1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 31 * $FreeBSD$ 32 */ 33 34 #ifndef _SYS_MBUF_H_ 35 #define _SYS_MBUF_H_ 36 37 /* XXX: These includes suck. Sorry! */ 38 #include <sys/queue.h> 39 #ifdef _KERNEL 40 #include <sys/systm.h> 41 #include <vm/uma.h> 42 #ifdef WITNESS 43 #include <sys/lock.h> 44 #endif 45 #endif 46 47 /* 48 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 49 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 50 * sys/param.h), which has no additional overhead and is used instead of the 51 * internal data area; this is done when at least MINCLSIZE of data must be 52 * stored. Additionally, it is possible to allocate a separate buffer 53 * externally and attach it to the mbuf in a way similar to that of mbuf 54 * clusters. 55 */ 56 #define MLEN (MSIZE - sizeof(struct m_hdr)) /* normal data len */ 57 #define MHLEN (MLEN - sizeof(struct pkthdr)) /* data len w/pkthdr */ 58 #define MINCLSIZE (MHLEN + 1) /* smallest amount to put in cluster */ 59 #define M_MAXCOMPRESS (MHLEN / 2) /* max amount to copy for compression */ 60 61 #ifdef _KERNEL 62 /*- 63 * Macro for type conversion: convert mbuf pointer to data pointer of correct 64 * type: 65 * 66 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 67 */ 68 #define mtod(m, t) ((t)((m)->m_data)) 69 70 /* 71 * Argument structure passed to UMA routines during mbuf and packet 72 * allocations. 73 */ 74 struct mb_args { 75 int flags; /* Flags for mbuf being allocated */ 76 short type; /* Type of mbuf being allocated */ 77 }; 78 #endif /* _KERNEL */ 79 80 #if defined(__LP64__) 81 #define M_HDR_PAD 6 82 #else 83 #define M_HDR_PAD 2 84 #endif 85 86 /* 87 * Header present at the beginning of every mbuf. 88 */ 89 struct m_hdr { 90 struct mbuf *mh_next; /* next buffer in chain */ 91 struct mbuf *mh_nextpkt; /* next chain in queue/record */ 92 caddr_t mh_data; /* location of data */ 93 int mh_len; /* amount of data in this mbuf */ 94 int mh_flags; /* flags; see below */ 95 short mh_type; /* type of data in this mbuf */ 96 uint8_t pad[M_HDR_PAD];/* word align */ 97 }; 98 99 /* 100 * Packet tag structure (see below for details). 101 */ 102 struct m_tag { 103 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 104 u_int16_t m_tag_id; /* Tag ID */ 105 u_int16_t m_tag_len; /* Length of data */ 106 u_int32_t m_tag_cookie; /* ABI/Module ID */ 107 void (*m_tag_free)(struct m_tag *); 108 }; 109 110 /* 111 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 112 */ 113 struct pkthdr { 114 struct ifnet *rcvif; /* rcv interface */ 115 /* variables for ip and tcp reassembly */ 116 void *header; /* pointer to packet header */ 117 int len; /* total packet length */ 118 uint32_t flowid; /* packet's 4-tuple system 119 * flow identifier 120 */ 121 /* variables for hardware checksum */ 122 int csum_flags; /* flags regarding checksum */ 123 int csum_data; /* data field used by csum routines */ 124 u_int16_t tso_segsz; /* TSO segment size */ 125 union { 126 u_int16_t vt_vtag; /* Ethernet 802.1p+q vlan tag */ 127 u_int16_t vt_nrecs; /* # of IGMPv3 records in this chain */ 128 } PH_vt; 129 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 130 }; 131 #define ether_vtag PH_vt.vt_vtag 132 133 /* 134 * Description of external storage mapped into mbuf; valid only if M_EXT is 135 * set. 136 */ 137 struct m_ext { 138 caddr_t ext_buf; /* start of buffer */ 139 void (*ext_free) /* free routine if not the usual */ 140 (void *, void *); 141 void *ext_arg1; /* optional argument pointer */ 142 void *ext_arg2; /* optional argument pointer */ 143 u_int ext_size; /* size of buffer, for ext_free */ 144 volatile u_int *ref_cnt; /* pointer to ref count info */ 145 int ext_type; /* type of external storage */ 146 }; 147 148 /* 149 * The core of the mbuf object along with some shortcut defines for practical 150 * purposes. 151 */ 152 struct mbuf { 153 struct m_hdr m_hdr; 154 union { 155 struct { 156 struct pkthdr MH_pkthdr; /* M_PKTHDR set */ 157 union { 158 struct m_ext MH_ext; /* M_EXT set */ 159 char MH_databuf[MHLEN]; 160 } MH_dat; 161 } MH; 162 char M_databuf[MLEN]; /* !M_PKTHDR, !M_EXT */ 163 } M_dat; 164 }; 165 #define m_next m_hdr.mh_next 166 #define m_len m_hdr.mh_len 167 #define m_data m_hdr.mh_data 168 #define m_type m_hdr.mh_type 169 #define m_flags m_hdr.mh_flags 170 #define m_nextpkt m_hdr.mh_nextpkt 171 #define m_act m_nextpkt 172 #define m_pkthdr M_dat.MH.MH_pkthdr 173 #define m_ext M_dat.MH.MH_dat.MH_ext 174 #define m_pktdat M_dat.MH.MH_dat.MH_databuf 175 #define m_dat M_dat.M_databuf 176 177 /* 178 * mbuf flags. 179 */ 180 #define M_EXT 0x00000001 /* has associated external storage */ 181 #define M_PKTHDR 0x00000002 /* start of record */ 182 #define M_EOR 0x00000004 /* end of record */ 183 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 184 #define M_PROTO1 0x00000010 /* protocol-specific */ 185 #define M_PROTO2 0x00000020 /* protocol-specific */ 186 #define M_PROTO3 0x00000040 /* protocol-specific */ 187 #define M_PROTO4 0x00000080 /* protocol-specific */ 188 #define M_PROTO5 0x00000100 /* protocol-specific */ 189 #define M_BCAST 0x00000200 /* send/received as link-level broadcast */ 190 #define M_MCAST 0x00000400 /* send/received as link-level multicast */ 191 #define M_FRAG 0x00000800 /* packet is a fragment of a larger packet */ 192 #define M_FIRSTFRAG 0x00001000 /* packet is first fragment */ 193 #define M_LASTFRAG 0x00002000 /* packet is last fragment */ 194 #define M_SKIP_FIREWALL 0x00004000 /* skip firewall processing */ 195 #define M_FREELIST 0x00008000 /* mbuf is on the free list */ 196 #define M_VLANTAG 0x00010000 /* ether_vtag is valid */ 197 #define M_PROMISC 0x00020000 /* packet was not for us */ 198 #define M_NOFREE 0x00040000 /* do not free mbuf, embedded in cluster */ 199 #define M_PROTO6 0x00080000 /* protocol-specific */ 200 #define M_PROTO7 0x00100000 /* protocol-specific */ 201 #define M_PROTO8 0x00200000 /* protocol-specific */ 202 #define M_FLOWID 0x00400000 /* deprecated: flowid is valid */ 203 #define M_HASHTYPEBITS 0x0F000000 /* mask of bits holding flowid hash type */ 204 205 /* 206 * For RELENG_{6,7} steal these flags for limited multiple routing table 207 * support. In RELENG_8 and beyond, use just one flag and a tag. 208 */ 209 #define M_FIB 0xF0000000 /* steal some bits to store fib number. */ 210 211 #define M_NOTIFICATION M_PROTO5 /* SCTP notification */ 212 213 /* 214 * Flags to purge when crossing layers. 215 */ 216 #define M_PROTOFLAGS \ 217 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8) 218 219 /* 220 * Network interface cards are able to hash protocol fields (such as IPv4 221 * addresses and TCP port numbers) classify packets into flows. These flows 222 * can then be used to maintain ordering while delivering packets to the OS 223 * via parallel input queues, as well as to provide a stateless affinity 224 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 225 * m_flag fields to indicate how the hash should be interpreted by the 226 * network stack. 227 * 228 * Most NICs support RSS, which provides ordering and explicit affinity, and 229 * use the hash m_flag bits to indicate what header fields were covered by 230 * the hash. M_HASHTYPE_OPAQUE can be set by non-RSS cards or configurations 231 * that provide an opaque flow identifier, allowing for ordering and 232 * distribution without explicit affinity. 233 */ 234 #define M_HASHTYPE_SHIFT 24 235 #define M_HASHTYPE_NONE 0x0 236 #define M_HASHTYPE_RSS_IPV4 0x1 /* IPv4 2-tuple */ 237 #define M_HASHTYPE_RSS_TCP_IPV4 0x2 /* TCPv4 4-tuple */ 238 #define M_HASHTYPE_RSS_IPV6 0x3 /* IPv6 2-tuple */ 239 #define M_HASHTYPE_RSS_TCP_IPV6 0x4 /* TCPv6 4-tuple */ 240 #define M_HASHTYPE_RSS_IPV6_EX 0x5 /* IPv6 2-tuple + ext hdrs */ 241 #define M_HASHTYPE_RSS_TCP_IPV6_EX 0x6 /* TCPv6 4-tiple + ext hdrs */ 242 #define M_HASHTYPE_OPAQUE 0xf /* ordering, not affinity */ 243 244 #define M_HASHTYPE_CLEAR(m) (m)->m_flags &= ~(M_HASHTYPEBITS) 245 #define M_HASHTYPE_GET(m) (((m)->m_flags & M_HASHTYPEBITS) >> \ 246 M_HASHTYPE_SHIFT) 247 #define M_HASHTYPE_SET(m, v) do { \ 248 (m)->m_flags &= ~M_HASHTYPEBITS; \ 249 (m)->m_flags |= ((v) << M_HASHTYPE_SHIFT); \ 250 } while (0) 251 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 252 253 /* 254 * Flags preserved when copying m_pkthdr. 255 */ 256 #define M_COPYFLAGS \ 257 (M_PKTHDR|M_EOR|M_RDONLY|M_PROTOFLAGS|M_SKIP_FIREWALL|M_BCAST|M_MCAST|\ 258 M_FRAG|M_FIRSTFRAG|M_LASTFRAG|M_VLANTAG|M_PROMISC|M_FIB|M_HASHTYPEBITS) 259 260 /* 261 * External buffer types: identify ext_buf type. 262 */ 263 #define EXT_CLUSTER 1 /* mbuf cluster */ 264 #define EXT_SFBUF 2 /* sendfile(2)'s sf_bufs */ 265 #define EXT_JUMBOP 3 /* jumbo cluster 4096 bytes */ 266 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 267 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 268 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 269 #define EXT_MBUF 7 /* external mbuf reference (M_IOVEC) */ 270 #define EXT_NET_DRV 100 /* custom ext_buf provided by net driver(s) */ 271 #define EXT_MOD_TYPE 200 /* custom module's ext_buf type */ 272 #define EXT_DISPOSABLE 300 /* can throw this buffer away w/page flipping */ 273 #define EXT_EXTREF 400 /* has externally maintained ref_cnt ptr */ 274 275 /* 276 * Flags indicating hw checksum support and sw checksum requirements. This 277 * field can be directly tested against if_data.ifi_hwassist. 278 */ 279 #define CSUM_IP 0x0001 /* will csum IP */ 280 #define CSUM_TCP 0x0002 /* will csum TCP */ 281 #define CSUM_UDP 0x0004 /* will csum UDP */ 282 #define CSUM_FRAGMENT 0x0010 /* will do IP fragmentation */ 283 #define CSUM_TSO 0x0020 /* will do TSO */ 284 #define CSUM_SCTP 0x0040 /* will csum SCTP */ 285 #define CSUM_SCTP_IPV6 0x0080 /* will csum IPv6/SCTP */ 286 287 #define CSUM_IP_CHECKED 0x0100 /* did csum IP */ 288 #define CSUM_IP_VALID 0x0200 /* ... the csum is valid */ 289 #define CSUM_DATA_VALID 0x0400 /* csum_data field is valid */ 290 #define CSUM_PSEUDO_HDR 0x0800 /* csum_data has pseudo hdr */ 291 #define CSUM_SCTP_VALID 0x1000 /* SCTP checksum is valid */ 292 #define CSUM_UDP_IPV6 0x2000 /* will csum IPv6/UDP */ 293 #define CSUM_TCP_IPV6 0x4000 /* will csum IPv6/TCP */ 294 /* CSUM_TSO_IPV6 0x8000 will do IPv6/TSO */ 295 296 /* CSUM_FRAGMENT_IPV6 0x10000 will do IPv6 fragementation */ 297 298 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6 | CSUM_UDP_IPV6) 299 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 300 301 #define CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP) 302 #define CSUM_DELAY_IP (CSUM_IP) /* Only v4, no v6 IP hdr csum */ 303 304 /* 305 * mbuf types. 306 */ 307 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 308 #define MT_DATA 1 /* dynamic (data) allocation */ 309 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 310 #define MT_SONAME 8 /* socket name */ 311 #define MT_CONTROL 14 /* extra-data protocol message */ 312 #define MT_OOBDATA 15 /* expedited data */ 313 #define MT_NTYPES 16 /* number of mbuf types for mbtypes[] */ 314 315 #define MT_NOINIT 255 /* Not a type but a flag to allocate 316 a non-initialized mbuf */ 317 318 #define MB_NOTAGS 0x1UL /* no tags attached to mbuf */ 319 320 /* 321 * General mbuf allocator statistics structure. 322 * 323 * Many of these statistics are no longer used; we instead track many 324 * allocator statistics through UMA's built in statistics mechanism. 325 */ 326 struct mbstat { 327 u_long m_mbufs; /* XXX */ 328 u_long m_mclusts; /* XXX */ 329 330 u_long m_drain; /* times drained protocols for space */ 331 u_long m_mcfail; /* XXX: times m_copym failed */ 332 u_long m_mpfail; /* XXX: times m_pullup failed */ 333 u_long m_msize; /* length of an mbuf */ 334 u_long m_mclbytes; /* length of an mbuf cluster */ 335 u_long m_minclsize; /* min length of data to allocate a cluster */ 336 u_long m_mlen; /* length of data in an mbuf */ 337 u_long m_mhlen; /* length of data in a header mbuf */ 338 339 /* Number of mbtypes (gives # elems in mbtypes[] array) */ 340 short m_numtypes; 341 342 /* XXX: Sendfile stats should eventually move to their own struct */ 343 u_long sf_iocnt; /* times sendfile had to do disk I/O */ 344 u_long sf_allocfail; /* times sfbuf allocation failed */ 345 u_long sf_allocwait; /* times sfbuf allocation had to wait */ 346 }; 347 348 /* 349 * Compatibility with historic mbuf allocator. 350 */ 351 #define MBTOM(how) (how) 352 #define M_DONTWAIT M_NOWAIT 353 #define M_TRYWAIT M_WAITOK 354 #define M_WAIT M_WAITOK 355 356 /* 357 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 358 * !_KERNEL so that monitoring tools can look up the zones with 359 * libmemstat(3). 360 */ 361 #define MBUF_MEM_NAME "mbuf" 362 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 363 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 364 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 365 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 366 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 367 #define MBUF_TAG_MEM_NAME "mbuf_tag" 368 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 369 370 #ifdef _KERNEL 371 372 #ifdef WITNESS 373 #define MBUF_CHECKSLEEP(how) do { \ 374 if (how == M_WAITOK) \ 375 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 376 "Sleeping in \"%s\"", __func__); \ 377 } while (0) 378 #else 379 #define MBUF_CHECKSLEEP(how) 380 #endif 381 382 /* 383 * Network buffer allocation API 384 * 385 * The rest of it is defined in kern/kern_mbuf.c 386 */ 387 extern quad_t maxmbufmem; 388 extern uma_zone_t zone_mbuf; 389 extern uma_zone_t zone_clust; 390 extern uma_zone_t zone_pack; 391 extern uma_zone_t zone_jumbop; 392 extern uma_zone_t zone_jumbo9; 393 extern uma_zone_t zone_jumbo16; 394 extern uma_zone_t zone_ext_refcnt; 395 396 static __inline struct mbuf *m_getcl(int how, short type, int flags); 397 static __inline struct mbuf *m_get(int how, short type); 398 static __inline struct mbuf *m_get2(int how, short type, int flags, 399 int size); 400 static __inline struct mbuf *m_gethdr(int how, short type); 401 static __inline struct mbuf *m_getjcl(int how, short type, int flags, 402 int size); 403 static __inline struct mbuf *m_getclr(int how, short type); /* XXX */ 404 static __inline int m_init(struct mbuf *m, uma_zone_t zone, 405 int size, int how, short type, int flags); 406 static __inline struct mbuf *m_free(struct mbuf *m); 407 static __inline void m_clget(struct mbuf *m, int how); 408 static __inline void *m_cljget(struct mbuf *m, int how, int size); 409 static __inline void m_chtype(struct mbuf *m, short new_type); 410 void mb_free_ext(struct mbuf *); 411 static __inline struct mbuf *m_last(struct mbuf *m); 412 int m_pkthdr_init(struct mbuf *m, int how); 413 414 static __inline int 415 m_gettype(int size) 416 { 417 int type; 418 419 switch (size) { 420 case MSIZE: 421 type = EXT_MBUF; 422 break; 423 case MCLBYTES: 424 type = EXT_CLUSTER; 425 break; 426 #if MJUMPAGESIZE != MCLBYTES 427 case MJUMPAGESIZE: 428 type = EXT_JUMBOP; 429 break; 430 #endif 431 case MJUM9BYTES: 432 type = EXT_JUMBO9; 433 break; 434 case MJUM16BYTES: 435 type = EXT_JUMBO16; 436 break; 437 default: 438 panic("%s: invalid cluster size", __func__); 439 } 440 441 return (type); 442 } 443 444 static __inline uma_zone_t 445 m_getzone(int size) 446 { 447 uma_zone_t zone; 448 449 switch (size) { 450 case MCLBYTES: 451 zone = zone_clust; 452 break; 453 #if MJUMPAGESIZE != MCLBYTES 454 case MJUMPAGESIZE: 455 zone = zone_jumbop; 456 break; 457 #endif 458 case MJUM9BYTES: 459 zone = zone_jumbo9; 460 break; 461 case MJUM16BYTES: 462 zone = zone_jumbo16; 463 break; 464 default: 465 panic("%s: invalid cluster size", __func__); 466 } 467 468 return (zone); 469 } 470 471 /* 472 * Initialize an mbuf with linear storage. 473 * 474 * Inline because the consumer text overhead will be roughly the same to 475 * initialize or call a function with this many parameters and M_PKTHDR 476 * should go away with constant propagation for !MGETHDR. 477 */ 478 static __inline int 479 m_init(struct mbuf *m, uma_zone_t zone, int size, int how, short type, 480 int flags) 481 { 482 int error; 483 484 m->m_next = NULL; 485 m->m_nextpkt = NULL; 486 m->m_data = m->m_dat; 487 m->m_len = 0; 488 m->m_flags = flags; 489 m->m_type = type; 490 if (flags & M_PKTHDR) { 491 if ((error = m_pkthdr_init(m, how)) != 0) 492 return (error); 493 } 494 495 return (0); 496 } 497 498 static __inline struct mbuf * 499 m_get(int how, short type) 500 { 501 struct mb_args args; 502 503 args.flags = 0; 504 args.type = type; 505 return ((struct mbuf *)(uma_zalloc_arg(zone_mbuf, &args, how))); 506 } 507 508 /* 509 * XXX This should be deprecated, very little use. 510 */ 511 static __inline struct mbuf * 512 m_getclr(int how, short type) 513 { 514 struct mbuf *m; 515 struct mb_args args; 516 517 args.flags = 0; 518 args.type = type; 519 m = uma_zalloc_arg(zone_mbuf, &args, how); 520 if (m != NULL) 521 bzero(m->m_data, MLEN); 522 return (m); 523 } 524 525 static __inline struct mbuf * 526 m_gethdr(int how, short type) 527 { 528 struct mb_args args; 529 530 args.flags = M_PKTHDR; 531 args.type = type; 532 return ((struct mbuf *)(uma_zalloc_arg(zone_mbuf, &args, how))); 533 } 534 535 static __inline struct mbuf * 536 m_getcl(int how, short type, int flags) 537 { 538 struct mb_args args; 539 540 args.flags = flags; 541 args.type = type; 542 return ((struct mbuf *)(uma_zalloc_arg(zone_pack, &args, how))); 543 } 544 545 /* 546 * m_get2() allocates minimum mbuf that would fit "size" argument. 547 * 548 * XXX: This is rather large, should be real function maybe. 549 */ 550 static __inline struct mbuf * 551 m_get2(int how, short type, int flags, int size) 552 { 553 struct mb_args args; 554 struct mbuf *m, *n; 555 uma_zone_t zone; 556 557 args.flags = flags; 558 args.type = type; 559 560 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 561 return ((struct mbuf *)(uma_zalloc_arg(zone_mbuf, &args, how))); 562 if (size <= MCLBYTES) 563 return ((struct mbuf *)(uma_zalloc_arg(zone_pack, &args, how))); 564 565 if (size > MJUM16BYTES) 566 return (NULL); 567 568 m = uma_zalloc_arg(zone_mbuf, &args, how); 569 if (m == NULL) 570 return (NULL); 571 572 #if MJUMPAGESIZE != MCLBYTES 573 if (size <= MJUMPAGESIZE) 574 zone = zone_jumbop; 575 else 576 #endif 577 if (size <= MJUM9BYTES) 578 zone = zone_jumbo9; 579 else 580 zone = zone_jumbo16; 581 582 n = uma_zalloc_arg(zone, m, how); 583 if (n == NULL) { 584 uma_zfree(zone_mbuf, m); 585 return (NULL); 586 } 587 588 return (m); 589 } 590 591 /* 592 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 593 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 594 * 595 * XXX: This is rather large, should be real function maybe. 596 */ 597 static __inline struct mbuf * 598 m_getjcl(int how, short type, int flags, int size) 599 { 600 struct mb_args args; 601 struct mbuf *m, *n; 602 uma_zone_t zone; 603 604 if (size == MCLBYTES) 605 return m_getcl(how, type, flags); 606 607 args.flags = flags; 608 args.type = type; 609 610 m = uma_zalloc_arg(zone_mbuf, &args, how); 611 if (m == NULL) 612 return (NULL); 613 614 zone = m_getzone(size); 615 n = uma_zalloc_arg(zone, m, how); 616 if (n == NULL) { 617 uma_zfree(zone_mbuf, m); 618 return (NULL); 619 } 620 return (m); 621 } 622 623 static __inline void 624 m_free_fast(struct mbuf *m) 625 { 626 #ifdef INVARIANTS 627 if (m->m_flags & M_PKTHDR) 628 KASSERT(SLIST_EMPTY(&m->m_pkthdr.tags), ("doing fast free of mbuf with tags")); 629 #endif 630 631 uma_zfree_arg(zone_mbuf, m, (void *)MB_NOTAGS); 632 } 633 634 static __inline struct mbuf * 635 m_free(struct mbuf *m) 636 { 637 struct mbuf *n = m->m_next; 638 639 if (m->m_flags & M_EXT) 640 mb_free_ext(m); 641 else if ((m->m_flags & M_NOFREE) == 0) 642 uma_zfree(zone_mbuf, m); 643 return (n); 644 } 645 646 static __inline void 647 m_clget(struct mbuf *m, int how) 648 { 649 650 if (m->m_flags & M_EXT) 651 printf("%s: %p mbuf already has cluster\n", __func__, m); 652 m->m_ext.ext_buf = (char *)NULL; 653 uma_zalloc_arg(zone_clust, m, how); 654 /* 655 * On a cluster allocation failure, drain the packet zone and retry, 656 * we might be able to loosen a few clusters up on the drain. 657 */ 658 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { 659 zone_drain(zone_pack); 660 uma_zalloc_arg(zone_clust, m, how); 661 } 662 } 663 664 /* 665 * m_cljget() is different from m_clget() as it can allocate clusters without 666 * attaching them to an mbuf. In that case the return value is the pointer 667 * to the cluster of the requested size. If an mbuf was specified, it gets 668 * the cluster attached to it and the return value can be safely ignored. 669 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 670 */ 671 static __inline void * 672 m_cljget(struct mbuf *m, int how, int size) 673 { 674 uma_zone_t zone; 675 676 if (m && m->m_flags & M_EXT) 677 printf("%s: %p mbuf already has cluster\n", __func__, m); 678 if (m != NULL) 679 m->m_ext.ext_buf = NULL; 680 681 zone = m_getzone(size); 682 return (uma_zalloc_arg(zone, m, how)); 683 } 684 685 static __inline void 686 m_cljset(struct mbuf *m, void *cl, int type) 687 { 688 uma_zone_t zone; 689 int size; 690 691 switch (type) { 692 case EXT_CLUSTER: 693 size = MCLBYTES; 694 zone = zone_clust; 695 break; 696 #if MJUMPAGESIZE != MCLBYTES 697 case EXT_JUMBOP: 698 size = MJUMPAGESIZE; 699 zone = zone_jumbop; 700 break; 701 #endif 702 case EXT_JUMBO9: 703 size = MJUM9BYTES; 704 zone = zone_jumbo9; 705 break; 706 case EXT_JUMBO16: 707 size = MJUM16BYTES; 708 zone = zone_jumbo16; 709 break; 710 default: 711 panic("%s: unknown cluster type", __func__); 712 break; 713 } 714 715 m->m_data = m->m_ext.ext_buf = cl; 716 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 717 m->m_ext.ext_size = size; 718 m->m_ext.ext_type = type; 719 m->m_ext.ref_cnt = uma_find_refcnt(zone, cl); 720 m->m_flags |= M_EXT; 721 722 } 723 724 static __inline void 725 m_chtype(struct mbuf *m, short new_type) 726 { 727 728 m->m_type = new_type; 729 } 730 731 static __inline struct mbuf * 732 m_last(struct mbuf *m) 733 { 734 735 while (m->m_next) 736 m = m->m_next; 737 return (m); 738 } 739 740 /* 741 * mbuf, cluster, and external object allocation macros (for compatibility 742 * purposes). 743 */ 744 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 745 #define MGET(m, how, type) ((m) = m_get((how), (type))) 746 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 747 #define MCLGET(m, how) m_clget((m), (how)) 748 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 749 m_extadd((m), (caddr_t)(buf), (size), (free),(arg1),(arg2),(flags), (type)) 750 #define m_getm(m, len, how, type) \ 751 m_getm2((m), (len), (how), (type), M_PKTHDR) 752 753 /* 754 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 755 * be both the local data payload, or an external buffer area, depending on 756 * whether M_EXT is set). 757 */ 758 #define M_WRITABLE(m) (!((m)->m_flags & M_RDONLY) && \ 759 (!(((m)->m_flags & M_EXT)) || \ 760 (*((m)->m_ext.ref_cnt) == 1)) ) \ 761 762 /* Check if the supplied mbuf has a packet header, or else panic. */ 763 #define M_ASSERTPKTHDR(m) \ 764 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 765 ("%s: no mbuf packet header!", __func__)) 766 767 /* 768 * Ensure that the supplied mbuf is a valid, non-free mbuf. 769 * 770 * XXX: Broken at the moment. Need some UMA magic to make it work again. 771 */ 772 #define M_ASSERTVALID(m) \ 773 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 774 ("%s: attempted use of a free mbuf!", __func__)) 775 776 /* 777 * Set the m_data pointer of a newly-allocated mbuf (m_get/MGET) to place an 778 * object of the specified size at the end of the mbuf, longword aligned. 779 */ 780 #define M_ALIGN(m, len) do { \ 781 KASSERT(!((m)->m_flags & (M_PKTHDR|M_EXT)), \ 782 ("%s: M_ALIGN not normal mbuf", __func__)); \ 783 KASSERT((m)->m_data == (m)->m_dat, \ 784 ("%s: M_ALIGN not a virgin mbuf", __func__)); \ 785 (m)->m_data += (MLEN - (len)) & ~(sizeof(long) - 1); \ 786 } while (0) 787 788 /* 789 * As above, for mbufs allocated with m_gethdr/MGETHDR or initialized by 790 * M_DUP/MOVE_PKTHDR. 791 */ 792 #define MH_ALIGN(m, len) do { \ 793 KASSERT((m)->m_flags & M_PKTHDR && !((m)->m_flags & M_EXT), \ 794 ("%s: MH_ALIGN not PKTHDR mbuf", __func__)); \ 795 KASSERT((m)->m_data == (m)->m_pktdat, \ 796 ("%s: MH_ALIGN not a virgin mbuf", __func__)); \ 797 (m)->m_data += (MHLEN - (len)) & ~(sizeof(long) - 1); \ 798 } while (0) 799 800 /* 801 * Compute the amount of space available before the current start of data in 802 * an mbuf. 803 * 804 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 805 * of checking writability of the mbuf data area rests solely with the caller. 806 */ 807 #define M_LEADINGSPACE(m) \ 808 ((m)->m_flags & M_EXT ? \ 809 (M_WRITABLE(m) ? (m)->m_data - (m)->m_ext.ext_buf : 0): \ 810 (m)->m_flags & M_PKTHDR ? (m)->m_data - (m)->m_pktdat : \ 811 (m)->m_data - (m)->m_dat) 812 813 /* 814 * Compute the amount of space available after the end of data in an mbuf. 815 * 816 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 817 * of checking writability of the mbuf data area rests solely with the caller. 818 */ 819 #define M_TRAILINGSPACE(m) \ 820 ((m)->m_flags & M_EXT ? \ 821 (M_WRITABLE(m) ? (m)->m_ext.ext_buf + (m)->m_ext.ext_size \ 822 - ((m)->m_data + (m)->m_len) : 0) : \ 823 &(m)->m_dat[MLEN] - ((m)->m_data + (m)->m_len)) 824 825 /* 826 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 827 * allocated, how specifies whether to wait. If the allocation fails, the 828 * original mbuf chain is freed and m is set to NULL. 829 */ 830 #define M_PREPEND(m, plen, how) do { \ 831 struct mbuf **_mmp = &(m); \ 832 struct mbuf *_mm = *_mmp; \ 833 int _mplen = (plen); \ 834 int __mhow = (how); \ 835 \ 836 MBUF_CHECKSLEEP(how); \ 837 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 838 _mm->m_data -= _mplen; \ 839 _mm->m_len += _mplen; \ 840 } else \ 841 _mm = m_prepend(_mm, _mplen, __mhow); \ 842 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 843 _mm->m_pkthdr.len += _mplen; \ 844 *_mmp = _mm; \ 845 } while (0) 846 847 /* 848 * Change mbuf to new type. This is a relatively expensive operation and 849 * should be avoided. 850 */ 851 #define MCHTYPE(m, t) m_chtype((m), (t)) 852 853 /* Length to m_copy to copy all. */ 854 #define M_COPYALL 1000000000 855 856 /* Compatibility with 4.3. */ 857 #define m_copy(m, o, l) m_copym((m), (o), (l), M_NOWAIT) 858 859 extern int max_datalen; /* MHLEN - max_hdr */ 860 extern int max_hdr; /* Largest link + protocol header */ 861 extern int max_linkhdr; /* Largest link-level header */ 862 extern int max_protohdr; /* Largest protocol header */ 863 extern struct mbstat mbstat; /* General mbuf stats/infos */ 864 extern int nmbclusters; /* Maximum number of clusters */ 865 866 struct uio; 867 868 void m_adj(struct mbuf *, int); 869 void m_align(struct mbuf *, int); 870 int m_apply(struct mbuf *, int, int, 871 int (*)(void *, void *, u_int), void *); 872 int m_append(struct mbuf *, int, c_caddr_t); 873 void m_cat(struct mbuf *, struct mbuf *); 874 void m_extadd(struct mbuf *, caddr_t, u_int, 875 void (*)(void *, void *), void *, void *, int, int); 876 struct mbuf *m_collapse(struct mbuf *, int, int); 877 void m_copyback(struct mbuf *, int, int, c_caddr_t); 878 void m_copydata(const struct mbuf *, int, int, caddr_t); 879 struct mbuf *m_copym(struct mbuf *, int, int, int); 880 struct mbuf *m_copymdata(struct mbuf *, struct mbuf *, 881 int, int, int, int); 882 struct mbuf *m_copypacket(struct mbuf *, int); 883 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 884 struct mbuf *m_copyup(struct mbuf *n, int len, int dstoff); 885 struct mbuf *m_defrag(struct mbuf *, int); 886 void m_demote(struct mbuf *, int); 887 struct mbuf *m_devget(char *, int, int, struct ifnet *, 888 void (*)(char *, caddr_t, u_int)); 889 struct mbuf *m_dup(struct mbuf *, int); 890 int m_dup_pkthdr(struct mbuf *, struct mbuf *, int); 891 u_int m_fixhdr(struct mbuf *); 892 struct mbuf *m_fragment(struct mbuf *, int, int); 893 void m_freem(struct mbuf *); 894 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 895 struct mbuf *m_getptr(struct mbuf *, int, int *); 896 u_int m_length(struct mbuf *, struct mbuf **); 897 int m_mbuftouio(struct uio *, struct mbuf *, int); 898 void m_move_pkthdr(struct mbuf *, struct mbuf *); 899 struct mbuf *m_prepend(struct mbuf *, int, int); 900 void m_print(const struct mbuf *, int); 901 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 902 struct mbuf *m_pullup(struct mbuf *, int); 903 int m_sanity(struct mbuf *, int); 904 struct mbuf *m_split(struct mbuf *, int, int); 905 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 906 struct mbuf *m_unshare(struct mbuf *, int how); 907 908 /*- 909 * Network packets may have annotations attached by affixing a list of 910 * "packet tags" to the pkthdr structure. Packet tags are dynamically 911 * allocated semi-opaque data structures that have a fixed header 912 * (struct m_tag) that specifies the size of the memory block and a 913 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 914 * unsigned value used to identify a module or ABI. By convention this value 915 * is chosen as the date+time that the module is created, expressed as the 916 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 917 * value is an ABI/module-specific value that identifies a particular 918 * annotation and is private to the module. For compatibility with systems 919 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 920 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 921 * compatibility shim functions and several tag types are defined below. 922 * Users that do not require compatibility should use a private cookie value 923 * so that packet tag-related definitions can be maintained privately. 924 * 925 * Note that the packet tag returned by m_tag_alloc has the default memory 926 * alignment implemented by malloc. To reference private data one can use a 927 * construct like: 928 * 929 * struct m_tag *mtag = m_tag_alloc(...); 930 * struct foo *p = (struct foo *)(mtag+1); 931 * 932 * if the alignment of struct m_tag is sufficient for referencing members of 933 * struct foo. Otherwise it is necessary to embed struct m_tag within the 934 * private data structure to insure proper alignment; e.g., 935 * 936 * struct foo { 937 * struct m_tag tag; 938 * ... 939 * }; 940 * struct foo *p = (struct foo *) m_tag_alloc(...); 941 * struct m_tag *mtag = &p->tag; 942 */ 943 944 /* 945 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 946 * tags are expected to ``vanish'' when they pass through a network 947 * interface. For most interfaces this happens normally as the tags are 948 * reclaimed when the mbuf is free'd. However in some special cases 949 * reclaiming must be done manually. An example is packets that pass through 950 * the loopback interface. Also, one must be careful to do this when 951 * ``turning around'' packets (e.g., icmp_reflect). 952 * 953 * To mark a tag persistent bit-or this flag in when defining the tag id. 954 * The tag will then be treated as described above. 955 */ 956 #define MTAG_PERSISTENT 0x800 957 958 #define PACKET_TAG_NONE 0 /* Nadda */ 959 960 /* Packet tags for use with PACKET_ABI_COMPAT. */ 961 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 962 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 963 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 964 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 965 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 966 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 967 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 968 #define PACKET_TAG_GIF 8 /* GIF processing done */ 969 #define PACKET_TAG_GRE 9 /* GRE processing done */ 970 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 971 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 972 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 973 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 974 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 975 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 976 #define PACKET_TAG_DIVERT 17 /* divert info */ 977 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 978 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 979 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 980 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 981 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 982 #define PACKET_TAG_CARP 28 /* CARP info */ 983 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 984 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 985 986 /* Specific cookies and tags. */ 987 988 /* Packet tag routines. */ 989 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 990 void m_tag_delete(struct mbuf *, struct m_tag *); 991 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 992 void m_tag_free_default(struct m_tag *); 993 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 994 struct m_tag *m_tag_copy(struct m_tag *, int); 995 int m_tag_copy_chain(struct mbuf *, struct mbuf *, int); 996 void m_tag_delete_nonpersistent(struct mbuf *); 997 998 /* 999 * Initialize the list of tags associated with an mbuf. 1000 */ 1001 static __inline void 1002 m_tag_init(struct mbuf *m) 1003 { 1004 1005 SLIST_INIT(&m->m_pkthdr.tags); 1006 } 1007 1008 /* 1009 * Set up the contents of a tag. Note that this does not fill in the free 1010 * method; the caller is expected to do that. 1011 * 1012 * XXX probably should be called m_tag_init, but that was already taken. 1013 */ 1014 static __inline void 1015 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1016 { 1017 1018 t->m_tag_id = type; 1019 t->m_tag_len = len; 1020 t->m_tag_cookie = cookie; 1021 } 1022 1023 /* 1024 * Reclaim resources associated with a tag. 1025 */ 1026 static __inline void 1027 m_tag_free(struct m_tag *t) 1028 { 1029 1030 (*t->m_tag_free)(t); 1031 } 1032 1033 /* 1034 * Return the first tag associated with an mbuf. 1035 */ 1036 static __inline struct m_tag * 1037 m_tag_first(struct mbuf *m) 1038 { 1039 1040 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1041 } 1042 1043 /* 1044 * Return the next tag in the list of tags associated with an mbuf. 1045 */ 1046 static __inline struct m_tag * 1047 m_tag_next(struct mbuf *m, struct m_tag *t) 1048 { 1049 1050 return (SLIST_NEXT(t, m_tag_link)); 1051 } 1052 1053 /* 1054 * Prepend a tag to the list of tags associated with an mbuf. 1055 */ 1056 static __inline void 1057 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1058 { 1059 1060 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1061 } 1062 1063 /* 1064 * Unlink a tag from the list of tags associated with an mbuf. 1065 */ 1066 static __inline void 1067 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1068 { 1069 1070 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1071 } 1072 1073 /* These are for OpenBSD compatibility. */ 1074 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1075 1076 static __inline struct m_tag * 1077 m_tag_get(int type, int length, int wait) 1078 { 1079 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1080 } 1081 1082 static __inline struct m_tag * 1083 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1084 { 1085 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1086 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1087 } 1088 1089 /* XXX temporary FIB methods probably eventually use tags.*/ 1090 #define M_FIBSHIFT 28 1091 #define M_FIBMASK 0x0F 1092 1093 /* get the fib from an mbuf and if it is not set, return the default */ 1094 #define M_GETFIB(_m) \ 1095 ((((_m)->m_flags & M_FIB) >> M_FIBSHIFT) & M_FIBMASK) 1096 1097 #define M_SETFIB(_m, _fib) do { \ 1098 _m->m_flags &= ~M_FIB; \ 1099 _m->m_flags |= (((_fib) << M_FIBSHIFT) & M_FIB); \ 1100 } while (0) 1101 1102 #endif /* _KERNEL */ 1103 1104 #ifdef MBUF_PROFILING 1105 void m_profile(struct mbuf *m); 1106 #define M_PROFILE(m) m_profile(m) 1107 #else 1108 #define M_PROFILE(m) 1109 #endif 1110 1111 1112 #endif /* !_SYS_MBUF_H_ */ 1113