xref: /freebsd/sys/sys/mbuf.h (revision 5c8e8e82aeaf3aa788acdd6cfca30ef09094230d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)mbuf.h	8.5 (Berkeley) 2/19/95
33  * $FreeBSD$
34  */
35 
36 #ifndef _SYS_MBUF_H_
37 #define	_SYS_MBUF_H_
38 
39 /* XXX: These includes suck. Sorry! */
40 #include <sys/queue.h>
41 #ifdef _KERNEL
42 #include <sys/systm.h>
43 #include <sys/refcount.h>
44 #include <vm/uma.h>
45 #ifdef WITNESS
46 #include <sys/lock.h>
47 #endif
48 #endif
49 
50 #ifdef _KERNEL
51 #include <sys/sdt.h>
52 
53 #define	MBUF_PROBE1(probe, arg0)					\
54 	SDT_PROBE1(sdt, , , probe, arg0)
55 #define	MBUF_PROBE2(probe, arg0, arg1)					\
56 	SDT_PROBE2(sdt, , , probe, arg0, arg1)
57 #define	MBUF_PROBE3(probe, arg0, arg1, arg2)				\
58 	SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2)
59 #define	MBUF_PROBE4(probe, arg0, arg1, arg2, arg3)			\
60 	SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3)
61 #define	MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4)		\
62 	SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4)
63 
64 SDT_PROBE_DECLARE(sdt, , , m__init);
65 SDT_PROBE_DECLARE(sdt, , , m__gethdr_raw);
66 SDT_PROBE_DECLARE(sdt, , , m__gethdr);
67 SDT_PROBE_DECLARE(sdt, , , m__get_raw);
68 SDT_PROBE_DECLARE(sdt, , , m__get);
69 SDT_PROBE_DECLARE(sdt, , , m__getcl);
70 SDT_PROBE_DECLARE(sdt, , , m__getjcl);
71 SDT_PROBE_DECLARE(sdt, , , m__clget);
72 SDT_PROBE_DECLARE(sdt, , , m__cljget);
73 SDT_PROBE_DECLARE(sdt, , , m__cljset);
74 SDT_PROBE_DECLARE(sdt, , , m__free);
75 SDT_PROBE_DECLARE(sdt, , , m__freem);
76 
77 #endif /* _KERNEL */
78 
79 /*
80  * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead.
81  * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in
82  * sys/param.h), which has no additional overhead and is used instead of the
83  * internal data area; this is done when at least MINCLSIZE of data must be
84  * stored.  Additionally, it is possible to allocate a separate buffer
85  * externally and attach it to the mbuf in a way similar to that of mbuf
86  * clusters.
87  *
88  * NB: These calculation do not take actual compiler-induced alignment and
89  * padding inside the complete struct mbuf into account.  Appropriate
90  * attention is required when changing members of struct mbuf.
91  *
92  * MLEN is data length in a normal mbuf.
93  * MHLEN is data length in an mbuf with pktheader.
94  * MINCLSIZE is a smallest amount of data that should be put into cluster.
95  *
96  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
97  * they are sensible.
98  */
99 struct mbuf;
100 #define	MHSIZE		offsetof(struct mbuf, m_dat)
101 #define	MPKTHSIZE	offsetof(struct mbuf, m_pktdat)
102 #define	MLEN		((int)(MSIZE - MHSIZE))
103 #define	MHLEN		((int)(MSIZE - MPKTHSIZE))
104 #define	MINCLSIZE	(MHLEN + 1)
105 #define	M_NODOM		255
106 
107 #ifdef _KERNEL
108 /*-
109  * Macro for type conversion: convert mbuf pointer to data pointer of correct
110  * type:
111  *
112  * mtod(m, t)	-- Convert mbuf pointer to data pointer of correct type.
113  * mtodo(m, o) -- Same as above but with offset 'o' into data.
114  */
115 #define	mtod(m, t)	((t)((m)->m_data))
116 #define	mtodo(m, o)	((void *)(((m)->m_data) + (o)))
117 
118 /*
119  * Argument structure passed to UMA routines during mbuf and packet
120  * allocations.
121  */
122 struct mb_args {
123 	int	flags;	/* Flags for mbuf being allocated */
124 	short	type;	/* Type of mbuf being allocated */
125 };
126 #endif /* _KERNEL */
127 
128 /*
129  * Packet tag structure (see below for details).
130  */
131 struct m_tag {
132 	SLIST_ENTRY(m_tag)	m_tag_link;	/* List of packet tags */
133 	u_int16_t		m_tag_id;	/* Tag ID */
134 	u_int16_t		m_tag_len;	/* Length of data */
135 	u_int32_t		m_tag_cookie;	/* ABI/Module ID */
136 	void			(*m_tag_free)(struct m_tag *);
137 };
138 
139 /*
140  * Static network interface owned tag.
141  * Allocated through ifp->if_snd_tag_alloc().
142  */
143 struct m_snd_tag {
144 	struct ifnet *ifp;		/* network interface tag belongs to */
145 	volatile u_int refcount;
146 	u_int	type;			/* One of IF_SND_TAG_TYPE_*. */
147 };
148 
149 /*
150  * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set.
151  * Size ILP32: 48
152  *	 LP64: 56
153  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
154  * they are correct.
155  */
156 struct pkthdr {
157 	union {
158 		struct m_snd_tag *snd_tag;	/* send tag, if any */
159 		struct ifnet	*rcvif;		/* rcv interface */
160 	};
161 	SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */
162 	int32_t		 len;		/* total packet length */
163 
164 	/* Layer crossing persistent information. */
165 	uint32_t	 flowid;	/* packet's 4-tuple system */
166 	uint32_t	 csum_flags;	/* checksum and offload features */
167 	uint16_t	 fibnum;	/* this packet should use this fib */
168 	uint8_t		 numa_domain;	/* NUMA domain of recvd pkt */
169 	uint8_t		 rsstype;	/* hash type */
170 	union {
171 		uint64_t	rcv_tstmp;	/* timestamp in ns */
172 		struct {
173 			uint8_t		 l2hlen;	/* layer 2 hdr len */
174 			uint8_t		 l3hlen;	/* layer 3 hdr len */
175 			uint8_t		 l4hlen;	/* layer 4 hdr len */
176 			uint8_t		 l5hlen;	/* layer 5 hdr len */
177 			uint8_t		 inner_l2hlen;
178 			uint8_t		 inner_l3hlen;
179 			uint8_t		 inner_l4hlen;
180 			uint8_t		 inner_l5hlen;
181 		};
182 	};
183 	union {
184 		uint8_t  eight[8];
185 		uint16_t sixteen[4];
186 		uint32_t thirtytwo[2];
187 		uint64_t sixtyfour[1];
188 		uintptr_t unintptr[1];
189 		void	*ptr;
190 	} PH_per;
191 
192 	/* Layer specific non-persistent local storage for reassembly, etc. */
193 	union {
194 		uint8_t  eight[8];
195 		uint16_t sixteen[4];
196 		uint32_t thirtytwo[2];
197 		uint64_t sixtyfour[1];
198 		uintptr_t unintptr[1];
199 		void 	*ptr;
200 	} PH_loc;
201 };
202 #define	ether_vtag	PH_per.sixteen[0]
203 #define tcp_tun_port	PH_per.sixteen[0] /* outbound */
204 #define	PH_vt		PH_per
205 #define	vt_nrecs	sixteen[0]	  /* mld and v6-ND */
206 #define	tso_segsz	PH_per.sixteen[1] /* inbound after LRO */
207 #define	lro_nsegs	tso_segsz	  /* inbound after LRO */
208 #define	csum_data	PH_per.thirtytwo[1] /* inbound from hardware up */
209 #define	lro_tcp_d_len	PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */
210 #define	lro_tcp_d_csum	PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */
211 #define	lro_tcp_h_off	PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */
212 #define	lro_etype	PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */
213 /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */
214 
215 /*
216  * TLS records for TLS 1.0-1.2 can have the following header lengths:
217  * - 5 (AES-CBC with implicit IV)
218  * - 21 (AES-CBC with explicit IV)
219  * - 13 (AES-GCM with 8 byte explicit IV)
220  */
221 #define	MBUF_PEXT_HDR_LEN	23
222 
223 /*
224  * TLS records for TLS 1.0-1.2 can have the following maximum trailer
225  * lengths:
226  * - 16 (AES-GCM)
227  * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding)
228  * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding)
229  * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding)
230  */
231 #define	MBUF_PEXT_TRAIL_LEN	64
232 
233 #if defined(__LP64__)
234 #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t))
235 #else
236 #define MBUF_PEXT_MAX_PGS (72 / sizeof(vm_paddr_t))
237 #endif
238 
239 #define	MBUF_PEXT_MAX_BYTES						\
240     (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN)
241 
242 struct ktls_session;
243 struct socket;
244 
245 /*
246  * Description of external storage mapped into mbuf; valid only if M_EXT is
247  * set.
248  * Size ILP32: 28
249  *	 LP64: 48
250  * Compile-time assertions in uipc_mbuf.c test these values to ensure that
251  * they are correct.
252  */
253 typedef	void m_ext_free_t(struct mbuf *);
254 struct m_ext {
255 	union {
256 		/*
257 		 * If EXT_FLAG_EMBREF is set, then we use refcount in the
258 		 * mbuf, the 'ext_count' member.  Otherwise, we have a
259 		 * shadow copy and we use pointer 'ext_cnt'.  The original
260 		 * mbuf is responsible to carry the pointer to free routine
261 		 * and its arguments.  They aren't copied into shadows in
262 		 * mb_dupcl() to avoid dereferencing next cachelines.
263 		 */
264 		volatile u_int	 ext_count;
265 		volatile u_int	*ext_cnt;
266 	};
267 	uint32_t	 ext_size;	/* size of buffer, for ext_free */
268 	uint32_t	 ext_type:8,	/* type of external storage */
269 			 ext_flags:24;	/* external storage mbuf flags */
270 	union {
271 		struct {
272 			/*
273 			 * Regular M_EXT mbuf:
274 			 * o ext_buf always points to the external buffer.
275 			 * o ext_free (below) and two optional arguments
276 			 *   ext_arg1 and ext_arg2 store the free context for
277 			 *   the external storage.  They are set only in the
278 			 *   refcount carrying mbuf, the one with
279 			 *   EXT_FLAG_EMBREF flag, with exclusion for
280 			 *   EXT_EXTREF type, where the free context is copied
281 			 *   into all mbufs that use same external storage.
282 			 */
283 			char 	*ext_buf;	/* start of buffer */
284 #define	m_ext_copylen	offsetof(struct m_ext, ext_arg2)
285 			void	*ext_arg2;
286 		};
287 		struct {
288 			/*
289 			 * Multi-page M_EXTPG mbuf:
290 			 * o extpg_pa - page vector.
291 			 * o extpg_trail and extpg_hdr - TLS trailer and
292 			 *   header.
293 			 * Uses ext_free and may also use ext_arg1.
294 			 */
295 			vm_paddr_t	extpg_pa[MBUF_PEXT_MAX_PGS];
296 			char		extpg_trail[MBUF_PEXT_TRAIL_LEN];
297 			char		extpg_hdr[MBUF_PEXT_HDR_LEN];
298 			/* Pretend these 3 fields are part of mbuf itself. */
299 #define	m_epg_pa	m_ext.extpg_pa
300 #define	m_epg_trail	m_ext.extpg_trail
301 #define	m_epg_hdr	m_ext.extpg_hdr
302 #define	m_epg_ext_copylen	offsetof(struct m_ext, ext_free)
303 		};
304 	};
305 	/*
306 	 * Free method and optional argument pointer, both
307 	 * used by M_EXT and M_EXTPG.
308 	 */
309 	m_ext_free_t	*ext_free;
310 	void		*ext_arg1;
311 };
312 
313 /*
314  * The core of the mbuf object along with some shortcut defines for practical
315  * purposes.
316  */
317 struct mbuf {
318 	/*
319 	 * Header present at the beginning of every mbuf.
320 	 * Size ILP32: 24
321 	 *      LP64: 32
322 	 * Compile-time assertions in uipc_mbuf.c test these values to ensure
323 	 * that they are correct.
324 	 */
325 	union {	/* next buffer in chain */
326 		struct mbuf		*m_next;
327 		SLIST_ENTRY(mbuf)	m_slist;
328 		STAILQ_ENTRY(mbuf)	m_stailq;
329 	};
330 	union {	/* next chain in queue/record */
331 		struct mbuf		*m_nextpkt;
332 		SLIST_ENTRY(mbuf)	m_slistpkt;
333 		STAILQ_ENTRY(mbuf)	m_stailqpkt;
334 	};
335 	caddr_t		 m_data;	/* location of data */
336 	int32_t		 m_len;		/* amount of data in this mbuf */
337 	uint32_t	 m_type:8,	/* type of data in this mbuf */
338 			 m_flags:24;	/* flags; see below */
339 #if !defined(__LP64__)
340 	uint32_t	 m_pad;		/* pad for 64bit alignment */
341 #endif
342 
343 	/*
344 	 * A set of optional headers (packet header, external storage header)
345 	 * and internal data storage.  Historically, these arrays were sized
346 	 * to MHLEN (space left after a packet header) and MLEN (space left
347 	 * after only a regular mbuf header); they are now variable size in
348 	 * order to support future work on variable-size mbufs.
349 	 */
350 	union {
351 		struct {
352 			union {
353 				/* M_PKTHDR set. */
354 				struct pkthdr	m_pkthdr;
355 
356 				/* M_EXTPG set.
357 				 * Multi-page M_EXTPG mbuf has its meta data
358 				 * split between the below anonymous structure
359 				 * and m_ext.  It carries vector of pages,
360 				 * optional header and trailer char vectors
361 				 * and pointers to socket/TLS data.
362 				 */
363 #define	m_epg_startcopy		m_epg_npgs
364 #define	m_epg_endcopy		m_epg_stailq
365 				struct {
366 					/* Overall count of pages and count of
367 					 * pages with I/O pending. */
368 					uint8_t	m_epg_npgs;
369 					uint8_t	m_epg_nrdy;
370 					/* TLS header and trailer lengths.
371 					 * The data itself resides in m_ext. */
372 					uint8_t	m_epg_hdrlen;
373 					uint8_t	m_epg_trllen;
374 					/* Offset into 1st page and length of
375 					 * data in the last page. */
376 					uint16_t m_epg_1st_off;
377 					uint16_t m_epg_last_len;
378 					uint8_t	m_epg_flags;
379 #define	EPG_FLAG_ANON	0x1	/* Data can be encrypted in place. */
380 #define	EPG_FLAG_2FREE	0x2	/* Scheduled for free. */
381 					uint8_t	m_epg_record_type;
382 					uint8_t	__spare[2];
383 					int	m_epg_enc_cnt;
384 					struct ktls_session *m_epg_tls;
385 					struct socket	*m_epg_so;
386 					uint64_t	m_epg_seqno;
387 					STAILQ_ENTRY(mbuf) m_epg_stailq;
388 				};
389 			};
390 			union {
391 				/* M_EXT or M_EXTPG set. */
392 				struct m_ext	m_ext;
393 				/* M_PKTHDR set, neither M_EXT nor M_EXTPG. */
394 				char		m_pktdat[0];
395 			};
396 		};
397 		char	m_dat[0];			/* !M_PKTHDR, !M_EXT */
398 	};
399 };
400 
401 #ifdef _KERNEL
402 static inline int
403 m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff)
404 {
405 
406 	KASSERT(pgoff == 0 || pidx == 0,
407 	    ("page %d with non-zero offset %d in %p", pidx, pgoff, m));
408 
409 	if (pidx == m->m_epg_npgs - 1) {
410 		return (m->m_epg_last_len);
411 	} else {
412 		return (PAGE_SIZE - pgoff);
413 	}
414 }
415 
416 #ifdef INVARIANTS
417 #define	MCHECK(ex, msg)	KASSERT((ex),				\
418 	    ("Multi page mbuf %p with " #msg " at %s:%d",	\
419 	    m, __FILE__, __LINE__))
420 /*
421  * NB: This expects a non-empty buffer (npgs > 0 and
422  * last_pg_len > 0).
423  */
424 #define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {				\
425 	MCHECK(m->m_epg_npgs > 0, "no valid pages");		\
426 	MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa),		\
427 	    "too many pages");						\
428 	MCHECK(m->m_epg_nrdy <= m->m_epg_npgs,			\
429 	    "too many ready pages");					\
430 	MCHECK(m->m_epg_1st_off < PAGE_SIZE,			\
431 		"too large page offset");				\
432 	MCHECK(m->m_epg_last_len > 0, "zero last page length");	\
433 	MCHECK(m->m_epg_last_len <= PAGE_SIZE,			\
434 	    "too large last page length");				\
435 	if (m->m_epg_npgs == 1)					\
436 		MCHECK(m->m_epg_1st_off +			\
437 		    m->m_epg_last_len <=	 PAGE_SIZE,		\
438 		    "single page too large");				\
439 	MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr),		\
440 	    "too large header length");					\
441 	MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail),	\
442 	    "too large header length");					\
443 } while (0)
444 #else
445 #define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {} while (0);
446 #endif
447 #endif
448 
449 /*
450  * mbuf flags of global significance and layer crossing.
451  * Those of only protocol/layer specific significance are to be mapped
452  * to M_PROTO[1-11] and cleared at layer handoff boundaries.
453  * NB: Limited to the lower 24 bits.
454  */
455 #define	M_EXT		0x00000001 /* has associated external storage */
456 #define	M_PKTHDR	0x00000002 /* start of record */
457 #define	M_EOR		0x00000004 /* end of record */
458 #define	M_RDONLY	0x00000008 /* associated data is marked read-only */
459 #define	M_BCAST		0x00000010 /* send/received as link-level broadcast */
460 #define	M_MCAST		0x00000020 /* send/received as link-level multicast */
461 #define	M_PROMISC	0x00000040 /* packet was not for us */
462 #define	M_VLANTAG	0x00000080 /* ether_vtag is valid */
463 #define	M_EXTPG		0x00000100 /* has array of unmapped pages and TLS */
464 #define	M_NOFREE	0x00000200 /* do not free mbuf, embedded in cluster */
465 #define	M_TSTMP		0x00000400 /* rcv_tstmp field is valid */
466 #define	M_TSTMP_HPREC	0x00000800 /* rcv_tstmp is high-prec, typically
467 				      hw-stamped on port (useful for IEEE 1588
468 				      and 802.1AS) */
469 #define M_TSTMP_LRO	0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */
470 
471 #define	M_PROTO1	0x00002000 /* protocol-specific */
472 #define	M_PROTO2	0x00004000 /* protocol-specific */
473 #define	M_PROTO3	0x00008000 /* protocol-specific */
474 #define	M_PROTO4	0x00010000 /* protocol-specific */
475 #define	M_PROTO5	0x00020000 /* protocol-specific */
476 #define	M_PROTO6	0x00040000 /* protocol-specific */
477 #define	M_PROTO7	0x00080000 /* protocol-specific */
478 #define	M_PROTO8	0x00100000 /* protocol-specific */
479 #define	M_PROTO9	0x00200000 /* protocol-specific */
480 #define	M_PROTO10	0x00400000 /* protocol-specific */
481 #define	M_PROTO11	0x00800000 /* protocol-specific */
482 
483 /*
484  * Flags to purge when crossing layers.
485  */
486 #define	M_PROTOFLAGS \
487     (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\
488      M_PROTO9|M_PROTO10|M_PROTO11)
489 
490 /*
491  * Flags preserved when copying m_pkthdr.
492  */
493 #define M_COPYFLAGS \
494     (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \
495      M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS)
496 
497 /*
498  * Mbuf flag description for use with printf(9) %b identifier.
499  */
500 #define	M_FLAG_BITS \
501     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \
502     "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO"
503 #define	M_FLAG_PROTOBITS \
504     "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \
505     "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \
506     "\27M_PROTO10\28M_PROTO11"
507 #define	M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS)
508 
509 /*
510  * Network interface cards are able to hash protocol fields (such as IPv4
511  * addresses and TCP port numbers) classify packets into flows.  These flows
512  * can then be used to maintain ordering while delivering packets to the OS
513  * via parallel input queues, as well as to provide a stateless affinity
514  * model.  NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set
515  * m_flag fields to indicate how the hash should be interpreted by the
516  * network stack.
517  *
518  * Most NICs support RSS, which provides ordering and explicit affinity, and
519  * use the hash m_flag bits to indicate what header fields were covered by
520  * the hash.  M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non-
521  * RSS cards or configurations that provide an opaque flow identifier, allowing
522  * for ordering and distribution without explicit affinity.  Additionally,
523  * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash
524  * properties.
525  *
526  * The meaning of the IPV6_EX suffix:
527  * "o  Home address from the home address option in the IPv6 destination
528  *     options header.  If the extension header is not present, use the Source
529  *     IPv6 Address.
530  *  o  IPv6 address that is contained in the Routing-Header-Type-2 from the
531  *     associated extension header.  If the extension header is not present,
532  *     use the Destination IPv6 Address."
533  * Quoted from:
534  * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex
535  */
536 #define	M_HASHTYPE_HASHPROP		0x80	/* has hash properties */
537 #define	M_HASHTYPE_INNER		0x40	/* calculated from inner headers */
538 #define	M_HASHTYPE_HASH(t)		(M_HASHTYPE_HASHPROP | (t))
539 /* Microsoft RSS standard hash types */
540 #define	M_HASHTYPE_NONE			0
541 #define	M_HASHTYPE_RSS_IPV4		M_HASHTYPE_HASH(1) /* IPv4 2-tuple */
542 #define	M_HASHTYPE_RSS_TCP_IPV4		M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */
543 #define	M_HASHTYPE_RSS_IPV6		M_HASHTYPE_HASH(3) /* IPv6 2-tuple */
544 #define	M_HASHTYPE_RSS_TCP_IPV6		M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */
545 #define	M_HASHTYPE_RSS_IPV6_EX		M_HASHTYPE_HASH(5) /* IPv6 2-tuple +
546 							    * ext hdrs */
547 #define	M_HASHTYPE_RSS_TCP_IPV6_EX	M_HASHTYPE_HASH(6) /* TCPv6 4-tuple +
548 							    * ext hdrs */
549 #define	M_HASHTYPE_RSS_UDP_IPV4		M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/
550 #define	M_HASHTYPE_RSS_UDP_IPV6		M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/
551 #define	M_HASHTYPE_RSS_UDP_IPV6_EX	M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple +
552 							    * ext hdrs */
553 
554 #define	M_HASHTYPE_OPAQUE		0x3f	/* ordering, not affinity */
555 #define	M_HASHTYPE_OPAQUE_HASH		M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE)
556 						/* ordering+hash, not affinity*/
557 
558 #define	M_HASHTYPE_CLEAR(m)	((m)->m_pkthdr.rsstype = 0)
559 #define	M_HASHTYPE_GET(m)	((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER)
560 #define	M_HASHTYPE_SET(m, v)	((m)->m_pkthdr.rsstype = (v))
561 #define	M_HASHTYPE_TEST(m, v)	(M_HASHTYPE_GET(m) == (v))
562 #define	M_HASHTYPE_ISHASH(m)	\
563     (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0)
564 #define	M_HASHTYPE_SETINNER(m)	do {			\
565 	(m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER;	\
566     } while (0)
567 
568 /*
569  * External mbuf storage buffer types.
570  */
571 #define	EXT_CLUSTER	1	/* mbuf cluster */
572 #define	EXT_SFBUF	2	/* sendfile(2)'s sf_buf */
573 #define	EXT_JUMBOP	3	/* jumbo cluster page sized */
574 #define	EXT_JUMBO9	4	/* jumbo cluster 9216 bytes */
575 #define	EXT_JUMBO16	5	/* jumbo cluster 16184 bytes */
576 #define	EXT_PACKET	6	/* mbuf+cluster from packet zone */
577 #define	EXT_MBUF	7	/* external mbuf reference */
578 #define	EXT_RXRING	8	/* data in NIC receive ring */
579 
580 #define	EXT_VENDOR1	224	/* for vendor-internal use */
581 #define	EXT_VENDOR2	225	/* for vendor-internal use */
582 #define	EXT_VENDOR3	226	/* for vendor-internal use */
583 #define	EXT_VENDOR4	227	/* for vendor-internal use */
584 
585 #define	EXT_EXP1	244	/* for experimental use */
586 #define	EXT_EXP2	245	/* for experimental use */
587 #define	EXT_EXP3	246	/* for experimental use */
588 #define	EXT_EXP4	247	/* for experimental use */
589 
590 #define	EXT_NET_DRV	252	/* custom ext_buf provided by net driver(s) */
591 #define	EXT_MOD_TYPE	253	/* custom module's ext_buf type */
592 #define	EXT_DISPOSABLE	254	/* can throw this buffer away w/page flipping */
593 #define	EXT_EXTREF	255	/* has externally maintained ext_cnt ptr */
594 
595 /*
596  * Flags for external mbuf buffer types.
597  * NB: limited to the lower 24 bits.
598  */
599 #define	EXT_FLAG_EMBREF		0x000001	/* embedded ext_count */
600 #define	EXT_FLAG_EXTREF		0x000002	/* external ext_cnt, notyet */
601 
602 #define	EXT_FLAG_NOFREE		0x000010	/* don't free mbuf to pool, notyet */
603 
604 #define	EXT_FLAG_VENDOR1	0x010000	/* These flags are vendor */
605 #define	EXT_FLAG_VENDOR2	0x020000	/* or submodule specific, */
606 #define	EXT_FLAG_VENDOR3	0x040000	/* not used by mbuf code. */
607 #define	EXT_FLAG_VENDOR4	0x080000	/* Set/read by submodule. */
608 
609 #define	EXT_FLAG_EXP1		0x100000	/* for experimental use */
610 #define	EXT_FLAG_EXP2		0x200000	/* for experimental use */
611 #define	EXT_FLAG_EXP3		0x400000	/* for experimental use */
612 #define	EXT_FLAG_EXP4		0x800000	/* for experimental use */
613 
614 /*
615  * EXT flag description for use with printf(9) %b identifier.
616  */
617 #define	EXT_FLAG_BITS \
618     "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \
619     "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \
620     "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \
621     "\30EXT_FLAG_EXP4"
622 
623 /*
624  * Flags indicating checksum, segmentation and other offload work to be
625  * done, or already done, by hardware or lower layers.  It is split into
626  * separate inbound and outbound flags.
627  *
628  * Outbound flags that are set by upper protocol layers requesting lower
629  * layers, or ideally the hardware, to perform these offloading tasks.
630  * For outbound packets this field and its flags can be directly tested
631  * against ifnet if_hwassist.  Note that the outbound and the inbound flags do
632  * not collide right now but they could be allowed to (as long as the flags are
633  * scrubbed appropriately when the direction of an mbuf changes).  CSUM_BITS
634  * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX.
635  *
636  * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame.
637  * The CSUM_ENCAP_<x> bits identify the outer encapsulation.
638  */
639 #define	CSUM_IP			0x00000001	/* IP header checksum offload */
640 #define	CSUM_IP_UDP		0x00000002	/* UDP checksum offload */
641 #define	CSUM_IP_TCP		0x00000004	/* TCP checksum offload */
642 #define	CSUM_IP_SCTP		0x00000008	/* SCTP checksum offload */
643 #define	CSUM_IP_TSO		0x00000010	/* TCP segmentation offload */
644 #define	CSUM_IP_ISCSI		0x00000020	/* iSCSI checksum offload */
645 
646 #define	CSUM_INNER_IP6_UDP	0x00000040
647 #define	CSUM_INNER_IP6_TCP	0x00000080
648 #define	CSUM_INNER_IP6_TSO	0x00000100
649 #define	CSUM_IP6_UDP		0x00000200	/* UDP checksum offload */
650 #define	CSUM_IP6_TCP		0x00000400	/* TCP checksum offload */
651 #define	CSUM_IP6_SCTP		0x00000800	/* SCTP checksum offload */
652 #define	CSUM_IP6_TSO		0x00001000	/* TCP segmentation offload */
653 #define	CSUM_IP6_ISCSI		0x00002000	/* iSCSI checksum offload */
654 
655 #define	CSUM_INNER_IP		0x00004000
656 #define	CSUM_INNER_IP_UDP	0x00008000
657 #define	CSUM_INNER_IP_TCP	0x00010000
658 #define	CSUM_INNER_IP_TSO	0x00020000
659 
660 #define	CSUM_ENCAP_VXLAN	0x00040000	/* VXLAN outer encapsulation */
661 #define	CSUM_ENCAP_RSVD1	0x00080000
662 
663 /* Inbound checksum support where the checksum was verified by hardware. */
664 #define	CSUM_INNER_L3_CALC	0x00100000
665 #define	CSUM_INNER_L3_VALID	0x00200000
666 #define	CSUM_INNER_L4_CALC	0x00400000
667 #define	CSUM_INNER_L4_VALID	0x00800000
668 #define	CSUM_L3_CALC		0x01000000	/* calculated layer 3 csum */
669 #define	CSUM_L3_VALID		0x02000000	/* checksum is correct */
670 #define	CSUM_L4_CALC		0x04000000	/* calculated layer 4 csum */
671 #define	CSUM_L4_VALID		0x08000000	/* checksum is correct */
672 #define	CSUM_L5_CALC		0x10000000	/* calculated layer 5 csum */
673 #define	CSUM_L5_VALID		0x20000000	/* checksum is correct */
674 #define	CSUM_COALESCED		0x40000000	/* contains merged segments */
675 
676 #define	CSUM_SND_TAG		0x80000000	/* Packet header has send tag */
677 
678 #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
679     CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \
680     CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \
681     CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \
682     CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \
683     CSUM_ENCAP_RSVD1 | CSUM_SND_TAG)
684 
685 #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \
686     CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \
687     CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \
688     CSUM_COALESCED)
689 
690 /*
691  * CSUM flag description for use with printf(9) %b identifier.
692  */
693 #define	CSUM_BITS \
694     "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \
695     "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \
696     "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \
697     "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \
698     "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \
699     "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \
700     "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \
701     "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \
702     "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG"
703 
704 /* CSUM flags compatibility mappings. */
705 #define	CSUM_IP_CHECKED		CSUM_L3_CALC
706 #define	CSUM_IP_VALID		CSUM_L3_VALID
707 #define	CSUM_DATA_VALID		CSUM_L4_VALID
708 #define	CSUM_PSEUDO_HDR		CSUM_L4_CALC
709 #define	CSUM_SCTP_VALID		CSUM_L4_VALID
710 #define	CSUM_DELAY_DATA		(CSUM_TCP|CSUM_UDP)
711 #define	CSUM_DELAY_IP		CSUM_IP		/* Only v4, no v6 IP hdr csum */
712 #define	CSUM_DELAY_DATA_IPV6	(CSUM_TCP_IPV6|CSUM_UDP_IPV6)
713 #define	CSUM_DATA_VALID_IPV6	CSUM_DATA_VALID
714 #define	CSUM_TCP		CSUM_IP_TCP
715 #define	CSUM_UDP		CSUM_IP_UDP
716 #define	CSUM_SCTP		CSUM_IP_SCTP
717 #define	CSUM_TSO		(CSUM_IP_TSO|CSUM_IP6_TSO)
718 #define	CSUM_INNER_TSO		(CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO)
719 #define	CSUM_UDP_IPV6		CSUM_IP6_UDP
720 #define	CSUM_TCP_IPV6		CSUM_IP6_TCP
721 #define	CSUM_SCTP_IPV6		CSUM_IP6_SCTP
722 
723 /*
724  * mbuf types describing the content of the mbuf (including external storage).
725  */
726 #define	MT_NOTMBUF	0	/* USED INTERNALLY ONLY! Object is not mbuf */
727 #define	MT_DATA		1	/* dynamic (data) allocation */
728 #define	MT_HEADER	MT_DATA	/* packet header, use M_PKTHDR instead */
729 
730 #define	MT_VENDOR1	4	/* for vendor-internal use */
731 #define	MT_VENDOR2	5	/* for vendor-internal use */
732 #define	MT_VENDOR3	6	/* for vendor-internal use */
733 #define	MT_VENDOR4	7	/* for vendor-internal use */
734 
735 #define	MT_SONAME	8	/* socket name */
736 
737 #define	MT_EXP1		9	/* for experimental use */
738 #define	MT_EXP2		10	/* for experimental use */
739 #define	MT_EXP3		11	/* for experimental use */
740 #define	MT_EXP4		12	/* for experimental use */
741 
742 #define	MT_CONTROL	14	/* extra-data protocol message */
743 #define	MT_EXTCONTROL	15	/* control message with externalized contents */
744 #define	MT_OOBDATA	16	/* expedited data  */
745 
746 #define	MT_NOINIT	255	/* Not a type but a flag to allocate
747 				   a non-initialized mbuf */
748 
749 /*
750  * String names of mbuf-related UMA(9) and malloc(9) types.  Exposed to
751  * !_KERNEL so that monitoring tools can look up the zones with
752  * libmemstat(3).
753  */
754 #define	MBUF_MEM_NAME		"mbuf"
755 #define	MBUF_CLUSTER_MEM_NAME	"mbuf_cluster"
756 #define	MBUF_PACKET_MEM_NAME	"mbuf_packet"
757 #define	MBUF_JUMBOP_MEM_NAME	"mbuf_jumbo_page"
758 #define	MBUF_JUMBO9_MEM_NAME	"mbuf_jumbo_9k"
759 #define	MBUF_JUMBO16_MEM_NAME	"mbuf_jumbo_16k"
760 #define	MBUF_TAG_MEM_NAME	"mbuf_tag"
761 #define	MBUF_EXTREFCNT_MEM_NAME	"mbuf_ext_refcnt"
762 #define	MBUF_EXTPGS_MEM_NAME	"mbuf_extpgs"
763 
764 #ifdef _KERNEL
765 union if_snd_tag_alloc_params;
766 
767 #ifdef WITNESS
768 #define	MBUF_CHECKSLEEP(how) do {					\
769 	if (how == M_WAITOK)						\
770 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,		\
771 		    "Sleeping in \"%s\"", __func__);			\
772 } while (0)
773 #else
774 #define	MBUF_CHECKSLEEP(how)
775 #endif
776 
777 /*
778  * Network buffer allocation API
779  *
780  * The rest of it is defined in kern/kern_mbuf.c
781  */
782 extern uma_zone_t	zone_mbuf;
783 extern uma_zone_t	zone_clust;
784 extern uma_zone_t	zone_pack;
785 extern uma_zone_t	zone_jumbop;
786 extern uma_zone_t	zone_jumbo9;
787 extern uma_zone_t	zone_jumbo16;
788 extern uma_zone_t	zone_extpgs;
789 
790 void		 mb_dupcl(struct mbuf *, struct mbuf *);
791 void		 mb_free_ext(struct mbuf *);
792 void		 mb_free_extpg(struct mbuf *);
793 void		 mb_free_mext_pgs(struct mbuf *);
794 struct mbuf	*mb_alloc_ext_pgs(int, m_ext_free_t);
795 struct mbuf	*mb_alloc_ext_plus_pages(int, int);
796 struct mbuf	*mb_mapped_to_unmapped(struct mbuf *, int, int, int,
797 		    struct mbuf **);
798 int		 mb_unmapped_compress(struct mbuf *m);
799 struct mbuf 	*mb_unmapped_to_ext(struct mbuf *m);
800 void		 mb_free_notready(struct mbuf *m, int count);
801 void		 m_adj(struct mbuf *, int);
802 void		 m_adj_decap(struct mbuf *, int);
803 int		 m_apply(struct mbuf *, int, int,
804 		    int (*)(void *, void *, u_int), void *);
805 int		 m_append(struct mbuf *, int, c_caddr_t);
806 void		 m_cat(struct mbuf *, struct mbuf *);
807 void		 m_catpkt(struct mbuf *, struct mbuf *);
808 int		 m_clget(struct mbuf *m, int how);
809 void 		*m_cljget(struct mbuf *m, int how, int size);
810 struct mbuf	*m_collapse(struct mbuf *, int, int);
811 void		 m_copyback(struct mbuf *, int, int, c_caddr_t);
812 void		 m_copydata(const struct mbuf *, int, int, caddr_t);
813 struct mbuf	*m_copym(struct mbuf *, int, int, int);
814 struct mbuf	*m_copypacket(struct mbuf *, int);
815 void		 m_copy_pkthdr(struct mbuf *, struct mbuf *);
816 struct mbuf	*m_copyup(struct mbuf *, int, int);
817 struct mbuf	*m_defrag(struct mbuf *, int);
818 void		 m_demote_pkthdr(struct mbuf *);
819 void		 m_demote(struct mbuf *, int, int);
820 struct mbuf	*m_devget(char *, int, int, struct ifnet *,
821 		    void (*)(char *, caddr_t, u_int));
822 void		 m_dispose_extcontrolm(struct mbuf *m);
823 struct mbuf	*m_dup(const struct mbuf *, int);
824 int		 m_dup_pkthdr(struct mbuf *, const struct mbuf *, int);
825 void		 m_extadd(struct mbuf *, char *, u_int, m_ext_free_t,
826 		    void *, void *, int, int);
827 u_int		 m_fixhdr(struct mbuf *);
828 struct mbuf	*m_fragment(struct mbuf *, int, int);
829 void		 m_freem(struct mbuf *);
830 void		 m_free_raw(struct mbuf *);
831 struct mbuf	*m_get2(int, int, short, int);
832 struct mbuf	*m_get3(int, int, short, int);
833 struct mbuf	*m_getjcl(int, short, int, int);
834 struct mbuf	*m_getm2(struct mbuf *, int, int, short, int);
835 struct mbuf	*m_getptr(struct mbuf *, int, int *);
836 u_int		 m_length(struct mbuf *, struct mbuf **);
837 int		 m_mbuftouio(struct uio *, const struct mbuf *, int);
838 void		 m_move_pkthdr(struct mbuf *, struct mbuf *);
839 int		 m_pkthdr_init(struct mbuf *, int);
840 struct mbuf	*m_prepend(struct mbuf *, int, int);
841 void		 m_print(const struct mbuf *, int);
842 struct mbuf	*m_pulldown(struct mbuf *, int, int, int *);
843 struct mbuf	*m_pullup(struct mbuf *, int);
844 int		 m_sanity(struct mbuf *, int);
845 struct mbuf	*m_split(struct mbuf *, int, int);
846 struct mbuf	*m_uiotombuf(struct uio *, int, int, int, int);
847 int		 m_unmapped_uiomove(const struct mbuf *, int, struct uio *,
848 		    int);
849 struct mbuf	*m_unshare(struct mbuf *, int);
850 int		 m_snd_tag_alloc(struct ifnet *,
851 		    union if_snd_tag_alloc_params *, struct m_snd_tag **);
852 void		 m_snd_tag_init(struct m_snd_tag *, struct ifnet *, u_int);
853 void		 m_snd_tag_destroy(struct m_snd_tag *);
854 
855 static __inline int
856 m_gettype(int size)
857 {
858 	int type;
859 
860 	switch (size) {
861 	case MSIZE:
862 		type = EXT_MBUF;
863 		break;
864 	case MCLBYTES:
865 		type = EXT_CLUSTER;
866 		break;
867 #if MJUMPAGESIZE != MCLBYTES
868 	case MJUMPAGESIZE:
869 		type = EXT_JUMBOP;
870 		break;
871 #endif
872 	case MJUM9BYTES:
873 		type = EXT_JUMBO9;
874 		break;
875 	case MJUM16BYTES:
876 		type = EXT_JUMBO16;
877 		break;
878 	default:
879 		panic("%s: invalid cluster size %d", __func__, size);
880 	}
881 
882 	return (type);
883 }
884 
885 /*
886  * Associated an external reference counted buffer with an mbuf.
887  */
888 static __inline void
889 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt,
890     m_ext_free_t freef, void *arg1, void *arg2)
891 {
892 
893 	KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__));
894 
895 	atomic_add_int(ref_cnt, 1);
896 	m->m_flags |= M_EXT;
897 	m->m_ext.ext_buf = buf;
898 	m->m_ext.ext_cnt = ref_cnt;
899 	m->m_data = m->m_ext.ext_buf;
900 	m->m_ext.ext_size = size;
901 	m->m_ext.ext_free = freef;
902 	m->m_ext.ext_arg1 = arg1;
903 	m->m_ext.ext_arg2 = arg2;
904 	m->m_ext.ext_type = EXT_EXTREF;
905 	m->m_ext.ext_flags = 0;
906 }
907 
908 static __inline uma_zone_t
909 m_getzone(int size)
910 {
911 	uma_zone_t zone;
912 
913 	switch (size) {
914 	case MCLBYTES:
915 		zone = zone_clust;
916 		break;
917 #if MJUMPAGESIZE != MCLBYTES
918 	case MJUMPAGESIZE:
919 		zone = zone_jumbop;
920 		break;
921 #endif
922 	case MJUM9BYTES:
923 		zone = zone_jumbo9;
924 		break;
925 	case MJUM16BYTES:
926 		zone = zone_jumbo16;
927 		break;
928 	default:
929 		panic("%s: invalid cluster size %d", __func__, size);
930 	}
931 
932 	return (zone);
933 }
934 
935 /*
936  * Initialize an mbuf with linear storage.
937  *
938  * Inline because the consumer text overhead will be roughly the same to
939  * initialize or call a function with this many parameters and M_PKTHDR
940  * should go away with constant propagation for !MGETHDR.
941  */
942 static __inline int
943 m_init(struct mbuf *m, int how, short type, int flags)
944 {
945 	int error;
946 
947 	m->m_next = NULL;
948 	m->m_nextpkt = NULL;
949 	m->m_data = m->m_dat;
950 	m->m_len = 0;
951 	m->m_flags = flags;
952 	m->m_type = type;
953 	if (flags & M_PKTHDR)
954 		error = m_pkthdr_init(m, how);
955 	else
956 		error = 0;
957 
958 	MBUF_PROBE5(m__init, m, how, type, flags, error);
959 	return (error);
960 }
961 
962 static __inline struct mbuf *
963 m_get_raw(int how, short type)
964 {
965 	struct mbuf *m;
966 	struct mb_args args;
967 
968 	args.flags = 0;
969 	args.type = type | MT_NOINIT;
970 	m = uma_zalloc_arg(zone_mbuf, &args, how);
971 	MBUF_PROBE3(m__get_raw, how, type, m);
972 	return (m);
973 }
974 
975 static __inline struct mbuf *
976 m_get(int how, short type)
977 {
978 	struct mbuf *m;
979 	struct mb_args args;
980 
981 	args.flags = 0;
982 	args.type = type;
983 	m = uma_zalloc_arg(zone_mbuf, &args, how);
984 	MBUF_PROBE3(m__get, how, type, m);
985 	return (m);
986 }
987 
988 static __inline struct mbuf *
989 m_gethdr_raw(int how, short type)
990 {
991 	struct mbuf *m;
992 	struct mb_args args;
993 
994 	args.flags = M_PKTHDR;
995 	args.type = type | MT_NOINIT;
996 	m = uma_zalloc_arg(zone_mbuf, &args, how);
997 	MBUF_PROBE3(m__gethdr_raw, how, type, m);
998 	return (m);
999 }
1000 
1001 static __inline struct mbuf *
1002 m_gethdr(int how, short type)
1003 {
1004 	struct mbuf *m;
1005 	struct mb_args args;
1006 
1007 	args.flags = M_PKTHDR;
1008 	args.type = type;
1009 	m = uma_zalloc_arg(zone_mbuf, &args, how);
1010 	MBUF_PROBE3(m__gethdr, how, type, m);
1011 	return (m);
1012 }
1013 
1014 static __inline struct mbuf *
1015 m_getcl(int how, short type, int flags)
1016 {
1017 	struct mbuf *m;
1018 	struct mb_args args;
1019 
1020 	args.flags = flags;
1021 	args.type = type;
1022 	m = uma_zalloc_arg(zone_pack, &args, how);
1023 	MBUF_PROBE4(m__getcl, how, type, flags, m);
1024 	return (m);
1025 }
1026 
1027 /*
1028  * XXX: m_cljset() is a dangerous API.  One must attach only a new,
1029  * unreferenced cluster to an mbuf(9).  It is not possible to assert
1030  * that, so care can be taken only by users of the API.
1031  */
1032 static __inline void
1033 m_cljset(struct mbuf *m, void *cl, int type)
1034 {
1035 	int size;
1036 
1037 	switch (type) {
1038 	case EXT_CLUSTER:
1039 		size = MCLBYTES;
1040 		break;
1041 #if MJUMPAGESIZE != MCLBYTES
1042 	case EXT_JUMBOP:
1043 		size = MJUMPAGESIZE;
1044 		break;
1045 #endif
1046 	case EXT_JUMBO9:
1047 		size = MJUM9BYTES;
1048 		break;
1049 	case EXT_JUMBO16:
1050 		size = MJUM16BYTES;
1051 		break;
1052 	default:
1053 		panic("%s: unknown cluster type %d", __func__, type);
1054 		break;
1055 	}
1056 
1057 	m->m_data = m->m_ext.ext_buf = cl;
1058 	m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL;
1059 	m->m_ext.ext_size = size;
1060 	m->m_ext.ext_type = type;
1061 	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1062 	m->m_ext.ext_count = 1;
1063 	m->m_flags |= M_EXT;
1064 	MBUF_PROBE3(m__cljset, m, cl, type);
1065 }
1066 
1067 static __inline void
1068 m_chtype(struct mbuf *m, short new_type)
1069 {
1070 
1071 	m->m_type = new_type;
1072 }
1073 
1074 static __inline void
1075 m_clrprotoflags(struct mbuf *m)
1076 {
1077 
1078 	while (m) {
1079 		m->m_flags &= ~M_PROTOFLAGS;
1080 		m = m->m_next;
1081 	}
1082 }
1083 
1084 static __inline struct mbuf *
1085 m_last(struct mbuf *m)
1086 {
1087 
1088 	while (m->m_next)
1089 		m = m->m_next;
1090 	return (m);
1091 }
1092 
1093 static inline u_int
1094 m_extrefcnt(struct mbuf *m)
1095 {
1096 
1097 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__));
1098 
1099 	return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count :
1100 	    *m->m_ext.ext_cnt);
1101 }
1102 
1103 /*
1104  * mbuf, cluster, and external object allocation macros (for compatibility
1105  * purposes).
1106  */
1107 #define	M_MOVE_PKTHDR(to, from)	m_move_pkthdr((to), (from))
1108 #define	MGET(m, how, type)	((m) = m_get((how), (type)))
1109 #define	MGETHDR(m, how, type)	((m) = m_gethdr((how), (type)))
1110 #define	MCLGET(m, how)		m_clget((m), (how))
1111 #define	MEXTADD(m, buf, size, free, arg1, arg2, flags, type)		\
1112     m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2),	\
1113     (flags), (type))
1114 #define	m_getm(m, len, how, type)					\
1115     m_getm2((m), (len), (how), (type), M_PKTHDR)
1116 
1117 /*
1118  * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
1119  * be both the local data payload, or an external buffer area, depending on
1120  * whether M_EXT is set).
1121  */
1122 #define	M_WRITABLE(m)	(((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 &&	\
1123 			 (!(((m)->m_flags & M_EXT)) ||			\
1124 			 (m_extrefcnt(m) == 1)))
1125 
1126 /* Check if the supplied mbuf has a packet header, or else panic. */
1127 #define	M_ASSERTPKTHDR(m)						\
1128 	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR,			\
1129 	    ("%s: no mbuf packet header!", __func__))
1130 
1131 /* Check if mbuf is multipage. */
1132 #define M_ASSERTEXTPG(m)						\
1133 	KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG,		\
1134 	    ("%s: m %p is not multipage!", __func__, m))
1135 
1136 /*
1137  * Ensure that the supplied mbuf is a valid, non-free mbuf.
1138  *
1139  * XXX: Broken at the moment.  Need some UMA magic to make it work again.
1140  */
1141 #define	M_ASSERTVALID(m)						\
1142 	KASSERT((((struct mbuf *)m)->m_flags & 0) == 0,			\
1143 	    ("%s: attempted use of a free mbuf!", __func__))
1144 
1145 /* Check whether any mbuf in the chain is unmapped. */
1146 #ifdef INVARIANTS
1147 #define	M_ASSERTMAPPED(m) do {						\
1148 	for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next)	\
1149 		KASSERT((__m->m_flags & M_EXTPG) == 0,			\
1150 		    ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\
1151 } while (0)
1152 #else
1153 #define	M_ASSERTMAPPED(m)
1154 #endif
1155 
1156 /*
1157  * Return the address of the start of the buffer associated with an mbuf,
1158  * handling external storage, packet-header mbufs, and regular data mbufs.
1159  */
1160 #define	M_START(m)							\
1161 	(((m)->m_flags & M_EXTPG) ? NULL :				\
1162 	 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf :			\
1163 	 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] :		\
1164 	 &(m)->m_dat[0])
1165 
1166 /*
1167  * Return the size of the buffer associated with an mbuf, handling external
1168  * storage, packet-header mbufs, and regular data mbufs.
1169  */
1170 #define	M_SIZE(m)							\
1171 	(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size :			\
1172 	 ((m)->m_flags & M_PKTHDR) ? MHLEN :				\
1173 	 MLEN)
1174 
1175 /*
1176  * Set the m_data pointer of a newly allocated mbuf to place an object of the
1177  * specified size at the end of the mbuf, longword aligned.
1178  *
1179  * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
1180  * separate macros, each asserting that it was called at the proper moment.
1181  * This required callers to themselves test the storage type and call the
1182  * right one.  Rather than require callers to be aware of those layout
1183  * decisions, we centralize here.
1184  */
1185 static __inline void
1186 m_align(struct mbuf *m, int len)
1187 {
1188 #ifdef INVARIANTS
1189 	const char *msg = "%s: not a virgin mbuf";
1190 #endif
1191 	int adjust;
1192 
1193 	KASSERT(m->m_data == M_START(m), (msg, __func__));
1194 
1195 	adjust = M_SIZE(m) - len;
1196 	m->m_data += adjust &~ (sizeof(long)-1);
1197 }
1198 
1199 #define	M_ALIGN(m, len)		m_align(m, len)
1200 #define	MH_ALIGN(m, len)	m_align(m, len)
1201 #define	MEXT_ALIGN(m, len)	m_align(m, len)
1202 
1203 /*
1204  * Compute the amount of space available before the current start of data in
1205  * an mbuf.
1206  *
1207  * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1208  * of checking writability of the mbuf data area rests solely with the caller.
1209  *
1210  * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE()
1211  * for mbufs with external storage.  We now allow mbuf-embedded data to be
1212  * read-only as well.
1213  */
1214 #define	M_LEADINGSPACE(m)						\
1215 	(M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0)
1216 
1217 /*
1218  * Compute the amount of space available after the end of data in an mbuf.
1219  *
1220  * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1221  * of checking writability of the mbuf data area rests solely with the caller.
1222  *
1223  * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE()
1224  * for mbufs with external storage.  We now allow mbuf-embedded data to be
1225  * read-only as well.
1226  */
1227 #define	M_TRAILINGSPACE(m)						\
1228 	(M_WRITABLE(m) ?						\
1229 	    ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0)
1230 
1231 /*
1232  * Arrange to prepend space of size plen to mbuf m.  If a new mbuf must be
1233  * allocated, how specifies whether to wait.  If the allocation fails, the
1234  * original mbuf chain is freed and m is set to NULL.
1235  */
1236 #define	M_PREPEND(m, plen, how) do {					\
1237 	struct mbuf **_mmp = &(m);					\
1238 	struct mbuf *_mm = *_mmp;					\
1239 	int _mplen = (plen);						\
1240 	int __mhow = (how);						\
1241 									\
1242 	MBUF_CHECKSLEEP(how);						\
1243 	if (M_LEADINGSPACE(_mm) >= _mplen) {				\
1244 		_mm->m_data -= _mplen;					\
1245 		_mm->m_len += _mplen;					\
1246 	} else								\
1247 		_mm = m_prepend(_mm, _mplen, __mhow);			\
1248 	if (_mm != NULL && _mm->m_flags & M_PKTHDR)			\
1249 		_mm->m_pkthdr.len += _mplen;				\
1250 	*_mmp = _mm;							\
1251 } while (0)
1252 
1253 /*
1254  * Change mbuf to new type.  This is a relatively expensive operation and
1255  * should be avoided.
1256  */
1257 #define	MCHTYPE(m, t)	m_chtype((m), (t))
1258 
1259 /* Return the rcvif of a packet header. */
1260 static __inline struct ifnet *
1261 m_rcvif(struct mbuf *m)
1262 {
1263 
1264 	M_ASSERTPKTHDR(m);
1265 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1266 		return (NULL);
1267 	return (m->m_pkthdr.rcvif);
1268 }
1269 
1270 /* Length to m_copy to copy all. */
1271 #define	M_COPYALL	1000000000
1272 
1273 extern int		max_datalen;	/* MHLEN - max_hdr */
1274 extern int		max_hdr;	/* Largest link + protocol header */
1275 extern int		max_linkhdr;	/* Largest link-level header */
1276 extern int		max_protohdr;	/* Largest protocol header */
1277 extern int		nmbclusters;	/* Maximum number of clusters */
1278 extern bool		mb_use_ext_pgs;	/* Use ext_pgs for sendfile */
1279 
1280 /*-
1281  * Network packets may have annotations attached by affixing a list of
1282  * "packet tags" to the pkthdr structure.  Packet tags are dynamically
1283  * allocated semi-opaque data structures that have a fixed header
1284  * (struct m_tag) that specifies the size of the memory block and a
1285  * <cookie,type> pair that identifies it.  The cookie is a 32-bit unique
1286  * unsigned value used to identify a module or ABI.  By convention this value
1287  * is chosen as the date+time that the module is created, expressed as the
1288  * number of seconds since the epoch (e.g., using date -u +'%s').  The type
1289  * value is an ABI/module-specific value that identifies a particular
1290  * annotation and is private to the module.  For compatibility with systems
1291  * like OpenBSD that define packet tags w/o an ABI/module cookie, the value
1292  * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find
1293  * compatibility shim functions and several tag types are defined below.
1294  * Users that do not require compatibility should use a private cookie value
1295  * so that packet tag-related definitions can be maintained privately.
1296  *
1297  * Note that the packet tag returned by m_tag_alloc has the default memory
1298  * alignment implemented by malloc.  To reference private data one can use a
1299  * construct like:
1300  *
1301  *	struct m_tag *mtag = m_tag_alloc(...);
1302  *	struct foo *p = (struct foo *)(mtag+1);
1303  *
1304  * if the alignment of struct m_tag is sufficient for referencing members of
1305  * struct foo.  Otherwise it is necessary to embed struct m_tag within the
1306  * private data structure to insure proper alignment; e.g.,
1307  *
1308  *	struct foo {
1309  *		struct m_tag	tag;
1310  *		...
1311  *	};
1312  *	struct foo *p = (struct foo *) m_tag_alloc(...);
1313  *	struct m_tag *mtag = &p->tag;
1314  */
1315 
1316 /*
1317  * Persistent tags stay with an mbuf until the mbuf is reclaimed.  Otherwise
1318  * tags are expected to ``vanish'' when they pass through a network
1319  * interface.  For most interfaces this happens normally as the tags are
1320  * reclaimed when the mbuf is free'd.  However in some special cases
1321  * reclaiming must be done manually.  An example is packets that pass through
1322  * the loopback interface.  Also, one must be careful to do this when
1323  * ``turning around'' packets (e.g., icmp_reflect).
1324  *
1325  * To mark a tag persistent bit-or this flag in when defining the tag id.
1326  * The tag will then be treated as described above.
1327  */
1328 #define	MTAG_PERSISTENT				0x800
1329 
1330 #define	PACKET_TAG_NONE				0  /* Nadda */
1331 
1332 /* Packet tags for use with PACKET_ABI_COMPAT. */
1333 #define	PACKET_TAG_IPSEC_IN_DONE		1  /* IPsec applied, in */
1334 #define	PACKET_TAG_IPSEC_OUT_DONE		2  /* IPsec applied, out */
1335 #define	PACKET_TAG_IPSEC_IN_CRYPTO_DONE		3  /* NIC IPsec crypto done */
1336 #define	PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED	4  /* NIC IPsec crypto req'ed */
1337 #define	PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO	5  /* NIC notifies IPsec */
1338 #define	PACKET_TAG_IPSEC_PENDING_TDB		6  /* Reminder to do IPsec */
1339 #define	PACKET_TAG_BRIDGE			7  /* Bridge processing done */
1340 #define	PACKET_TAG_GIF				8  /* GIF processing done */
1341 #define	PACKET_TAG_GRE				9  /* GRE processing done */
1342 #define	PACKET_TAG_IN_PACKET_CHECKSUM		10 /* NIC checksumming done */
1343 #define	PACKET_TAG_ENCAP			11 /* Encap.  processing */
1344 #define	PACKET_TAG_IPSEC_SOCKET			12 /* IPSEC socket ref */
1345 #define	PACKET_TAG_IPSEC_HISTORY		13 /* IPSEC history */
1346 #define	PACKET_TAG_IPV6_INPUT			14 /* IPV6 input processing */
1347 #define	PACKET_TAG_DUMMYNET			15 /* dummynet info */
1348 #define	PACKET_TAG_DIVERT			17 /* divert info */
1349 #define	PACKET_TAG_IPFORWARD			18 /* ipforward info */
1350 #define	PACKET_TAG_MACLABEL	(19 | MTAG_PERSISTENT) /* MAC label */
1351 #define	PACKET_TAG_PF		(21 | MTAG_PERSISTENT) /* PF/ALTQ information */
1352 #define	PACKET_TAG_RTSOCKFAM			25 /* rtsock sa family */
1353 #define	PACKET_TAG_IPOPTIONS			27 /* Saved IP options */
1354 #define	PACKET_TAG_CARP				28 /* CARP info */
1355 #define	PACKET_TAG_IPSEC_NAT_T_PORTS		29 /* two uint16_t */
1356 #define	PACKET_TAG_ND_OUTGOING			30 /* ND outgoing */
1357 
1358 /* Specific cookies and tags. */
1359 
1360 /* Packet tag routines. */
1361 struct m_tag	*m_tag_alloc(u_int32_t, int, int, int);
1362 void		 m_tag_delete(struct mbuf *, struct m_tag *);
1363 void		 m_tag_delete_chain(struct mbuf *, struct m_tag *);
1364 void		 m_tag_free_default(struct m_tag *);
1365 struct m_tag	*m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *);
1366 struct m_tag	*m_tag_copy(struct m_tag *, int);
1367 int		 m_tag_copy_chain(struct mbuf *, const struct mbuf *, int);
1368 void		 m_tag_delete_nonpersistent(struct mbuf *);
1369 
1370 /*
1371  * Initialize the list of tags associated with an mbuf.
1372  */
1373 static __inline void
1374 m_tag_init(struct mbuf *m)
1375 {
1376 
1377 	SLIST_INIT(&m->m_pkthdr.tags);
1378 }
1379 
1380 /*
1381  * Set up the contents of a tag.  Note that this does not fill in the free
1382  * method; the caller is expected to do that.
1383  *
1384  * XXX probably should be called m_tag_init, but that was already taken.
1385  */
1386 static __inline void
1387 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len)
1388 {
1389 
1390 	t->m_tag_id = type;
1391 	t->m_tag_len = len;
1392 	t->m_tag_cookie = cookie;
1393 }
1394 
1395 /*
1396  * Reclaim resources associated with a tag.
1397  */
1398 static __inline void
1399 m_tag_free(struct m_tag *t)
1400 {
1401 
1402 	(*t->m_tag_free)(t);
1403 }
1404 
1405 /*
1406  * Return the first tag associated with an mbuf.
1407  */
1408 static __inline struct m_tag *
1409 m_tag_first(struct mbuf *m)
1410 {
1411 
1412 	return (SLIST_FIRST(&m->m_pkthdr.tags));
1413 }
1414 
1415 /*
1416  * Return the next tag in the list of tags associated with an mbuf.
1417  */
1418 static __inline struct m_tag *
1419 m_tag_next(struct mbuf *m __unused, struct m_tag *t)
1420 {
1421 
1422 	return (SLIST_NEXT(t, m_tag_link));
1423 }
1424 
1425 /*
1426  * Prepend a tag to the list of tags associated with an mbuf.
1427  */
1428 static __inline void
1429 m_tag_prepend(struct mbuf *m, struct m_tag *t)
1430 {
1431 
1432 	SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
1433 }
1434 
1435 /*
1436  * Unlink a tag from the list of tags associated with an mbuf.
1437  */
1438 static __inline void
1439 m_tag_unlink(struct mbuf *m, struct m_tag *t)
1440 {
1441 
1442 	SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
1443 }
1444 
1445 /* These are for OpenBSD compatibility. */
1446 #define	MTAG_ABI_COMPAT		0		/* compatibility ABI */
1447 
1448 static __inline struct m_tag *
1449 m_tag_get(int type, int length, int wait)
1450 {
1451 	return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait));
1452 }
1453 
1454 static __inline struct m_tag *
1455 m_tag_find(struct mbuf *m, int type, struct m_tag *start)
1456 {
1457 	return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL :
1458 	    m_tag_locate(m, MTAG_ABI_COMPAT, type, start));
1459 }
1460 
1461 static inline struct m_snd_tag *
1462 m_snd_tag_ref(struct m_snd_tag *mst)
1463 {
1464 
1465 	refcount_acquire(&mst->refcount);
1466 	return (mst);
1467 }
1468 
1469 static inline void
1470 m_snd_tag_rele(struct m_snd_tag *mst)
1471 {
1472 
1473 	if (refcount_release(&mst->refcount))
1474 		m_snd_tag_destroy(mst);
1475 }
1476 
1477 static __inline struct mbuf *
1478 m_free(struct mbuf *m)
1479 {
1480 	struct mbuf *n = m->m_next;
1481 
1482 	MBUF_PROBE1(m__free, m);
1483 	if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE))
1484 		m_tag_delete_chain(m, NULL);
1485 	if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1486 		m_snd_tag_rele(m->m_pkthdr.snd_tag);
1487 	if (m->m_flags & M_EXTPG)
1488 		mb_free_extpg(m);
1489 	else if (m->m_flags & M_EXT)
1490 		mb_free_ext(m);
1491 	else if ((m->m_flags & M_NOFREE) == 0)
1492 		uma_zfree(zone_mbuf, m);
1493 	return (n);
1494 }
1495 
1496 static __inline int
1497 rt_m_getfib(struct mbuf *m)
1498 {
1499 	KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf."));
1500 	return (m->m_pkthdr.fibnum);
1501 }
1502 
1503 #define M_GETFIB(_m)   rt_m_getfib(_m)
1504 
1505 #define M_SETFIB(_m, _fib) do {						\
1506         KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf."));	\
1507 	((_m)->m_pkthdr.fibnum) = (_fib);				\
1508 } while (0)
1509 
1510 /* flags passed as first argument for "m_xxx_tcpip_hash()" */
1511 #define	MBUF_HASHFLAG_L2	(1 << 2)
1512 #define	MBUF_HASHFLAG_L3	(1 << 3)
1513 #define	MBUF_HASHFLAG_L4	(1 << 4)
1514 
1515 /* mbuf hashing helper routines */
1516 uint32_t	m_ether_tcpip_hash_init(void);
1517 uint32_t	m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1518 uint32_t	m_infiniband_tcpip_hash_init(void);
1519 uint32_t	m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1520 
1521 #ifdef MBUF_PROFILING
1522  void m_profile(struct mbuf *m);
1523  #define M_PROFILE(m) m_profile(m)
1524 #else
1525  #define M_PROFILE(m)
1526 #endif
1527 
1528 struct mbufq {
1529 	STAILQ_HEAD(, mbuf)	mq_head;
1530 	int			mq_len;
1531 	int			mq_maxlen;
1532 };
1533 
1534 static inline void
1535 mbufq_init(struct mbufq *mq, int maxlen)
1536 {
1537 
1538 	STAILQ_INIT(&mq->mq_head);
1539 	mq->mq_maxlen = maxlen;
1540 	mq->mq_len = 0;
1541 }
1542 
1543 static inline struct mbuf *
1544 mbufq_flush(struct mbufq *mq)
1545 {
1546 	struct mbuf *m;
1547 
1548 	m = STAILQ_FIRST(&mq->mq_head);
1549 	STAILQ_INIT(&mq->mq_head);
1550 	mq->mq_len = 0;
1551 	return (m);
1552 }
1553 
1554 static inline void
1555 mbufq_drain(struct mbufq *mq)
1556 {
1557 	struct mbuf *m, *n;
1558 
1559 	n = mbufq_flush(mq);
1560 	while ((m = n) != NULL) {
1561 		n = STAILQ_NEXT(m, m_stailqpkt);
1562 		m_freem(m);
1563 	}
1564 }
1565 
1566 static inline struct mbuf *
1567 mbufq_first(const struct mbufq *mq)
1568 {
1569 
1570 	return (STAILQ_FIRST(&mq->mq_head));
1571 }
1572 
1573 static inline struct mbuf *
1574 mbufq_last(const struct mbufq *mq)
1575 {
1576 
1577 	return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt));
1578 }
1579 
1580 static inline int
1581 mbufq_full(const struct mbufq *mq)
1582 {
1583 
1584 	return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen);
1585 }
1586 
1587 static inline int
1588 mbufq_len(const struct mbufq *mq)
1589 {
1590 
1591 	return (mq->mq_len);
1592 }
1593 
1594 static inline int
1595 mbufq_enqueue(struct mbufq *mq, struct mbuf *m)
1596 {
1597 
1598 	if (mbufq_full(mq))
1599 		return (ENOBUFS);
1600 	STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt);
1601 	mq->mq_len++;
1602 	return (0);
1603 }
1604 
1605 static inline struct mbuf *
1606 mbufq_dequeue(struct mbufq *mq)
1607 {
1608 	struct mbuf *m;
1609 
1610 	m = STAILQ_FIRST(&mq->mq_head);
1611 	if (m) {
1612 		STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt);
1613 		m->m_nextpkt = NULL;
1614 		mq->mq_len--;
1615 	}
1616 	return (m);
1617 }
1618 
1619 static inline void
1620 mbufq_prepend(struct mbufq *mq, struct mbuf *m)
1621 {
1622 
1623 	STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt);
1624 	mq->mq_len++;
1625 }
1626 
1627 /*
1628  * Note: this doesn't enforce the maximum list size for dst.
1629  */
1630 static inline void
1631 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src)
1632 {
1633 
1634 	mq_dst->mq_len += mq_src->mq_len;
1635 	STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head);
1636 	mq_src->mq_len = 0;
1637 }
1638 
1639 #ifdef _SYS_TIMESPEC_H_
1640 static inline void
1641 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts)
1642 {
1643 
1644 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m));
1645 	KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m));
1646 	ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
1647 	ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000;
1648 }
1649 #endif
1650 
1651 #ifdef DEBUGNET
1652 /* Invoked from the debugnet client code. */
1653 void	debugnet_mbuf_drain(void);
1654 void	debugnet_mbuf_start(void);
1655 void	debugnet_mbuf_finish(void);
1656 void	debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize);
1657 #endif
1658 
1659 static inline bool
1660 mbuf_has_tls_session(struct mbuf *m)
1661 {
1662 
1663 	if (m->m_flags & M_EXTPG) {
1664 		if (m->m_epg_tls != NULL) {
1665 			return (true);
1666 		}
1667 	}
1668 	return (false);
1669 }
1670 
1671 #endif /* _KERNEL */
1672 #endif /* !_SYS_MBUF_H_ */
1673