1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 33 * $FreeBSD$ 34 */ 35 36 #ifndef _SYS_MBUF_H_ 37 #define _SYS_MBUF_H_ 38 39 /* XXX: These includes suck. Sorry! */ 40 #include <sys/queue.h> 41 #ifdef _KERNEL 42 #include <sys/systm.h> 43 #include <sys/refcount.h> 44 #include <vm/uma.h> 45 #ifdef WITNESS 46 #include <sys/lock.h> 47 #endif 48 #endif 49 50 #ifdef _KERNEL 51 #include <sys/sdt.h> 52 53 #define MBUF_PROBE1(probe, arg0) \ 54 SDT_PROBE1(sdt, , , probe, arg0) 55 #define MBUF_PROBE2(probe, arg0, arg1) \ 56 SDT_PROBE2(sdt, , , probe, arg0, arg1) 57 #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ 58 SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) 59 #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ 60 SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) 61 #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ 62 SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) 63 64 SDT_PROBE_DECLARE(sdt, , , m__init); 65 SDT_PROBE_DECLARE(sdt, , , m__gethdr); 66 SDT_PROBE_DECLARE(sdt, , , m__get); 67 SDT_PROBE_DECLARE(sdt, , , m__getcl); 68 SDT_PROBE_DECLARE(sdt, , , m__getjcl); 69 SDT_PROBE_DECLARE(sdt, , , m__clget); 70 SDT_PROBE_DECLARE(sdt, , , m__cljget); 71 SDT_PROBE_DECLARE(sdt, , , m__cljset); 72 SDT_PROBE_DECLARE(sdt, , , m__free); 73 SDT_PROBE_DECLARE(sdt, , , m__freem); 74 75 #endif /* _KERNEL */ 76 77 /* 78 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 79 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 80 * sys/param.h), which has no additional overhead and is used instead of the 81 * internal data area; this is done when at least MINCLSIZE of data must be 82 * stored. Additionally, it is possible to allocate a separate buffer 83 * externally and attach it to the mbuf in a way similar to that of mbuf 84 * clusters. 85 * 86 * NB: These calculation do not take actual compiler-induced alignment and 87 * padding inside the complete struct mbuf into account. Appropriate 88 * attention is required when changing members of struct mbuf. 89 * 90 * MLEN is data length in a normal mbuf. 91 * MHLEN is data length in an mbuf with pktheader. 92 * MINCLSIZE is a smallest amount of data that should be put into cluster. 93 * 94 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 95 * they are sensible. 96 */ 97 struct mbuf; 98 #define MHSIZE offsetof(struct mbuf, m_dat) 99 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 100 #define MLEN ((int)(MSIZE - MHSIZE)) 101 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 102 #define MINCLSIZE (MHLEN + 1) 103 #define M_NODOM 255 104 105 #ifdef _KERNEL 106 /*- 107 * Macro for type conversion: convert mbuf pointer to data pointer of correct 108 * type: 109 * 110 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 111 * mtodo(m, o) -- Same as above but with offset 'o' into data. 112 */ 113 #define mtod(m, t) ((t)((m)->m_data)) 114 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 115 116 /* 117 * Argument structure passed to UMA routines during mbuf and packet 118 * allocations. 119 */ 120 struct mb_args { 121 int flags; /* Flags for mbuf being allocated */ 122 short type; /* Type of mbuf being allocated */ 123 }; 124 #endif /* _KERNEL */ 125 126 /* 127 * Packet tag structure (see below for details). 128 */ 129 struct m_tag { 130 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 131 u_int16_t m_tag_id; /* Tag ID */ 132 u_int16_t m_tag_len; /* Length of data */ 133 u_int32_t m_tag_cookie; /* ABI/Module ID */ 134 void (*m_tag_free)(struct m_tag *); 135 }; 136 137 /* 138 * Static network interface owned tag. 139 * Allocated through ifp->if_snd_tag_alloc(). 140 */ 141 struct m_snd_tag { 142 struct ifnet *ifp; /* network interface tag belongs to */ 143 volatile u_int refcount; 144 u_int type; /* One of IF_SND_TAG_TYPE_*. */ 145 }; 146 147 /* 148 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 149 * Size ILP32: 48 150 * LP64: 56 151 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 152 * they are correct. 153 */ 154 struct pkthdr { 155 union { 156 struct m_snd_tag *snd_tag; /* send tag, if any */ 157 struct ifnet *rcvif; /* rcv interface */ 158 }; 159 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 160 int32_t len; /* total packet length */ 161 162 /* Layer crossing persistent information. */ 163 uint32_t flowid; /* packet's 4-tuple system */ 164 uint32_t csum_flags; /* checksum and offload features */ 165 uint16_t fibnum; /* this packet should use this fib */ 166 uint8_t numa_domain; /* NUMA domain of recvd pkt */ 167 uint8_t rsstype; /* hash type */ 168 union { 169 uint64_t rcv_tstmp; /* timestamp in ns */ 170 struct { 171 uint8_t l2hlen; /* layer 2 hdr len */ 172 uint8_t l3hlen; /* layer 3 hdr len */ 173 uint8_t l4hlen; /* layer 4 hdr len */ 174 uint8_t l5hlen; /* layer 5 hdr len */ 175 uint8_t inner_l2hlen; 176 uint8_t inner_l3hlen; 177 uint8_t inner_l4hlen; 178 uint8_t inner_l5hlen; 179 }; 180 }; 181 union { 182 uint8_t eight[8]; 183 uint16_t sixteen[4]; 184 uint32_t thirtytwo[2]; 185 uint64_t sixtyfour[1]; 186 uintptr_t unintptr[1]; 187 void *ptr; 188 } PH_per; 189 190 /* Layer specific non-persistent local storage for reassembly, etc. */ 191 union { 192 uint8_t eight[8]; 193 uint16_t sixteen[4]; 194 uint32_t thirtytwo[2]; 195 uint64_t sixtyfour[1]; 196 uintptr_t unintptr[1]; 197 void *ptr; 198 } PH_loc; 199 }; 200 #define ether_vtag PH_per.sixteen[0] 201 #define tcp_tun_port PH_per.sixteen[0] /* outbound */ 202 #define PH_vt PH_per 203 #define vt_nrecs sixteen[0] /* mld and v6-ND */ 204 #define tso_segsz PH_per.sixteen[1] /* inbound after LRO */ 205 #define lro_nsegs tso_segsz /* inbound after LRO */ 206 #define csum_data PH_per.thirtytwo[1] /* inbound from hardware up */ 207 #define lro_tcp_d_len PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */ 208 #define lro_tcp_d_csum PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */ 209 #define lro_tcp_h_off PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */ 210 #define lro_etype PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */ 211 /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */ 212 213 /* 214 * TLS records for TLS 1.0-1.2 can have the following header lengths: 215 * - 5 (AES-CBC with implicit IV) 216 * - 21 (AES-CBC with explicit IV) 217 * - 13 (AES-GCM with 8 byte explicit IV) 218 */ 219 #define MBUF_PEXT_HDR_LEN 23 220 221 /* 222 * TLS records for TLS 1.0-1.2 can have the following maximum trailer 223 * lengths: 224 * - 16 (AES-GCM) 225 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding) 226 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding) 227 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding) 228 */ 229 #define MBUF_PEXT_TRAIL_LEN 64 230 231 #if defined(__LP64__) 232 #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t)) 233 #else 234 #define MBUF_PEXT_MAX_PGS (72 / sizeof(vm_paddr_t)) 235 #endif 236 237 #define MBUF_PEXT_MAX_BYTES \ 238 (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN) 239 240 struct ktls_session; 241 struct socket; 242 243 /* 244 * Description of external storage mapped into mbuf; valid only if M_EXT is 245 * set. 246 * Size ILP32: 28 247 * LP64: 48 248 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 249 * they are correct. 250 */ 251 typedef void m_ext_free_t(struct mbuf *); 252 struct m_ext { 253 union { 254 /* 255 * If EXT_FLAG_EMBREF is set, then we use refcount in the 256 * mbuf, the 'ext_count' member. Otherwise, we have a 257 * shadow copy and we use pointer 'ext_cnt'. The original 258 * mbuf is responsible to carry the pointer to free routine 259 * and its arguments. They aren't copied into shadows in 260 * mb_dupcl() to avoid dereferencing next cachelines. 261 */ 262 volatile u_int ext_count; 263 volatile u_int *ext_cnt; 264 }; 265 uint32_t ext_size; /* size of buffer, for ext_free */ 266 uint32_t ext_type:8, /* type of external storage */ 267 ext_flags:24; /* external storage mbuf flags */ 268 union { 269 struct { 270 /* 271 * Regular M_EXT mbuf: 272 * o ext_buf always points to the external buffer. 273 * o ext_free (below) and two optional arguments 274 * ext_arg1 and ext_arg2 store the free context for 275 * the external storage. They are set only in the 276 * refcount carrying mbuf, the one with 277 * EXT_FLAG_EMBREF flag, with exclusion for 278 * EXT_EXTREF type, where the free context is copied 279 * into all mbufs that use same external storage. 280 */ 281 char *ext_buf; /* start of buffer */ 282 #define m_ext_copylen offsetof(struct m_ext, ext_arg2) 283 void *ext_arg2; 284 }; 285 struct { 286 /* 287 * Multi-page M_EXTPG mbuf: 288 * o extpg_pa - page vector. 289 * o extpg_trail and extpg_hdr - TLS trailer and 290 * header. 291 * Uses ext_free and may also use ext_arg1. 292 */ 293 vm_paddr_t extpg_pa[MBUF_PEXT_MAX_PGS]; 294 char extpg_trail[MBUF_PEXT_TRAIL_LEN]; 295 char extpg_hdr[MBUF_PEXT_HDR_LEN]; 296 /* Pretend these 3 fields are part of mbuf itself. */ 297 #define m_epg_pa m_ext.extpg_pa 298 #define m_epg_trail m_ext.extpg_trail 299 #define m_epg_hdr m_ext.extpg_hdr 300 #define m_epg_ext_copylen offsetof(struct m_ext, ext_free) 301 }; 302 }; 303 /* 304 * Free method and optional argument pointer, both 305 * used by M_EXT and M_EXTPG. 306 */ 307 m_ext_free_t *ext_free; 308 void *ext_arg1; 309 }; 310 311 /* 312 * The core of the mbuf object along with some shortcut defines for practical 313 * purposes. 314 */ 315 struct mbuf { 316 /* 317 * Header present at the beginning of every mbuf. 318 * Size ILP32: 24 319 * LP64: 32 320 * Compile-time assertions in uipc_mbuf.c test these values to ensure 321 * that they are correct. 322 */ 323 union { /* next buffer in chain */ 324 struct mbuf *m_next; 325 SLIST_ENTRY(mbuf) m_slist; 326 STAILQ_ENTRY(mbuf) m_stailq; 327 }; 328 union { /* next chain in queue/record */ 329 struct mbuf *m_nextpkt; 330 SLIST_ENTRY(mbuf) m_slistpkt; 331 STAILQ_ENTRY(mbuf) m_stailqpkt; 332 }; 333 caddr_t m_data; /* location of data */ 334 int32_t m_len; /* amount of data in this mbuf */ 335 uint32_t m_type:8, /* type of data in this mbuf */ 336 m_flags:24; /* flags; see below */ 337 #if !defined(__LP64__) 338 uint32_t m_pad; /* pad for 64bit alignment */ 339 #endif 340 341 /* 342 * A set of optional headers (packet header, external storage header) 343 * and internal data storage. Historically, these arrays were sized 344 * to MHLEN (space left after a packet header) and MLEN (space left 345 * after only a regular mbuf header); they are now variable size in 346 * order to support future work on variable-size mbufs. 347 */ 348 union { 349 struct { 350 union { 351 /* M_PKTHDR set. */ 352 struct pkthdr m_pkthdr; 353 354 /* M_EXTPG set. 355 * Multi-page M_EXTPG mbuf has its meta data 356 * split between the below anonymous structure 357 * and m_ext. It carries vector of pages, 358 * optional header and trailer char vectors 359 * and pointers to socket/TLS data. 360 */ 361 #define m_epg_startcopy m_epg_npgs 362 #define m_epg_endcopy m_epg_stailq 363 struct { 364 /* Overall count of pages and count of 365 * pages with I/O pending. */ 366 uint8_t m_epg_npgs; 367 uint8_t m_epg_nrdy; 368 /* TLS header and trailer lengths. 369 * The data itself resides in m_ext. */ 370 uint8_t m_epg_hdrlen; 371 uint8_t m_epg_trllen; 372 /* Offset into 1st page and length of 373 * data in the last page. */ 374 uint16_t m_epg_1st_off; 375 uint16_t m_epg_last_len; 376 uint8_t m_epg_flags; 377 #define EPG_FLAG_ANON 0x1 /* Data can be encrypted in place. */ 378 #define EPG_FLAG_2FREE 0x2 /* Scheduled for free. */ 379 uint8_t m_epg_record_type; 380 uint8_t __spare[2]; 381 int m_epg_enc_cnt; 382 struct ktls_session *m_epg_tls; 383 struct socket *m_epg_so; 384 uint64_t m_epg_seqno; 385 STAILQ_ENTRY(mbuf) m_epg_stailq; 386 }; 387 }; 388 union { 389 /* M_EXT or M_EXTPG set. */ 390 struct m_ext m_ext; 391 /* M_PKTHDR set, neither M_EXT nor M_EXTPG. */ 392 char m_pktdat[0]; 393 }; 394 }; 395 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 396 }; 397 }; 398 399 #ifdef _KERNEL 400 static inline int 401 m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff) 402 { 403 404 KASSERT(pgoff == 0 || pidx == 0, 405 ("page %d with non-zero offset %d in %p", pidx, pgoff, m)); 406 407 if (pidx == m->m_epg_npgs - 1) { 408 return (m->m_epg_last_len); 409 } else { 410 return (PAGE_SIZE - pgoff); 411 } 412 } 413 414 #ifdef INVARIANTS 415 #define MCHECK(ex, msg) KASSERT((ex), \ 416 ("Multi page mbuf %p with " #msg " at %s:%d", \ 417 m, __FILE__, __LINE__)) 418 /* 419 * NB: This expects a non-empty buffer (npgs > 0 and 420 * last_pg_len > 0). 421 */ 422 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do { \ 423 MCHECK(m->m_epg_npgs > 0, "no valid pages"); \ 424 MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa), \ 425 "too many pages"); \ 426 MCHECK(m->m_epg_nrdy <= m->m_epg_npgs, \ 427 "too many ready pages"); \ 428 MCHECK(m->m_epg_1st_off < PAGE_SIZE, \ 429 "too large page offset"); \ 430 MCHECK(m->m_epg_last_len > 0, "zero last page length"); \ 431 MCHECK(m->m_epg_last_len <= PAGE_SIZE, \ 432 "too large last page length"); \ 433 if (m->m_epg_npgs == 1) \ 434 MCHECK(m->m_epg_1st_off + \ 435 m->m_epg_last_len <= PAGE_SIZE, \ 436 "single page too large"); \ 437 MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr), \ 438 "too large header length"); \ 439 MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail), \ 440 "too large header length"); \ 441 } while (0) 442 #else 443 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do {} while (0); 444 #endif 445 #endif 446 447 /* 448 * mbuf flags of global significance and layer crossing. 449 * Those of only protocol/layer specific significance are to be mapped 450 * to M_PROTO[1-11] and cleared at layer handoff boundaries. 451 * NB: Limited to the lower 24 bits. 452 */ 453 #define M_EXT 0x00000001 /* has associated external storage */ 454 #define M_PKTHDR 0x00000002 /* start of record */ 455 #define M_EOR 0x00000004 /* end of record */ 456 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 457 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 458 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 459 #define M_PROMISC 0x00000040 /* packet was not for us */ 460 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 461 #define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */ 462 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 463 #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ 464 #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically 465 hw-stamped on port (useful for IEEE 1588 466 and 802.1AS) */ 467 #define M_TSTMP_LRO 0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */ 468 469 #define M_PROTO1 0x00002000 /* protocol-specific */ 470 #define M_PROTO2 0x00004000 /* protocol-specific */ 471 #define M_PROTO3 0x00008000 /* protocol-specific */ 472 #define M_PROTO4 0x00010000 /* protocol-specific */ 473 #define M_PROTO5 0x00020000 /* protocol-specific */ 474 #define M_PROTO6 0x00040000 /* protocol-specific */ 475 #define M_PROTO7 0x00080000 /* protocol-specific */ 476 #define M_PROTO8 0x00100000 /* protocol-specific */ 477 #define M_PROTO9 0x00200000 /* protocol-specific */ 478 #define M_PROTO10 0x00400000 /* protocol-specific */ 479 #define M_PROTO11 0x00800000 /* protocol-specific */ 480 481 #define MB_DTOR_SKIP 0x1 /* don't pollute the cache by touching a freed mbuf */ 482 483 /* 484 * Flags to purge when crossing layers. 485 */ 486 #define M_PROTOFLAGS \ 487 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 488 M_PROTO9|M_PROTO10|M_PROTO11) 489 490 /* 491 * Flags preserved when copying m_pkthdr. 492 */ 493 #define M_COPYFLAGS \ 494 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ 495 M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS) 496 497 /* 498 * Mbuf flag description for use with printf(9) %b identifier. 499 */ 500 #define M_FLAG_BITS \ 501 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 502 "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO" 503 #define M_FLAG_PROTOBITS \ 504 "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \ 505 "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \ 506 "\27M_PROTO10\28M_PROTO11" 507 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 508 509 /* 510 * Network interface cards are able to hash protocol fields (such as IPv4 511 * addresses and TCP port numbers) classify packets into flows. These flows 512 * can then be used to maintain ordering while delivering packets to the OS 513 * via parallel input queues, as well as to provide a stateless affinity 514 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 515 * m_flag fields to indicate how the hash should be interpreted by the 516 * network stack. 517 * 518 * Most NICs support RSS, which provides ordering and explicit affinity, and 519 * use the hash m_flag bits to indicate what header fields were covered by 520 * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- 521 * RSS cards or configurations that provide an opaque flow identifier, allowing 522 * for ordering and distribution without explicit affinity. Additionally, 523 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash 524 * properties. 525 * 526 * The meaning of the IPV6_EX suffix: 527 * "o Home address from the home address option in the IPv6 destination 528 * options header. If the extension header is not present, use the Source 529 * IPv6 Address. 530 * o IPv6 address that is contained in the Routing-Header-Type-2 from the 531 * associated extension header. If the extension header is not present, 532 * use the Destination IPv6 Address." 533 * Quoted from: 534 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex 535 */ 536 #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ 537 #define M_HASHTYPE_INNER 0x40 /* calculated from inner headers */ 538 #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) 539 /* Microsoft RSS standard hash types */ 540 #define M_HASHTYPE_NONE 0 541 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ 542 #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ 543 #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ 544 #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ 545 #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + 546 * ext hdrs */ 547 #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + 548 * ext hdrs */ 549 #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ 550 #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ 551 #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + 552 * ext hdrs */ 553 554 #define M_HASHTYPE_OPAQUE 0x3f /* ordering, not affinity */ 555 #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) 556 /* ordering+hash, not affinity*/ 557 558 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 559 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER) 560 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 561 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 562 #define M_HASHTYPE_ISHASH(m) \ 563 (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0) 564 #define M_HASHTYPE_SETINNER(m) do { \ 565 (m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER; \ 566 } while (0) 567 568 /* 569 * External mbuf storage buffer types. 570 */ 571 #define EXT_CLUSTER 1 /* mbuf cluster */ 572 #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ 573 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 574 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 575 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 576 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 577 #define EXT_MBUF 7 /* external mbuf reference */ 578 #define EXT_RXRING 8 /* data in NIC receive ring */ 579 580 #define EXT_VENDOR1 224 /* for vendor-internal use */ 581 #define EXT_VENDOR2 225 /* for vendor-internal use */ 582 #define EXT_VENDOR3 226 /* for vendor-internal use */ 583 #define EXT_VENDOR4 227 /* for vendor-internal use */ 584 585 #define EXT_EXP1 244 /* for experimental use */ 586 #define EXT_EXP2 245 /* for experimental use */ 587 #define EXT_EXP3 246 /* for experimental use */ 588 #define EXT_EXP4 247 /* for experimental use */ 589 590 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 591 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 592 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 593 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 594 595 /* 596 * Flags for external mbuf buffer types. 597 * NB: limited to the lower 24 bits. 598 */ 599 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ 600 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 601 602 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 603 604 #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ 605 #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ 606 #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ 607 #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ 608 609 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 610 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 611 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 612 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 613 614 /* 615 * EXT flag description for use with printf(9) %b identifier. 616 */ 617 #define EXT_FLAG_BITS \ 618 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 619 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 620 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 621 "\30EXT_FLAG_EXP4" 622 623 /* 624 * Flags indicating checksum, segmentation and other offload work to be 625 * done, or already done, by hardware or lower layers. It is split into 626 * separate inbound and outbound flags. 627 * 628 * Outbound flags that are set by upper protocol layers requesting lower 629 * layers, or ideally the hardware, to perform these offloading tasks. 630 * For outbound packets this field and its flags can be directly tested 631 * against ifnet if_hwassist. Note that the outbound and the inbound flags do 632 * not collide right now but they could be allowed to (as long as the flags are 633 * scrubbed appropriately when the direction of an mbuf changes). CSUM_BITS 634 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX. 635 * 636 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame. 637 * The CSUM_ENCAP_<x> bits identify the outer encapsulation. 638 */ 639 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 640 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 641 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 642 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 643 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 644 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 645 646 #define CSUM_INNER_IP6_UDP 0x00000040 647 #define CSUM_INNER_IP6_TCP 0x00000080 648 #define CSUM_INNER_IP6_TSO 0x00000100 649 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 650 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 651 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 652 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 653 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 654 655 #define CSUM_INNER_IP 0x00004000 656 #define CSUM_INNER_IP_UDP 0x00008000 657 #define CSUM_INNER_IP_TCP 0x00010000 658 #define CSUM_INNER_IP_TSO 0x00020000 659 660 #define CSUM_ENCAP_VXLAN 0x00040000 /* VXLAN outer encapsulation */ 661 #define CSUM_ENCAP_RSVD1 0x00080000 662 663 /* Inbound checksum support where the checksum was verified by hardware. */ 664 #define CSUM_INNER_L3_CALC 0x00100000 665 #define CSUM_INNER_L3_VALID 0x00200000 666 #define CSUM_INNER_L4_CALC 0x00400000 667 #define CSUM_INNER_L4_VALID 0x00800000 668 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 669 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 670 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 671 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 672 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 673 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 674 #define CSUM_COALESCED 0x40000000 /* contains merged segments */ 675 676 #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ 677 678 #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 679 CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \ 680 CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \ 681 CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \ 682 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \ 683 CSUM_ENCAP_RSVD1 | CSUM_SND_TAG) 684 685 #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \ 686 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \ 687 CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \ 688 CSUM_COALESCED) 689 690 /* 691 * CSUM flag description for use with printf(9) %b identifier. 692 */ 693 #define CSUM_BITS \ 694 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 695 "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \ 696 "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \ 697 "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \ 698 "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \ 699 "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \ 700 "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \ 701 "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \ 702 "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" 703 704 /* CSUM flags compatibility mappings. */ 705 #define CSUM_IP_CHECKED CSUM_L3_CALC 706 #define CSUM_IP_VALID CSUM_L3_VALID 707 #define CSUM_DATA_VALID CSUM_L4_VALID 708 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 709 #define CSUM_SCTP_VALID CSUM_L4_VALID 710 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 711 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 712 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 713 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 714 #define CSUM_TCP CSUM_IP_TCP 715 #define CSUM_UDP CSUM_IP_UDP 716 #define CSUM_SCTP CSUM_IP_SCTP 717 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 718 #define CSUM_INNER_TSO (CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO) 719 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 720 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 721 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 722 723 /* 724 * mbuf types describing the content of the mbuf (including external storage). 725 */ 726 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 727 #define MT_DATA 1 /* dynamic (data) allocation */ 728 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 729 730 #define MT_VENDOR1 4 /* for vendor-internal use */ 731 #define MT_VENDOR2 5 /* for vendor-internal use */ 732 #define MT_VENDOR3 6 /* for vendor-internal use */ 733 #define MT_VENDOR4 7 /* for vendor-internal use */ 734 735 #define MT_SONAME 8 /* socket name */ 736 737 #define MT_EXP1 9 /* for experimental use */ 738 #define MT_EXP2 10 /* for experimental use */ 739 #define MT_EXP3 11 /* for experimental use */ 740 #define MT_EXP4 12 /* for experimental use */ 741 742 #define MT_CONTROL 14 /* extra-data protocol message */ 743 #define MT_EXTCONTROL 15 /* control message with externalized contents */ 744 #define MT_OOBDATA 16 /* expedited data */ 745 746 #define MT_NOINIT 255 /* Not a type but a flag to allocate 747 a non-initialized mbuf */ 748 749 /* 750 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 751 * !_KERNEL so that monitoring tools can look up the zones with 752 * libmemstat(3). 753 */ 754 #define MBUF_MEM_NAME "mbuf" 755 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 756 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 757 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 758 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 759 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 760 #define MBUF_TAG_MEM_NAME "mbuf_tag" 761 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 762 #define MBUF_EXTPGS_MEM_NAME "mbuf_extpgs" 763 764 #ifdef _KERNEL 765 union if_snd_tag_alloc_params; 766 767 #ifdef WITNESS 768 #define MBUF_CHECKSLEEP(how) do { \ 769 if (how == M_WAITOK) \ 770 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 771 "Sleeping in \"%s\"", __func__); \ 772 } while (0) 773 #else 774 #define MBUF_CHECKSLEEP(how) 775 #endif 776 777 /* 778 * Network buffer allocation API 779 * 780 * The rest of it is defined in kern/kern_mbuf.c 781 */ 782 extern uma_zone_t zone_mbuf; 783 extern uma_zone_t zone_clust; 784 extern uma_zone_t zone_pack; 785 extern uma_zone_t zone_jumbop; 786 extern uma_zone_t zone_jumbo9; 787 extern uma_zone_t zone_jumbo16; 788 extern uma_zone_t zone_extpgs; 789 790 void mb_dupcl(struct mbuf *, struct mbuf *); 791 void mb_free_ext(struct mbuf *); 792 void mb_free_extpg(struct mbuf *); 793 void mb_free_mext_pgs(struct mbuf *); 794 struct mbuf *mb_alloc_ext_pgs(int, m_ext_free_t); 795 struct mbuf *mb_alloc_ext_plus_pages(int, int); 796 struct mbuf *mb_mapped_to_unmapped(struct mbuf *, int, int, int, 797 struct mbuf **); 798 int mb_unmapped_compress(struct mbuf *m); 799 struct mbuf *mb_unmapped_to_ext(struct mbuf *m); 800 void mb_free_notready(struct mbuf *m, int count); 801 void m_adj(struct mbuf *, int); 802 void m_adj_decap(struct mbuf *, int); 803 int m_apply(struct mbuf *, int, int, 804 int (*)(void *, void *, u_int), void *); 805 int m_append(struct mbuf *, int, c_caddr_t); 806 void m_cat(struct mbuf *, struct mbuf *); 807 void m_catpkt(struct mbuf *, struct mbuf *); 808 int m_clget(struct mbuf *m, int how); 809 void *m_cljget(struct mbuf *m, int how, int size); 810 struct mbuf *m_collapse(struct mbuf *, int, int); 811 void m_copyback(struct mbuf *, int, int, c_caddr_t); 812 void m_copydata(const struct mbuf *, int, int, caddr_t); 813 struct mbuf *m_copym(struct mbuf *, int, int, int); 814 struct mbuf *m_copypacket(struct mbuf *, int); 815 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 816 struct mbuf *m_copyup(struct mbuf *, int, int); 817 struct mbuf *m_defrag(struct mbuf *, int); 818 void m_demote_pkthdr(struct mbuf *); 819 void m_demote(struct mbuf *, int, int); 820 struct mbuf *m_devget(char *, int, int, struct ifnet *, 821 void (*)(char *, caddr_t, u_int)); 822 void m_dispose_extcontrolm(struct mbuf *m); 823 struct mbuf *m_dup(const struct mbuf *, int); 824 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 825 void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, 826 void *, void *, int, int); 827 u_int m_fixhdr(struct mbuf *); 828 struct mbuf *m_fragment(struct mbuf *, int, int); 829 void m_freem(struct mbuf *); 830 struct mbuf *m_get2(int, int, short, int); 831 struct mbuf *m_getjcl(int, short, int, int); 832 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 833 struct mbuf *m_getptr(struct mbuf *, int, int *); 834 u_int m_length(struct mbuf *, struct mbuf **); 835 int m_mbuftouio(struct uio *, const struct mbuf *, int); 836 void m_move_pkthdr(struct mbuf *, struct mbuf *); 837 int m_pkthdr_init(struct mbuf *, int); 838 struct mbuf *m_prepend(struct mbuf *, int, int); 839 void m_print(const struct mbuf *, int); 840 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 841 struct mbuf *m_pullup(struct mbuf *, int); 842 int m_sanity(struct mbuf *, int); 843 struct mbuf *m_split(struct mbuf *, int, int); 844 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 845 int m_unmapped_uiomove(const struct mbuf *, int, struct uio *, 846 int); 847 struct mbuf *m_unshare(struct mbuf *, int); 848 int m_snd_tag_alloc(struct ifnet *, 849 union if_snd_tag_alloc_params *, struct m_snd_tag **); 850 void m_snd_tag_init(struct m_snd_tag *, struct ifnet *, u_int); 851 void m_snd_tag_destroy(struct m_snd_tag *); 852 853 static __inline int 854 m_gettype(int size) 855 { 856 int type; 857 858 switch (size) { 859 case MSIZE: 860 type = EXT_MBUF; 861 break; 862 case MCLBYTES: 863 type = EXT_CLUSTER; 864 break; 865 #if MJUMPAGESIZE != MCLBYTES 866 case MJUMPAGESIZE: 867 type = EXT_JUMBOP; 868 break; 869 #endif 870 case MJUM9BYTES: 871 type = EXT_JUMBO9; 872 break; 873 case MJUM16BYTES: 874 type = EXT_JUMBO16; 875 break; 876 default: 877 panic("%s: invalid cluster size %d", __func__, size); 878 } 879 880 return (type); 881 } 882 883 /* 884 * Associated an external reference counted buffer with an mbuf. 885 */ 886 static __inline void 887 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, 888 m_ext_free_t freef, void *arg1, void *arg2) 889 { 890 891 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 892 893 atomic_add_int(ref_cnt, 1); 894 m->m_flags |= M_EXT; 895 m->m_ext.ext_buf = buf; 896 m->m_ext.ext_cnt = ref_cnt; 897 m->m_data = m->m_ext.ext_buf; 898 m->m_ext.ext_size = size; 899 m->m_ext.ext_free = freef; 900 m->m_ext.ext_arg1 = arg1; 901 m->m_ext.ext_arg2 = arg2; 902 m->m_ext.ext_type = EXT_EXTREF; 903 m->m_ext.ext_flags = 0; 904 } 905 906 static __inline uma_zone_t 907 m_getzone(int size) 908 { 909 uma_zone_t zone; 910 911 switch (size) { 912 case MCLBYTES: 913 zone = zone_clust; 914 break; 915 #if MJUMPAGESIZE != MCLBYTES 916 case MJUMPAGESIZE: 917 zone = zone_jumbop; 918 break; 919 #endif 920 case MJUM9BYTES: 921 zone = zone_jumbo9; 922 break; 923 case MJUM16BYTES: 924 zone = zone_jumbo16; 925 break; 926 default: 927 panic("%s: invalid cluster size %d", __func__, size); 928 } 929 930 return (zone); 931 } 932 933 /* 934 * Initialize an mbuf with linear storage. 935 * 936 * Inline because the consumer text overhead will be roughly the same to 937 * initialize or call a function with this many parameters and M_PKTHDR 938 * should go away with constant propagation for !MGETHDR. 939 */ 940 static __inline int 941 m_init(struct mbuf *m, int how, short type, int flags) 942 { 943 int error; 944 945 m->m_next = NULL; 946 m->m_nextpkt = NULL; 947 m->m_data = m->m_dat; 948 m->m_len = 0; 949 m->m_flags = flags; 950 m->m_type = type; 951 if (flags & M_PKTHDR) 952 error = m_pkthdr_init(m, how); 953 else 954 error = 0; 955 956 MBUF_PROBE5(m__init, m, how, type, flags, error); 957 return (error); 958 } 959 960 static __inline struct mbuf * 961 m_get(int how, short type) 962 { 963 struct mbuf *m; 964 struct mb_args args; 965 966 args.flags = 0; 967 args.type = type; 968 m = uma_zalloc_arg(zone_mbuf, &args, how); 969 MBUF_PROBE3(m__get, how, type, m); 970 return (m); 971 } 972 973 static __inline struct mbuf * 974 m_gethdr(int how, short type) 975 { 976 struct mbuf *m; 977 struct mb_args args; 978 979 args.flags = M_PKTHDR; 980 args.type = type; 981 m = uma_zalloc_arg(zone_mbuf, &args, how); 982 MBUF_PROBE3(m__gethdr, how, type, m); 983 return (m); 984 } 985 986 static __inline struct mbuf * 987 m_getcl(int how, short type, int flags) 988 { 989 struct mbuf *m; 990 struct mb_args args; 991 992 args.flags = flags; 993 args.type = type; 994 m = uma_zalloc_arg(zone_pack, &args, how); 995 MBUF_PROBE4(m__getcl, how, type, flags, m); 996 return (m); 997 } 998 999 /* 1000 * XXX: m_cljset() is a dangerous API. One must attach only a new, 1001 * unreferenced cluster to an mbuf(9). It is not possible to assert 1002 * that, so care can be taken only by users of the API. 1003 */ 1004 static __inline void 1005 m_cljset(struct mbuf *m, void *cl, int type) 1006 { 1007 int size; 1008 1009 switch (type) { 1010 case EXT_CLUSTER: 1011 size = MCLBYTES; 1012 break; 1013 #if MJUMPAGESIZE != MCLBYTES 1014 case EXT_JUMBOP: 1015 size = MJUMPAGESIZE; 1016 break; 1017 #endif 1018 case EXT_JUMBO9: 1019 size = MJUM9BYTES; 1020 break; 1021 case EXT_JUMBO16: 1022 size = MJUM16BYTES; 1023 break; 1024 default: 1025 panic("%s: unknown cluster type %d", __func__, type); 1026 break; 1027 } 1028 1029 m->m_data = m->m_ext.ext_buf = cl; 1030 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 1031 m->m_ext.ext_size = size; 1032 m->m_ext.ext_type = type; 1033 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 1034 m->m_ext.ext_count = 1; 1035 m->m_flags |= M_EXT; 1036 MBUF_PROBE3(m__cljset, m, cl, type); 1037 } 1038 1039 static __inline void 1040 m_chtype(struct mbuf *m, short new_type) 1041 { 1042 1043 m->m_type = new_type; 1044 } 1045 1046 static __inline void 1047 m_clrprotoflags(struct mbuf *m) 1048 { 1049 1050 while (m) { 1051 m->m_flags &= ~M_PROTOFLAGS; 1052 m = m->m_next; 1053 } 1054 } 1055 1056 static __inline struct mbuf * 1057 m_last(struct mbuf *m) 1058 { 1059 1060 while (m->m_next) 1061 m = m->m_next; 1062 return (m); 1063 } 1064 1065 static inline u_int 1066 m_extrefcnt(struct mbuf *m) 1067 { 1068 1069 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); 1070 1071 return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : 1072 *m->m_ext.ext_cnt); 1073 } 1074 1075 /* 1076 * mbuf, cluster, and external object allocation macros (for compatibility 1077 * purposes). 1078 */ 1079 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 1080 #define MGET(m, how, type) ((m) = m_get((how), (type))) 1081 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 1082 #define MCLGET(m, how) m_clget((m), (how)) 1083 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 1084 m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ 1085 (flags), (type)) 1086 #define m_getm(m, len, how, type) \ 1087 m_getm2((m), (len), (how), (type), M_PKTHDR) 1088 1089 /* 1090 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 1091 * be both the local data payload, or an external buffer area, depending on 1092 * whether M_EXT is set). 1093 */ 1094 #define M_WRITABLE(m) (((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 && \ 1095 (!(((m)->m_flags & M_EXT)) || \ 1096 (m_extrefcnt(m) == 1))) 1097 1098 /* Check if the supplied mbuf has a packet header, or else panic. */ 1099 #define M_ASSERTPKTHDR(m) \ 1100 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 1101 ("%s: no mbuf packet header!", __func__)) 1102 1103 /* Check if mbuf is multipage. */ 1104 #define M_ASSERTEXTPG(m) \ 1105 KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG, \ 1106 ("%s: m %p is not multipage!", __func__, m)) 1107 1108 /* 1109 * Ensure that the supplied mbuf is a valid, non-free mbuf. 1110 * 1111 * XXX: Broken at the moment. Need some UMA magic to make it work again. 1112 */ 1113 #define M_ASSERTVALID(m) \ 1114 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 1115 ("%s: attempted use of a free mbuf!", __func__)) 1116 1117 /* Check whether any mbuf in the chain is unmapped. */ 1118 #ifdef INVARIANTS 1119 #define M_ASSERTMAPPED(m) do { \ 1120 for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next) \ 1121 KASSERT((__m->m_flags & M_EXTPG) == 0, \ 1122 ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\ 1123 } while (0) 1124 #else 1125 #define M_ASSERTMAPPED(m) 1126 #endif 1127 1128 /* 1129 * Return the address of the start of the buffer associated with an mbuf, 1130 * handling external storage, packet-header mbufs, and regular data mbufs. 1131 */ 1132 #define M_START(m) \ 1133 (((m)->m_flags & M_EXTPG) ? NULL : \ 1134 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 1135 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 1136 &(m)->m_dat[0]) 1137 1138 /* 1139 * Return the size of the buffer associated with an mbuf, handling external 1140 * storage, packet-header mbufs, and regular data mbufs. 1141 */ 1142 #define M_SIZE(m) \ 1143 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 1144 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 1145 MLEN) 1146 1147 /* 1148 * Set the m_data pointer of a newly allocated mbuf to place an object of the 1149 * specified size at the end of the mbuf, longword aligned. 1150 * 1151 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 1152 * separate macros, each asserting that it was called at the proper moment. 1153 * This required callers to themselves test the storage type and call the 1154 * right one. Rather than require callers to be aware of those layout 1155 * decisions, we centralize here. 1156 */ 1157 static __inline void 1158 m_align(struct mbuf *m, int len) 1159 { 1160 #ifdef INVARIANTS 1161 const char *msg = "%s: not a virgin mbuf"; 1162 #endif 1163 int adjust; 1164 1165 KASSERT(m->m_data == M_START(m), (msg, __func__)); 1166 1167 adjust = M_SIZE(m) - len; 1168 m->m_data += adjust &~ (sizeof(long)-1); 1169 } 1170 1171 #define M_ALIGN(m, len) m_align(m, len) 1172 #define MH_ALIGN(m, len) m_align(m, len) 1173 #define MEXT_ALIGN(m, len) m_align(m, len) 1174 1175 /* 1176 * Compute the amount of space available before the current start of data in 1177 * an mbuf. 1178 * 1179 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1180 * of checking writability of the mbuf data area rests solely with the caller. 1181 * 1182 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 1183 * for mbufs with external storage. We now allow mbuf-embedded data to be 1184 * read-only as well. 1185 */ 1186 #define M_LEADINGSPACE(m) \ 1187 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 1188 1189 /* 1190 * Compute the amount of space available after the end of data in an mbuf. 1191 * 1192 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1193 * of checking writability of the mbuf data area rests solely with the caller. 1194 * 1195 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 1196 * for mbufs with external storage. We now allow mbuf-embedded data to be 1197 * read-only as well. 1198 */ 1199 #define M_TRAILINGSPACE(m) \ 1200 (M_WRITABLE(m) ? \ 1201 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 1202 1203 /* 1204 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 1205 * allocated, how specifies whether to wait. If the allocation fails, the 1206 * original mbuf chain is freed and m is set to NULL. 1207 */ 1208 #define M_PREPEND(m, plen, how) do { \ 1209 struct mbuf **_mmp = &(m); \ 1210 struct mbuf *_mm = *_mmp; \ 1211 int _mplen = (plen); \ 1212 int __mhow = (how); \ 1213 \ 1214 MBUF_CHECKSLEEP(how); \ 1215 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 1216 _mm->m_data -= _mplen; \ 1217 _mm->m_len += _mplen; \ 1218 } else \ 1219 _mm = m_prepend(_mm, _mplen, __mhow); \ 1220 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 1221 _mm->m_pkthdr.len += _mplen; \ 1222 *_mmp = _mm; \ 1223 } while (0) 1224 1225 /* 1226 * Change mbuf to new type. This is a relatively expensive operation and 1227 * should be avoided. 1228 */ 1229 #define MCHTYPE(m, t) m_chtype((m), (t)) 1230 1231 /* Return the rcvif of a packet header. */ 1232 static __inline struct ifnet * 1233 m_rcvif(struct mbuf *m) 1234 { 1235 1236 M_ASSERTPKTHDR(m); 1237 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1238 return (NULL); 1239 return (m->m_pkthdr.rcvif); 1240 } 1241 1242 /* Length to m_copy to copy all. */ 1243 #define M_COPYALL 1000000000 1244 1245 extern int max_datalen; /* MHLEN - max_hdr */ 1246 extern int max_hdr; /* Largest link + protocol header */ 1247 extern int max_linkhdr; /* Largest link-level header */ 1248 extern int max_protohdr; /* Largest protocol header */ 1249 extern int nmbclusters; /* Maximum number of clusters */ 1250 extern bool mb_use_ext_pgs; /* Use ext_pgs for sendfile */ 1251 1252 /*- 1253 * Network packets may have annotations attached by affixing a list of 1254 * "packet tags" to the pkthdr structure. Packet tags are dynamically 1255 * allocated semi-opaque data structures that have a fixed header 1256 * (struct m_tag) that specifies the size of the memory block and a 1257 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 1258 * unsigned value used to identify a module or ABI. By convention this value 1259 * is chosen as the date+time that the module is created, expressed as the 1260 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 1261 * value is an ABI/module-specific value that identifies a particular 1262 * annotation and is private to the module. For compatibility with systems 1263 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 1264 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1265 * compatibility shim functions and several tag types are defined below. 1266 * Users that do not require compatibility should use a private cookie value 1267 * so that packet tag-related definitions can be maintained privately. 1268 * 1269 * Note that the packet tag returned by m_tag_alloc has the default memory 1270 * alignment implemented by malloc. To reference private data one can use a 1271 * construct like: 1272 * 1273 * struct m_tag *mtag = m_tag_alloc(...); 1274 * struct foo *p = (struct foo *)(mtag+1); 1275 * 1276 * if the alignment of struct m_tag is sufficient for referencing members of 1277 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1278 * private data structure to insure proper alignment; e.g., 1279 * 1280 * struct foo { 1281 * struct m_tag tag; 1282 * ... 1283 * }; 1284 * struct foo *p = (struct foo *) m_tag_alloc(...); 1285 * struct m_tag *mtag = &p->tag; 1286 */ 1287 1288 /* 1289 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1290 * tags are expected to ``vanish'' when they pass through a network 1291 * interface. For most interfaces this happens normally as the tags are 1292 * reclaimed when the mbuf is free'd. However in some special cases 1293 * reclaiming must be done manually. An example is packets that pass through 1294 * the loopback interface. Also, one must be careful to do this when 1295 * ``turning around'' packets (e.g., icmp_reflect). 1296 * 1297 * To mark a tag persistent bit-or this flag in when defining the tag id. 1298 * The tag will then be treated as described above. 1299 */ 1300 #define MTAG_PERSISTENT 0x800 1301 1302 #define PACKET_TAG_NONE 0 /* Nadda */ 1303 1304 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1305 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1306 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1307 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1308 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1309 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1310 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1311 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1312 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1313 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1314 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1315 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1316 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1317 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1318 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1319 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1320 #define PACKET_TAG_DIVERT 17 /* divert info */ 1321 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1322 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1323 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 1324 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1325 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1326 #define PACKET_TAG_CARP 28 /* CARP info */ 1327 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1328 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1329 1330 /* Specific cookies and tags. */ 1331 1332 /* Packet tag routines. */ 1333 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 1334 void m_tag_delete(struct mbuf *, struct m_tag *); 1335 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1336 void m_tag_free_default(struct m_tag *); 1337 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 1338 struct m_tag *m_tag_copy(struct m_tag *, int); 1339 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1340 void m_tag_delete_nonpersistent(struct mbuf *); 1341 1342 /* 1343 * Initialize the list of tags associated with an mbuf. 1344 */ 1345 static __inline void 1346 m_tag_init(struct mbuf *m) 1347 { 1348 1349 SLIST_INIT(&m->m_pkthdr.tags); 1350 } 1351 1352 /* 1353 * Set up the contents of a tag. Note that this does not fill in the free 1354 * method; the caller is expected to do that. 1355 * 1356 * XXX probably should be called m_tag_init, but that was already taken. 1357 */ 1358 static __inline void 1359 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1360 { 1361 1362 t->m_tag_id = type; 1363 t->m_tag_len = len; 1364 t->m_tag_cookie = cookie; 1365 } 1366 1367 /* 1368 * Reclaim resources associated with a tag. 1369 */ 1370 static __inline void 1371 m_tag_free(struct m_tag *t) 1372 { 1373 1374 (*t->m_tag_free)(t); 1375 } 1376 1377 /* 1378 * Return the first tag associated with an mbuf. 1379 */ 1380 static __inline struct m_tag * 1381 m_tag_first(struct mbuf *m) 1382 { 1383 1384 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1385 } 1386 1387 /* 1388 * Return the next tag in the list of tags associated with an mbuf. 1389 */ 1390 static __inline struct m_tag * 1391 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1392 { 1393 1394 return (SLIST_NEXT(t, m_tag_link)); 1395 } 1396 1397 /* 1398 * Prepend a tag to the list of tags associated with an mbuf. 1399 */ 1400 static __inline void 1401 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1402 { 1403 1404 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1405 } 1406 1407 /* 1408 * Unlink a tag from the list of tags associated with an mbuf. 1409 */ 1410 static __inline void 1411 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1412 { 1413 1414 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1415 } 1416 1417 /* These are for OpenBSD compatibility. */ 1418 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1419 1420 static __inline struct m_tag * 1421 m_tag_get(int type, int length, int wait) 1422 { 1423 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1424 } 1425 1426 static __inline struct m_tag * 1427 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1428 { 1429 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1430 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1431 } 1432 1433 static inline struct m_snd_tag * 1434 m_snd_tag_ref(struct m_snd_tag *mst) 1435 { 1436 1437 refcount_acquire(&mst->refcount); 1438 return (mst); 1439 } 1440 1441 static inline void 1442 m_snd_tag_rele(struct m_snd_tag *mst) 1443 { 1444 1445 if (refcount_release(&mst->refcount)) 1446 m_snd_tag_destroy(mst); 1447 } 1448 1449 static __inline struct mbuf * 1450 m_free(struct mbuf *m) 1451 { 1452 struct mbuf *n = m->m_next; 1453 1454 MBUF_PROBE1(m__free, m); 1455 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1456 m_tag_delete_chain(m, NULL); 1457 if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1458 m_snd_tag_rele(m->m_pkthdr.snd_tag); 1459 if (m->m_flags & M_EXTPG) 1460 mb_free_extpg(m); 1461 else if (m->m_flags & M_EXT) 1462 mb_free_ext(m); 1463 else if ((m->m_flags & M_NOFREE) == 0) 1464 uma_zfree(zone_mbuf, m); 1465 return (n); 1466 } 1467 1468 static __inline int 1469 rt_m_getfib(struct mbuf *m) 1470 { 1471 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1472 return (m->m_pkthdr.fibnum); 1473 } 1474 1475 #define M_GETFIB(_m) rt_m_getfib(_m) 1476 1477 #define M_SETFIB(_m, _fib) do { \ 1478 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1479 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1480 } while (0) 1481 1482 /* flags passed as first argument for "m_xxx_tcpip_hash()" */ 1483 #define MBUF_HASHFLAG_L2 (1 << 2) 1484 #define MBUF_HASHFLAG_L3 (1 << 3) 1485 #define MBUF_HASHFLAG_L4 (1 << 4) 1486 1487 /* mbuf hashing helper routines */ 1488 uint32_t m_ether_tcpip_hash_init(void); 1489 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1490 uint32_t m_infiniband_tcpip_hash_init(void); 1491 uint32_t m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1492 1493 #ifdef MBUF_PROFILING 1494 void m_profile(struct mbuf *m); 1495 #define M_PROFILE(m) m_profile(m) 1496 #else 1497 #define M_PROFILE(m) 1498 #endif 1499 1500 struct mbufq { 1501 STAILQ_HEAD(, mbuf) mq_head; 1502 int mq_len; 1503 int mq_maxlen; 1504 }; 1505 1506 static inline void 1507 mbufq_init(struct mbufq *mq, int maxlen) 1508 { 1509 1510 STAILQ_INIT(&mq->mq_head); 1511 mq->mq_maxlen = maxlen; 1512 mq->mq_len = 0; 1513 } 1514 1515 static inline struct mbuf * 1516 mbufq_flush(struct mbufq *mq) 1517 { 1518 struct mbuf *m; 1519 1520 m = STAILQ_FIRST(&mq->mq_head); 1521 STAILQ_INIT(&mq->mq_head); 1522 mq->mq_len = 0; 1523 return (m); 1524 } 1525 1526 static inline void 1527 mbufq_drain(struct mbufq *mq) 1528 { 1529 struct mbuf *m, *n; 1530 1531 n = mbufq_flush(mq); 1532 while ((m = n) != NULL) { 1533 n = STAILQ_NEXT(m, m_stailqpkt); 1534 m_freem(m); 1535 } 1536 } 1537 1538 static inline struct mbuf * 1539 mbufq_first(const struct mbufq *mq) 1540 { 1541 1542 return (STAILQ_FIRST(&mq->mq_head)); 1543 } 1544 1545 static inline struct mbuf * 1546 mbufq_last(const struct mbufq *mq) 1547 { 1548 1549 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1550 } 1551 1552 static inline int 1553 mbufq_full(const struct mbufq *mq) 1554 { 1555 1556 return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen); 1557 } 1558 1559 static inline int 1560 mbufq_len(const struct mbufq *mq) 1561 { 1562 1563 return (mq->mq_len); 1564 } 1565 1566 static inline int 1567 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1568 { 1569 1570 if (mbufq_full(mq)) 1571 return (ENOBUFS); 1572 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1573 mq->mq_len++; 1574 return (0); 1575 } 1576 1577 static inline struct mbuf * 1578 mbufq_dequeue(struct mbufq *mq) 1579 { 1580 struct mbuf *m; 1581 1582 m = STAILQ_FIRST(&mq->mq_head); 1583 if (m) { 1584 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1585 m->m_nextpkt = NULL; 1586 mq->mq_len--; 1587 } 1588 return (m); 1589 } 1590 1591 static inline void 1592 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1593 { 1594 1595 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1596 mq->mq_len++; 1597 } 1598 1599 /* 1600 * Note: this doesn't enforce the maximum list size for dst. 1601 */ 1602 static inline void 1603 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) 1604 { 1605 1606 mq_dst->mq_len += mq_src->mq_len; 1607 STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); 1608 mq_src->mq_len = 0; 1609 } 1610 1611 #ifdef _SYS_TIMESPEC_H_ 1612 static inline void 1613 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) 1614 { 1615 1616 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1617 KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); 1618 ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1619 ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; 1620 } 1621 #endif 1622 1623 #ifdef DEBUGNET 1624 /* Invoked from the debugnet client code. */ 1625 void debugnet_mbuf_drain(void); 1626 void debugnet_mbuf_start(void); 1627 void debugnet_mbuf_finish(void); 1628 void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize); 1629 #endif 1630 1631 static inline bool 1632 mbuf_has_tls_session(struct mbuf *m) 1633 { 1634 1635 if (m->m_flags & M_EXTPG) { 1636 if (m->m_epg_tls != NULL) { 1637 return (true); 1638 } 1639 } 1640 return (false); 1641 } 1642 1643 #endif /* _KERNEL */ 1644 #endif /* !_SYS_MBUF_H_ */ 1645