 1323 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 1324 struct m_tag *m_tag_copy(struct m_tag *, int); 1325 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1326 void m_tag_delete_nonpersistent(struct mbuf *); 1327 1328 /* 1329 * Initialize the list of tags associated with an mbuf. 1330 */ 1331 static __inline void 1332 m_tag_init(struct mbuf *m) 1333 { 1334 1335 SLIST_INIT(&m->m_pkthdr.tags); 1336 } 1337 1338 /* 1339 * Set up the contents of a tag. Note that this does not fill in the free 1340 * method; the caller is expected to do that. 1341 * 1342 * XXX probably should be called m_tag_init, but that was already taken. 1343 */ 1344 static __inline void 1345 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1346 { 1347 1348 t->m_tag_id = type; 1349 t->m_tag_len = len; 1350 t->m_tag_cookie = cookie; 1351 } 1352 1353 /* 1354 * Reclaim resources associated with a tag. 1355 */ 1356 static __inline void 1357 m_tag_free(struct m_tag *t) 1358 { 1359 1360 (*t->m_tag_free)(t); 1361 } 1362 1363 /* 1364 * Return the first tag associated with an mbuf. 1365 */ 1366 static __inline struct m_tag * 1367 m_tag_first(struct mbuf *m) 1368 { 1369 1370 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1371 } 1372 1373 /* 1374 * Return the next tag in the list of tags associated with an mbuf. 1375 */ 1376 static __inline struct m_tag * 1377 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1378 { 1379 1380 return (SLIST_NEXT(t, m_tag_link)); 1381 } 1382 1383 /* 1384 * Prepend a tag to the list of tags associated with an mbuf. 1385 */ 1386 static __inline void 1387 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1388 { 1389 1390 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1391 } 1392 1393 /* 1394 * Unlink a tag from the list of tags associated with an mbuf. 1395 */ 1396 static __inline void 1397 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1398 { 1399 1400 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1401 } 1402 1403 /* These are for OpenBSD compatibility. */ 1404 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1405 1406 static __inline struct m_tag * 1407 m_tag_get(int type, int length, int wait) 1408 { 1409 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1410 } 1411 1412 static __inline struct m_tag * 1413 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1414 { 1415 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1416 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1417 } 1418 1419 static inline struct m_snd_tag * 1420 m_snd_tag_ref(struct m_snd_tag *mst) 1421 { 1422 1423 refcount_acquire(&mst->refcount); 1424 return (mst); 1425 } 1426 1427 static inline void 1428 m_snd_tag_rele(struct m_snd_tag *mst) 1429 { 1430 1431 if (refcount_release(&mst->refcount)) 1432 m_snd_tag_destroy(mst); 1433 } 1434 1435 static __inline struct mbuf * 1436 m_free(struct mbuf *m) 1437 { 1438 struct mbuf *n = m->m_next; 1439 1440 MBUF_PROBE1(m__free, m); 1441 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1442 m_tag_delete_chain(m, NULL); 1443 if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1444 m_snd_tag_rele(m->m_pkthdr.snd_tag); 1445 if (m->m_flags & M_EXTPG) 1446 mb_free_extpg(m); 1447 else if (m->m_flags & M_EXT) 1448 mb_free_ext(m); 1449 else if ((m->m_flags & M_NOFREE) == 0) 1450 uma_zfree(zone_mbuf, m); 1451 return (n); 1452 } 1453 1454 static __inline int 1455 rt_m_getfib(struct mbuf *m) 1456 { 1457 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1458 return (m->m_pkthdr.fibnum); 1459 } 1460 1461 #define M_GETFIB(_m) rt_m_getfib(_m) 1462 1463 #define M_SETFIB(_m, _fib) do { \ 1464 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1465 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1466 } while (0) 1467 1468 /* flags passed as first argument for "m_xxx_tcpip_hash()" */ 1469 #define MBUF_HASHFLAG_L2 (1 << 2) 1470 #define MBUF_HASHFLAG_L3 (1 << 3) 1471 #define MBUF_HASHFLAG_L4 (1 << 4) 1472 1473 /* mbuf hashing helper routines */ 1474 uint32_t m_ether_tcpip_hash_init(void); 1475 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1476 uint32_t m_infiniband_tcpip_hash_init(void); 1477 uint32_t m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1478 1479 #ifdef MBUF_PROFILING 1480 void m_profile(struct mbuf *m); 1481 #define M_PROFILE(m) m_profile(m) 1482 #else 1483 #define M_PROFILE(m) 1484 #endif 1485 1486 struct mbufq { 1487 STAILQ_HEAD(, mbuf) mq_head; 1488 int mq_len; 1489 int mq_maxlen; 1490 }; 1491 1492 static inline void 1493 mbufq_init(struct mbufq *mq, int maxlen) 1494 { 1495 1496 STAILQ_INIT(&mq->mq_head); 1497 mq->mq_maxlen = maxlen; 1498 mq->mq_len = 0; 1499 } 1500 1501 static inline struct mbuf * 1502 mbufq_flush(struct mbufq *mq) 1503 { 1504 struct mbuf *m; 1505 1506 m = STAILQ_FIRST(&mq->mq_head); 1507 STAILQ_INIT(&mq->mq_head); 1508 mq->mq_len = 0; 1509 return (m); 1510 } 1511 1512 static inline void 1513 mbufq_drain(struct mbufq *mq) 1514 { 1515 struct mbuf *m, *n; 1516 1517 n = mbufq_flush(mq); 1518 while ((m = n) != NULL) { 1519 n = STAILQ_NEXT(m, m_stailqpkt); 1520 m_freem(m); 1521 } 1522 } 1523 1524 static inline struct mbuf * 1525 mbufq_first(const struct mbufq *mq) 1526 { 1527 1528 return (STAILQ_FIRST(&mq->mq_head)); 1529 } 1530 1531 static inline struct mbuf * 1532 mbufq_last(const struct mbufq *mq) 1533 { 1534 1535 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1536 } 1537 1538 static inline int 1539 mbufq_full(const struct mbufq *mq) 1540 { 1541 1542 return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen); 1543 } 1544 1545 static inline int 1546 mbufq_len(const struct mbufq *mq) 1547 { 1548 1549 return (mq->mq_len); 1550 } 1551 1552 static inline int 1553 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1554 { 1555 1556 if (mbufq_full(mq)) 1557 return (ENOBUFS); 1558 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1559 mq->mq_len++; 1560 return (0); 1561 } 1562 1563 static inline struct mbuf * 1564 mbufq_dequeue(struct mbufq *mq) 1565 { 1566 struct mbuf *m; 1567 1568 m = STAILQ_FIRST(&mq->mq_head); 1569 if (m) { 1570 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1571 m->m_nextpkt = NULL; 1572 mq->mq_len--; 1573 } 1574 return (m); 1575 } 1576 1577 static inline void 1578 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1579 { 1580 1581 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1582 mq->mq_len++; 1583 } 1584 1585 /* 1586 * Note: this doesn't enforce the maximum list size for dst. 1587 */ 1588 static inline void 1589 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) 1590 { 1591 1592 mq_dst->mq_len += mq_src->mq_len; 1593 STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); 1594 mq_src->mq_len = 0; 1595 } 1596 1597 #ifdef _SYS_TIMESPEC_H_ 1598 static inline void 1599 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) 1600 { 1601 1602 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1603 KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); 1604 ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1605 ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; 1606 } 1607 #endif 1608 1609 #ifdef DEBUGNET 1610 /* Invoked from the debugnet client code. */ 1611 void debugnet_mbuf_drain(void); 1612 void debugnet_mbuf_start(void); 1613 void debugnet_mbuf_finish(void); 1614 void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize); 1615 #endif 1616 1617 static inline bool 1618 mbuf_has_tls_session(struct mbuf *m) 1619 { 1620 1621 if (m->m_flags & M_EXTPG) { 1622 if (m->m_epg_tls != NULL) { 1623 return (true); 1624 } 1625 } 1626 return (false); 1627 } 1628 1629 #endif /* _KERNEL */ 1630 #endif /* !_SYS_MBUF_H_ */ 1631