1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 31 * $FreeBSD$ 32 */ 33 34 #ifndef _SYS_MBUF_H_ 35 #define _SYS_MBUF_H_ 36 37 /* XXX: These includes suck. Sorry! */ 38 #include <sys/queue.h> 39 #ifdef _KERNEL 40 #include <sys/systm.h> 41 #include <vm/uma.h> 42 #ifdef WITNESS 43 #include <sys/lock.h> 44 #endif 45 #endif 46 47 /* 48 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 49 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 50 * sys/param.h), which has no additional overhead and is used instead of the 51 * internal data area; this is done when at least MINCLSIZE of data must be 52 * stored. Additionally, it is possible to allocate a separate buffer 53 * externally and attach it to the mbuf in a way similar to that of mbuf 54 * clusters. 55 * 56 * NB: These calculation do not take actual compiler-induced alignment and 57 * padding inside the complete struct mbuf into account. Appropriate 58 * attention is required when changing members of struct mbuf. 59 * 60 * MLEN is data length in a normal mbuf. 61 * MHLEN is data length in an mbuf with pktheader. 62 * MINCLSIZE is a smallest amount of data that should be put into cluster. 63 * 64 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 65 * they are sensible. 66 */ 67 struct mbuf; 68 #define MHSIZE offsetof(struct mbuf, m_dat) 69 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 70 #define MLEN ((int)(MSIZE - MHSIZE)) 71 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 72 #define MINCLSIZE (MHLEN + 1) 73 74 #ifdef _KERNEL 75 /*- 76 * Macro for type conversion: convert mbuf pointer to data pointer of correct 77 * type: 78 * 79 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 80 * mtodo(m, o) -- Same as above but with offset 'o' into data. 81 */ 82 #define mtod(m, t) ((t)((m)->m_data)) 83 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 84 85 /* 86 * Argument structure passed to UMA routines during mbuf and packet 87 * allocations. 88 */ 89 struct mb_args { 90 int flags; /* Flags for mbuf being allocated */ 91 short type; /* Type of mbuf being allocated */ 92 }; 93 #endif /* _KERNEL */ 94 95 /* 96 * Packet tag structure (see below for details). 97 */ 98 struct m_tag { 99 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 100 u_int16_t m_tag_id; /* Tag ID */ 101 u_int16_t m_tag_len; /* Length of data */ 102 u_int32_t m_tag_cookie; /* ABI/Module ID */ 103 void (*m_tag_free)(struct m_tag *); 104 }; 105 106 /* 107 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 108 * Size ILP32: 48 109 * LP64: 56 110 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 111 * they are correct. 112 */ 113 struct pkthdr { 114 struct ifnet *rcvif; /* rcv interface */ 115 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 116 int32_t len; /* total packet length */ 117 118 /* Layer crossing persistent information. */ 119 uint32_t flowid; /* packet's 4-tuple system */ 120 uint64_t csum_flags; /* checksum and offload features */ 121 uint16_t fibnum; /* this packet should use this fib */ 122 uint8_t cosqos; /* class/quality of service */ 123 uint8_t rsstype; /* hash type */ 124 uint8_t l2hlen; /* layer 2 header length */ 125 uint8_t l3hlen; /* layer 3 header length */ 126 uint8_t l4hlen; /* layer 4 header length */ 127 uint8_t l5hlen; /* layer 5 header length */ 128 union { 129 uint8_t eight[8]; 130 uint16_t sixteen[4]; 131 uint32_t thirtytwo[2]; 132 uint64_t sixtyfour[1]; 133 uintptr_t unintptr[1]; 134 void *ptr; 135 } PH_per; 136 137 /* Layer specific non-persistent local storage for reassembly, etc. */ 138 union { 139 uint8_t eight[8]; 140 uint16_t sixteen[4]; 141 uint32_t thirtytwo[2]; 142 uint64_t sixtyfour[1]; 143 uintptr_t unintptr[1]; 144 void *ptr; 145 } PH_loc; 146 }; 147 #define ether_vtag PH_per.sixteen[0] 148 #define PH_vt PH_per 149 #define vt_nrecs sixteen[0] 150 #define tso_segsz PH_per.sixteen[1] 151 #define csum_phsum PH_per.sixteen[2] 152 #define csum_data PH_per.thirtytwo[1] 153 154 /* 155 * Description of external storage mapped into mbuf; valid only if M_EXT is 156 * set. 157 * Size ILP32: 28 158 * LP64: 48 159 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 160 * they are correct. 161 */ 162 struct m_ext { 163 volatile u_int *ext_cnt; /* pointer to ref count info */ 164 caddr_t ext_buf; /* start of buffer */ 165 uint32_t ext_size; /* size of buffer, for ext_free */ 166 uint32_t ext_type:8, /* type of external storage */ 167 ext_flags:24; /* external storage mbuf flags */ 168 void (*ext_free) /* free routine if not the usual */ 169 (struct mbuf *, void *, void *); 170 void *ext_arg1; /* optional argument pointer */ 171 void *ext_arg2; /* optional argument pointer */ 172 }; 173 174 /* 175 * The core of the mbuf object along with some shortcut defines for practical 176 * purposes. 177 */ 178 struct mbuf { 179 /* 180 * Header present at the beginning of every mbuf. 181 * Size ILP32: 24 182 * LP64: 32 183 * Compile-time assertions in uipc_mbuf.c test these values to ensure 184 * that they are correct. 185 */ 186 union { /* next buffer in chain */ 187 struct mbuf *m_next; 188 SLIST_ENTRY(mbuf) m_slist; 189 STAILQ_ENTRY(mbuf) m_stailq; 190 }; 191 union { /* next chain in queue/record */ 192 struct mbuf *m_nextpkt; 193 SLIST_ENTRY(mbuf) m_slistpkt; 194 STAILQ_ENTRY(mbuf) m_stailqpkt; 195 }; 196 caddr_t m_data; /* location of data */ 197 int32_t m_len; /* amount of data in this mbuf */ 198 uint32_t m_type:8, /* type of data in this mbuf */ 199 m_flags:24; /* flags; see below */ 200 #if !defined(__LP64__) 201 uint32_t m_pad; /* pad for 64bit alignment */ 202 #endif 203 204 /* 205 * A set of optional headers (packet header, external storage header) 206 * and internal data storage. Historically, these arrays were sized 207 * to MHLEN (space left after a packet header) and MLEN (space left 208 * after only a regular mbuf header); they are now variable size in 209 * order to support future work on variable-size mbufs. 210 */ 211 union { 212 struct { 213 struct pkthdr m_pkthdr; /* M_PKTHDR set */ 214 union { 215 struct m_ext m_ext; /* M_EXT set */ 216 char m_pktdat[0]; 217 }; 218 }; 219 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 220 }; 221 }; 222 223 /* 224 * mbuf flags of global significance and layer crossing. 225 * Those of only protocol/layer specific significance are to be mapped 226 * to M_PROTO[1-12] and cleared at layer handoff boundaries. 227 * NB: Limited to the lower 24 bits. 228 */ 229 #define M_EXT 0x00000001 /* has associated external storage */ 230 #define M_PKTHDR 0x00000002 /* start of record */ 231 #define M_EOR 0x00000004 /* end of record */ 232 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 233 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 234 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 235 #define M_PROMISC 0x00000040 /* packet was not for us */ 236 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 237 #define M_UNUSED_8 0x00000100 /* --available-- */ 238 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 239 240 #define M_PROTO1 0x00001000 /* protocol-specific */ 241 #define M_PROTO2 0x00002000 /* protocol-specific */ 242 #define M_PROTO3 0x00004000 /* protocol-specific */ 243 #define M_PROTO4 0x00008000 /* protocol-specific */ 244 #define M_PROTO5 0x00010000 /* protocol-specific */ 245 #define M_PROTO6 0x00020000 /* protocol-specific */ 246 #define M_PROTO7 0x00040000 /* protocol-specific */ 247 #define M_PROTO8 0x00080000 /* protocol-specific */ 248 #define M_PROTO9 0x00100000 /* protocol-specific */ 249 #define M_PROTO10 0x00200000 /* protocol-specific */ 250 #define M_PROTO11 0x00400000 /* protocol-specific */ 251 #define M_PROTO12 0x00800000 /* protocol-specific */ 252 253 /* 254 * Flags to purge when crossing layers. 255 */ 256 #define M_PROTOFLAGS \ 257 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 258 M_PROTO9|M_PROTO10|M_PROTO11|M_PROTO12) 259 260 /* 261 * Flags preserved when copying m_pkthdr. 262 */ 263 #define M_COPYFLAGS \ 264 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG| \ 265 M_PROTOFLAGS) 266 267 /* 268 * Mbuf flag description for use with printf(9) %b identifier. 269 */ 270 #define M_FLAG_BITS \ 271 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 272 "\7M_PROMISC\10M_VLANTAG" 273 #define M_FLAG_PROTOBITS \ 274 "\15M_PROTO1\16M_PROTO2\17M_PROTO3\20M_PROTO4\21M_PROTO5" \ 275 "\22M_PROTO6\23M_PROTO7\24M_PROTO8\25M_PROTO9\26M_PROTO10" \ 276 "\27M_PROTO11\30M_PROTO12" 277 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 278 279 /* 280 * Network interface cards are able to hash protocol fields (such as IPv4 281 * addresses and TCP port numbers) classify packets into flows. These flows 282 * can then be used to maintain ordering while delivering packets to the OS 283 * via parallel input queues, as well as to provide a stateless affinity 284 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 285 * m_flag fields to indicate how the hash should be interpreted by the 286 * network stack. 287 * 288 * Most NICs support RSS, which provides ordering and explicit affinity, and 289 * use the hash m_flag bits to indicate what header fields were covered by 290 * the hash. M_HASHTYPE_OPAQUE can be set by non-RSS cards or configurations 291 * that provide an opaque flow identifier, allowing for ordering and 292 * distribution without explicit affinity. 293 */ 294 /* Microsoft RSS standard hash types */ 295 #define M_HASHTYPE_NONE 0 296 #define M_HASHTYPE_RSS_IPV4 1 /* IPv4 2-tuple */ 297 #define M_HASHTYPE_RSS_TCP_IPV4 2 /* TCPv4 4-tuple */ 298 #define M_HASHTYPE_RSS_IPV6 3 /* IPv6 2-tuple */ 299 #define M_HASHTYPE_RSS_TCP_IPV6 4 /* TCPv6 4-tuple */ 300 #define M_HASHTYPE_RSS_IPV6_EX 5 /* IPv6 2-tuple + ext hdrs */ 301 #define M_HASHTYPE_RSS_TCP_IPV6_EX 6 /* TCPv6 4-tiple + ext hdrs */ 302 /* Non-standard RSS hash types */ 303 #define M_HASHTYPE_RSS_UDP_IPV4 7 /* IPv4 UDP 4-tuple */ 304 #define M_HASHTYPE_RSS_UDP_IPV4_EX 8 /* IPv4 UDP 4-tuple + ext hdrs */ 305 #define M_HASHTYPE_RSS_UDP_IPV6 9 /* IPv6 UDP 4-tuple */ 306 #define M_HASHTYPE_RSS_UDP_IPV6_EX 10 /* IPv6 UDP 4-tuple + ext hdrs */ 307 308 #define M_HASHTYPE_OPAQUE 255 /* ordering, not affinity */ 309 310 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 311 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype) 312 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 313 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 314 315 /* 316 * COS/QOS class and quality of service tags. 317 * It uses DSCP code points as base. 318 */ 319 #define QOS_DSCP_CS0 0x00 320 #define QOS_DSCP_DEF QOS_DSCP_CS0 321 #define QOS_DSCP_CS1 0x20 322 #define QOS_DSCP_AF11 0x28 323 #define QOS_DSCP_AF12 0x30 324 #define QOS_DSCP_AF13 0x38 325 #define QOS_DSCP_CS2 0x40 326 #define QOS_DSCP_AF21 0x48 327 #define QOS_DSCP_AF22 0x50 328 #define QOS_DSCP_AF23 0x58 329 #define QOS_DSCP_CS3 0x60 330 #define QOS_DSCP_AF31 0x68 331 #define QOS_DSCP_AF32 0x70 332 #define QOS_DSCP_AF33 0x78 333 #define QOS_DSCP_CS4 0x80 334 #define QOS_DSCP_AF41 0x88 335 #define QOS_DSCP_AF42 0x90 336 #define QOS_DSCP_AF43 0x98 337 #define QOS_DSCP_CS5 0xa0 338 #define QOS_DSCP_EF 0xb8 339 #define QOS_DSCP_CS6 0xc0 340 #define QOS_DSCP_CS7 0xe0 341 342 /* 343 * External mbuf storage buffer types. 344 */ 345 #define EXT_CLUSTER 1 /* mbuf cluster */ 346 #define EXT_SFBUF 2 /* sendfile(2)'s sf_bufs */ 347 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 348 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 349 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 350 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 351 #define EXT_MBUF 7 /* external mbuf reference (M_IOVEC) */ 352 353 #define EXT_VENDOR1 224 /* for vendor-internal use */ 354 #define EXT_VENDOR2 225 /* for vendor-internal use */ 355 #define EXT_VENDOR3 226 /* for vendor-internal use */ 356 #define EXT_VENDOR4 227 /* for vendor-internal use */ 357 358 #define EXT_EXP1 244 /* for experimental use */ 359 #define EXT_EXP2 245 /* for experimental use */ 360 #define EXT_EXP3 246 /* for experimental use */ 361 #define EXT_EXP4 247 /* for experimental use */ 362 363 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 364 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 365 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 366 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 367 368 /* 369 * Flags for external mbuf buffer types. 370 * NB: limited to the lower 24 bits. 371 */ 372 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_cnt, notyet */ 373 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 374 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 375 376 #define EXT_FLAG_VENDOR1 0x010000 /* for vendor-internal use */ 377 #define EXT_FLAG_VENDOR2 0x020000 /* for vendor-internal use */ 378 #define EXT_FLAG_VENDOR3 0x040000 /* for vendor-internal use */ 379 #define EXT_FLAG_VENDOR4 0x080000 /* for vendor-internal use */ 380 381 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 382 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 383 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 384 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 385 386 /* 387 * EXT flag description for use with printf(9) %b identifier. 388 */ 389 #define EXT_FLAG_BITS \ 390 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 391 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 392 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 393 "\30EXT_FLAG_EXP4" 394 395 /* 396 * External reference/free functions. 397 */ 398 void sf_ext_ref(void *, void *); 399 void sf_ext_free(void *, void *); 400 401 /* 402 * Flags indicating checksum, segmentation and other offload work to be 403 * done, or already done, by hardware or lower layers. It is split into 404 * separate inbound and outbound flags. 405 * 406 * Outbound flags that are set by upper protocol layers requesting lower 407 * layers, or ideally the hardware, to perform these offloading tasks. 408 * For outbound packets this field and its flags can be directly tested 409 * against ifnet if_hwassist. 410 */ 411 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 412 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 413 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 414 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 415 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 416 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 417 418 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 419 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 420 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 421 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 422 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 423 424 /* Inbound checksum support where the checksum was verified by hardware. */ 425 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 426 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 427 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 428 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 429 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 430 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 431 #define CSUM_COALESED 0x40000000 /* contains merged segments */ 432 433 /* 434 * CSUM flag description for use with printf(9) %b identifier. 435 */ 436 #define CSUM_BITS \ 437 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 438 "\6CSUM_IP_ISCSI" \ 439 "\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP\15CSUM_IP6_TSO" \ 440 "\16CSUM_IP6_ISCSI" \ 441 "\31CSUM_L3_CALC\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID" \ 442 "\35CSUM_L5_CALC\36CSUM_L5_VALID\37CSUM_COALESED" 443 444 /* CSUM flags compatibility mappings. */ 445 #define CSUM_IP_CHECKED CSUM_L3_CALC 446 #define CSUM_IP_VALID CSUM_L3_VALID 447 #define CSUM_DATA_VALID CSUM_L4_VALID 448 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 449 #define CSUM_SCTP_VALID CSUM_L4_VALID 450 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 451 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 452 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 453 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 454 #define CSUM_TCP CSUM_IP_TCP 455 #define CSUM_UDP CSUM_IP_UDP 456 #define CSUM_SCTP CSUM_IP_SCTP 457 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 458 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 459 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 460 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 461 462 /* 463 * mbuf types describing the content of the mbuf (including external storage). 464 */ 465 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 466 #define MT_DATA 1 /* dynamic (data) allocation */ 467 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 468 469 #define MT_VENDOR1 4 /* for vendor-internal use */ 470 #define MT_VENDOR2 5 /* for vendor-internal use */ 471 #define MT_VENDOR3 6 /* for vendor-internal use */ 472 #define MT_VENDOR4 7 /* for vendor-internal use */ 473 474 #define MT_SONAME 8 /* socket name */ 475 476 #define MT_EXP1 9 /* for experimental use */ 477 #define MT_EXP2 10 /* for experimental use */ 478 #define MT_EXP3 11 /* for experimental use */ 479 #define MT_EXP4 12 /* for experimental use */ 480 481 #define MT_CONTROL 14 /* extra-data protocol message */ 482 #define MT_OOBDATA 15 /* expedited data */ 483 #define MT_NTYPES 16 /* number of mbuf types for mbtypes[] */ 484 485 #define MT_NOINIT 255 /* Not a type but a flag to allocate 486 a non-initialized mbuf */ 487 488 /* 489 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 490 * !_KERNEL so that monitoring tools can look up the zones with 491 * libmemstat(3). 492 */ 493 #define MBUF_MEM_NAME "mbuf" 494 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 495 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 496 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 497 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 498 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 499 #define MBUF_TAG_MEM_NAME "mbuf_tag" 500 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 501 502 #ifdef _KERNEL 503 504 #ifdef WITNESS 505 #define MBUF_CHECKSLEEP(how) do { \ 506 if (how == M_WAITOK) \ 507 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 508 "Sleeping in \"%s\"", __func__); \ 509 } while (0) 510 #else 511 #define MBUF_CHECKSLEEP(how) 512 #endif 513 514 /* 515 * Network buffer allocation API 516 * 517 * The rest of it is defined in kern/kern_mbuf.c 518 */ 519 extern uma_zone_t zone_mbuf; 520 extern uma_zone_t zone_clust; 521 extern uma_zone_t zone_pack; 522 extern uma_zone_t zone_jumbop; 523 extern uma_zone_t zone_jumbo9; 524 extern uma_zone_t zone_jumbo16; 525 extern uma_zone_t zone_ext_refcnt; 526 527 void mb_dupcl(struct mbuf *, const struct mbuf *); 528 void mb_free_ext(struct mbuf *); 529 int m_pkthdr_init(struct mbuf *, int); 530 531 static __inline int 532 m_gettype(int size) 533 { 534 int type; 535 536 switch (size) { 537 case MSIZE: 538 type = EXT_MBUF; 539 break; 540 case MCLBYTES: 541 type = EXT_CLUSTER; 542 break; 543 #if MJUMPAGESIZE != MCLBYTES 544 case MJUMPAGESIZE: 545 type = EXT_JUMBOP; 546 break; 547 #endif 548 case MJUM9BYTES: 549 type = EXT_JUMBO9; 550 break; 551 case MJUM16BYTES: 552 type = EXT_JUMBO16; 553 break; 554 default: 555 panic("%s: invalid cluster size %d", __func__, size); 556 } 557 558 return (type); 559 } 560 561 /* 562 * Associated an external reference counted buffer with an mbuf. 563 */ 564 static __inline void 565 m_extaddref(struct mbuf *m, caddr_t buf, u_int size, u_int *ref_cnt, 566 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2) 567 { 568 569 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 570 571 atomic_add_int(ref_cnt, 1); 572 m->m_flags |= M_EXT; 573 m->m_ext.ext_buf = buf; 574 m->m_ext.ext_cnt = ref_cnt; 575 m->m_data = m->m_ext.ext_buf; 576 m->m_ext.ext_size = size; 577 m->m_ext.ext_free = freef; 578 m->m_ext.ext_arg1 = arg1; 579 m->m_ext.ext_arg2 = arg2; 580 m->m_ext.ext_type = EXT_EXTREF; 581 m->m_ext.ext_flags = 0; 582 } 583 584 static __inline uma_zone_t 585 m_getzone(int size) 586 { 587 uma_zone_t zone; 588 589 switch (size) { 590 case MCLBYTES: 591 zone = zone_clust; 592 break; 593 #if MJUMPAGESIZE != MCLBYTES 594 case MJUMPAGESIZE: 595 zone = zone_jumbop; 596 break; 597 #endif 598 case MJUM9BYTES: 599 zone = zone_jumbo9; 600 break; 601 case MJUM16BYTES: 602 zone = zone_jumbo16; 603 break; 604 default: 605 panic("%s: invalid cluster size %d", __func__, size); 606 } 607 608 return (zone); 609 } 610 611 /* 612 * Initialize an mbuf with linear storage. 613 * 614 * Inline because the consumer text overhead will be roughly the same to 615 * initialize or call a function with this many parameters and M_PKTHDR 616 * should go away with constant propagation for !MGETHDR. 617 */ 618 static __inline int 619 m_init(struct mbuf *m, uma_zone_t zone __unused, int size __unused, int how, 620 short type, int flags) 621 { 622 int error; 623 624 m->m_next = NULL; 625 m->m_nextpkt = NULL; 626 m->m_data = m->m_dat; 627 m->m_len = 0; 628 m->m_flags = flags; 629 m->m_type = type; 630 if (flags & M_PKTHDR) { 631 if ((error = m_pkthdr_init(m, how)) != 0) 632 return (error); 633 } 634 635 return (0); 636 } 637 638 static __inline struct mbuf * 639 m_get(int how, short type) 640 { 641 struct mb_args args; 642 643 args.flags = 0; 644 args.type = type; 645 return (uma_zalloc_arg(zone_mbuf, &args, how)); 646 } 647 648 /* 649 * XXX This should be deprecated, very little use. 650 */ 651 static __inline struct mbuf * 652 m_getclr(int how, short type) 653 { 654 struct mbuf *m; 655 struct mb_args args; 656 657 args.flags = 0; 658 args.type = type; 659 m = uma_zalloc_arg(zone_mbuf, &args, how); 660 if (m != NULL) 661 bzero(m->m_data, MLEN); 662 return (m); 663 } 664 665 static __inline struct mbuf * 666 m_gethdr(int how, short type) 667 { 668 struct mb_args args; 669 670 args.flags = M_PKTHDR; 671 args.type = type; 672 return (uma_zalloc_arg(zone_mbuf, &args, how)); 673 } 674 675 static __inline struct mbuf * 676 m_getcl(int how, short type, int flags) 677 { 678 struct mb_args args; 679 680 args.flags = flags; 681 args.type = type; 682 return (uma_zalloc_arg(zone_pack, &args, how)); 683 } 684 685 static __inline int 686 m_clget(struct mbuf *m, int how) 687 { 688 689 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 690 __func__, m)); 691 m->m_ext.ext_buf = (char *)NULL; 692 uma_zalloc_arg(zone_clust, m, how); 693 /* 694 * On a cluster allocation failure, drain the packet zone and retry, 695 * we might be able to loosen a few clusters up on the drain. 696 */ 697 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { 698 zone_drain(zone_pack); 699 uma_zalloc_arg(zone_clust, m, how); 700 } 701 return (m->m_flags & M_EXT); 702 } 703 704 /* 705 * m_cljget() is different from m_clget() as it can allocate clusters without 706 * attaching them to an mbuf. In that case the return value is the pointer 707 * to the cluster of the requested size. If an mbuf was specified, it gets 708 * the cluster attached to it and the return value can be safely ignored. 709 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 710 */ 711 static __inline void * 712 m_cljget(struct mbuf *m, int how, int size) 713 { 714 uma_zone_t zone; 715 716 if (m != NULL) { 717 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 718 __func__, m)); 719 m->m_ext.ext_buf = NULL; 720 } 721 722 zone = m_getzone(size); 723 return (uma_zalloc_arg(zone, m, how)); 724 } 725 726 static __inline void 727 m_cljset(struct mbuf *m, void *cl, int type) 728 { 729 uma_zone_t zone; 730 int size; 731 732 switch (type) { 733 case EXT_CLUSTER: 734 size = MCLBYTES; 735 zone = zone_clust; 736 break; 737 #if MJUMPAGESIZE != MCLBYTES 738 case EXT_JUMBOP: 739 size = MJUMPAGESIZE; 740 zone = zone_jumbop; 741 break; 742 #endif 743 case EXT_JUMBO9: 744 size = MJUM9BYTES; 745 zone = zone_jumbo9; 746 break; 747 case EXT_JUMBO16: 748 size = MJUM16BYTES; 749 zone = zone_jumbo16; 750 break; 751 default: 752 panic("%s: unknown cluster type %d", __func__, type); 753 break; 754 } 755 756 m->m_data = m->m_ext.ext_buf = cl; 757 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 758 m->m_ext.ext_size = size; 759 m->m_ext.ext_type = type; 760 m->m_ext.ext_flags = 0; 761 m->m_ext.ext_cnt = uma_find_refcnt(zone, cl); 762 m->m_flags |= M_EXT; 763 764 } 765 766 static __inline void 767 m_chtype(struct mbuf *m, short new_type) 768 { 769 770 m->m_type = new_type; 771 } 772 773 static __inline void 774 m_clrprotoflags(struct mbuf *m) 775 { 776 777 while (m) { 778 m->m_flags &= ~M_PROTOFLAGS; 779 m = m->m_next; 780 } 781 } 782 783 static __inline struct mbuf * 784 m_last(struct mbuf *m) 785 { 786 787 while (m->m_next) 788 m = m->m_next; 789 return (m); 790 } 791 792 /* 793 * mbuf, cluster, and external object allocation macros (for compatibility 794 * purposes). 795 */ 796 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 797 #define MGET(m, how, type) ((m) = m_get((how), (type))) 798 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 799 #define MCLGET(m, how) m_clget((m), (how)) 800 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 801 (void )m_extadd((m), (caddr_t)(buf), (size), (free), (arg1), (arg2),\ 802 (flags), (type), M_NOWAIT) 803 #define m_getm(m, len, how, type) \ 804 m_getm2((m), (len), (how), (type), M_PKTHDR) 805 806 /* 807 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 808 * be both the local data payload, or an external buffer area, depending on 809 * whether M_EXT is set). 810 */ 811 #define M_WRITABLE(m) (!((m)->m_flags & M_RDONLY) && \ 812 (!(((m)->m_flags & M_EXT)) || \ 813 (*((m)->m_ext.ext_cnt) == 1)) ) \ 814 815 /* Check if the supplied mbuf has a packet header, or else panic. */ 816 #define M_ASSERTPKTHDR(m) \ 817 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 818 ("%s: no mbuf packet header!", __func__)) 819 820 /* 821 * Ensure that the supplied mbuf is a valid, non-free mbuf. 822 * 823 * XXX: Broken at the moment. Need some UMA magic to make it work again. 824 */ 825 #define M_ASSERTVALID(m) \ 826 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 827 ("%s: attempted use of a free mbuf!", __func__)) 828 829 /* 830 * Return the address of the start of the buffer associated with an mbuf, 831 * handling external storage, packet-header mbufs, and regular data mbufs. 832 */ 833 #define M_START(m) \ 834 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 835 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 836 &(m)->m_dat[0]) 837 838 /* 839 * Return the size of the buffer associated with an mbuf, handling external 840 * storage, packet-header mbufs, and regular data mbufs. 841 */ 842 #define M_SIZE(m) \ 843 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 844 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 845 MLEN) 846 847 /* 848 * Set the m_data pointer of a newly allocated mbuf to place an object of the 849 * specified size at the end of the mbuf, longword aligned. 850 * 851 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 852 * separate macros, each asserting that it was called at the proper moment. 853 * This required callers to themselves test the storage type and call the 854 * right one. Rather than require callers to be aware of those layout 855 * decisions, we centralize here. 856 */ 857 static __inline void 858 m_align(struct mbuf *m, int len) 859 { 860 #ifdef INVARIANTS 861 const char *msg = "%s: not a virgin mbuf"; 862 #endif 863 int adjust; 864 865 KASSERT(m->m_data == M_START(m), (msg, __func__)); 866 867 adjust = M_SIZE(m) - len; 868 m->m_data += adjust &~ (sizeof(long)-1); 869 } 870 871 #define M_ALIGN(m, len) m_align(m, len) 872 #define MH_ALIGN(m, len) m_align(m, len) 873 #define MEXT_ALIGN(m, len) m_align(m, len) 874 875 /* 876 * Compute the amount of space available before the current start of data in 877 * an mbuf. 878 * 879 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 880 * of checking writability of the mbuf data area rests solely with the caller. 881 * 882 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 883 * for mbufs with external storage. We now allow mbuf-embedded data to be 884 * read-only as well. 885 */ 886 #define M_LEADINGSPACE(m) \ 887 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 888 889 /* 890 * Compute the amount of space available after the end of data in an mbuf. 891 * 892 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 893 * of checking writability of the mbuf data area rests solely with the caller. 894 * 895 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 896 * for mbufs with external storage. We now allow mbuf-embedded data to be 897 * read-only as well. 898 */ 899 #define M_TRAILINGSPACE(m) \ 900 (M_WRITABLE(m) ? \ 901 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 902 903 /* 904 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 905 * allocated, how specifies whether to wait. If the allocation fails, the 906 * original mbuf chain is freed and m is set to NULL. 907 */ 908 #define M_PREPEND(m, plen, how) do { \ 909 struct mbuf **_mmp = &(m); \ 910 struct mbuf *_mm = *_mmp; \ 911 int _mplen = (plen); \ 912 int __mhow = (how); \ 913 \ 914 MBUF_CHECKSLEEP(how); \ 915 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 916 _mm->m_data -= _mplen; \ 917 _mm->m_len += _mplen; \ 918 } else \ 919 _mm = m_prepend(_mm, _mplen, __mhow); \ 920 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 921 _mm->m_pkthdr.len += _mplen; \ 922 *_mmp = _mm; \ 923 } while (0) 924 925 /* 926 * Change mbuf to new type. This is a relatively expensive operation and 927 * should be avoided. 928 */ 929 #define MCHTYPE(m, t) m_chtype((m), (t)) 930 931 /* Length to m_copy to copy all. */ 932 #define M_COPYALL 1000000000 933 934 /* Compatibility with 4.3. */ 935 #define m_copy(m, o, l) m_copym((m), (o), (l), M_NOWAIT) 936 937 extern int max_datalen; /* MHLEN - max_hdr */ 938 extern int max_hdr; /* Largest link + protocol header */ 939 extern int max_linkhdr; /* Largest link-level header */ 940 extern int max_protohdr; /* Largest protocol header */ 941 extern int nmbclusters; /* Maximum number of clusters */ 942 943 struct uio; 944 945 void m_adj(struct mbuf *, int); 946 int m_apply(struct mbuf *, int, int, 947 int (*)(void *, void *, u_int), void *); 948 int m_append(struct mbuf *, int, c_caddr_t); 949 void m_cat(struct mbuf *, struct mbuf *); 950 void m_catpkt(struct mbuf *, struct mbuf *); 951 int m_extadd(struct mbuf *, caddr_t, u_int, 952 void (*)(struct mbuf *, void *, void *), void *, void *, 953 int, int, int); 954 struct mbuf *m_collapse(struct mbuf *, int, int); 955 void m_copyback(struct mbuf *, int, int, c_caddr_t); 956 void m_copydata(const struct mbuf *, int, int, caddr_t); 957 struct mbuf *m_copym(const struct mbuf *, int, int, int); 958 struct mbuf *m_copypacket(struct mbuf *, int); 959 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 960 struct mbuf *m_copyup(struct mbuf *, int, int); 961 struct mbuf *m_defrag(struct mbuf *, int); 962 void m_demote_pkthdr(struct mbuf *); 963 void m_demote(struct mbuf *, int, int); 964 struct mbuf *m_devget(char *, int, int, struct ifnet *, 965 void (*)(char *, caddr_t, u_int)); 966 struct mbuf *m_dup(const struct mbuf *, int); 967 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 968 u_int m_fixhdr(struct mbuf *); 969 struct mbuf *m_fragment(struct mbuf *, int, int); 970 void m_freem(struct mbuf *); 971 struct mbuf *m_get2(int, int, short, int); 972 struct mbuf *m_getjcl(int, short, int, int); 973 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 974 struct mbuf *m_getptr(struct mbuf *, int, int *); 975 u_int m_length(struct mbuf *, struct mbuf **); 976 int m_mbuftouio(struct uio *, struct mbuf *, int); 977 void m_move_pkthdr(struct mbuf *, struct mbuf *); 978 struct mbuf *m_prepend(struct mbuf *, int, int); 979 void m_print(const struct mbuf *, int); 980 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 981 struct mbuf *m_pullup(struct mbuf *, int); 982 int m_sanity(struct mbuf *, int); 983 struct mbuf *m_split(struct mbuf *, int, int); 984 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 985 struct mbuf *m_unshare(struct mbuf *, int); 986 987 /*- 988 * Network packets may have annotations attached by affixing a list of 989 * "packet tags" to the pkthdr structure. Packet tags are dynamically 990 * allocated semi-opaque data structures that have a fixed header 991 * (struct m_tag) that specifies the size of the memory block and a 992 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 993 * unsigned value used to identify a module or ABI. By convention this value 994 * is chosen as the date+time that the module is created, expressed as the 995 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 996 * value is an ABI/module-specific value that identifies a particular 997 * annotation and is private to the module. For compatibility with systems 998 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 999 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1000 * compatibility shim functions and several tag types are defined below. 1001 * Users that do not require compatibility should use a private cookie value 1002 * so that packet tag-related definitions can be maintained privately. 1003 * 1004 * Note that the packet tag returned by m_tag_alloc has the default memory 1005 * alignment implemented by malloc. To reference private data one can use a 1006 * construct like: 1007 * 1008 * struct m_tag *mtag = m_tag_alloc(...); 1009 * struct foo *p = (struct foo *)(mtag+1); 1010 * 1011 * if the alignment of struct m_tag is sufficient for referencing members of 1012 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1013 * private data structure to insure proper alignment; e.g., 1014 * 1015 * struct foo { 1016 * struct m_tag tag; 1017 * ... 1018 * }; 1019 * struct foo *p = (struct foo *) m_tag_alloc(...); 1020 * struct m_tag *mtag = &p->tag; 1021 */ 1022 1023 /* 1024 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1025 * tags are expected to ``vanish'' when they pass through a network 1026 * interface. For most interfaces this happens normally as the tags are 1027 * reclaimed when the mbuf is free'd. However in some special cases 1028 * reclaiming must be done manually. An example is packets that pass through 1029 * the loopback interface. Also, one must be careful to do this when 1030 * ``turning around'' packets (e.g., icmp_reflect). 1031 * 1032 * To mark a tag persistent bit-or this flag in when defining the tag id. 1033 * The tag will then be treated as described above. 1034 */ 1035 #define MTAG_PERSISTENT 0x800 1036 1037 #define PACKET_TAG_NONE 0 /* Nadda */ 1038 1039 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1040 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1041 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1042 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1043 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1044 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1045 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1046 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1047 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1048 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1049 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1050 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1051 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1052 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1053 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1054 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1055 #define PACKET_TAG_DIVERT 17 /* divert info */ 1056 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1057 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1058 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 1059 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1060 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1061 #define PACKET_TAG_CARP 28 /* CARP info */ 1062 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1063 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1064 1065 /* Specific cookies and tags. */ 1066 1067 /* Packet tag routines. */ 1068 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 1069 void m_tag_delete(struct mbuf *, struct m_tag *); 1070 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1071 void m_tag_free_default(struct m_tag *); 1072 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 1073 struct m_tag *m_tag_copy(struct m_tag *, int); 1074 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1075 void m_tag_delete_nonpersistent(struct mbuf *); 1076 1077 /* 1078 * Initialize the list of tags associated with an mbuf. 1079 */ 1080 static __inline void 1081 m_tag_init(struct mbuf *m) 1082 { 1083 1084 SLIST_INIT(&m->m_pkthdr.tags); 1085 } 1086 1087 /* 1088 * Set up the contents of a tag. Note that this does not fill in the free 1089 * method; the caller is expected to do that. 1090 * 1091 * XXX probably should be called m_tag_init, but that was already taken. 1092 */ 1093 static __inline void 1094 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1095 { 1096 1097 t->m_tag_id = type; 1098 t->m_tag_len = len; 1099 t->m_tag_cookie = cookie; 1100 } 1101 1102 /* 1103 * Reclaim resources associated with a tag. 1104 */ 1105 static __inline void 1106 m_tag_free(struct m_tag *t) 1107 { 1108 1109 (*t->m_tag_free)(t); 1110 } 1111 1112 /* 1113 * Return the first tag associated with an mbuf. 1114 */ 1115 static __inline struct m_tag * 1116 m_tag_first(struct mbuf *m) 1117 { 1118 1119 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1120 } 1121 1122 /* 1123 * Return the next tag in the list of tags associated with an mbuf. 1124 */ 1125 static __inline struct m_tag * 1126 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1127 { 1128 1129 return (SLIST_NEXT(t, m_tag_link)); 1130 } 1131 1132 /* 1133 * Prepend a tag to the list of tags associated with an mbuf. 1134 */ 1135 static __inline void 1136 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1137 { 1138 1139 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1140 } 1141 1142 /* 1143 * Unlink a tag from the list of tags associated with an mbuf. 1144 */ 1145 static __inline void 1146 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1147 { 1148 1149 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1150 } 1151 1152 /* These are for OpenBSD compatibility. */ 1153 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1154 1155 static __inline struct m_tag * 1156 m_tag_get(int type, int length, int wait) 1157 { 1158 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1159 } 1160 1161 static __inline struct m_tag * 1162 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1163 { 1164 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1165 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1166 } 1167 1168 static __inline struct mbuf * 1169 m_free(struct mbuf *m) 1170 { 1171 struct mbuf *n = m->m_next; 1172 1173 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1174 m_tag_delete_chain(m, NULL); 1175 if (m->m_flags & M_EXT) 1176 mb_free_ext(m); 1177 else if ((m->m_flags & M_NOFREE) == 0) 1178 uma_zfree(zone_mbuf, m); 1179 return (n); 1180 } 1181 1182 static __inline int 1183 rt_m_getfib(struct mbuf *m) 1184 { 1185 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1186 return (m->m_pkthdr.fibnum); 1187 } 1188 1189 #define M_GETFIB(_m) rt_m_getfib(_m) 1190 1191 #define M_SETFIB(_m, _fib) do { \ 1192 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1193 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1194 } while (0) 1195 1196 /* flags passed as first argument for "m_ether_tcpip_hash()" */ 1197 #define MBUF_HASHFLAG_L2 (1 << 2) 1198 #define MBUF_HASHFLAG_L3 (1 << 3) 1199 #define MBUF_HASHFLAG_L4 (1 << 4) 1200 1201 /* mbuf hashing helper routines */ 1202 uint32_t m_ether_tcpip_hash_init(void); 1203 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, const uint32_t); 1204 1205 #ifdef MBUF_PROFILING 1206 void m_profile(struct mbuf *m); 1207 #define M_PROFILE(m) m_profile(m) 1208 #else 1209 #define M_PROFILE(m) 1210 #endif 1211 1212 struct mbufq { 1213 STAILQ_HEAD(, mbuf) mq_head; 1214 int mq_len; 1215 int mq_maxlen; 1216 }; 1217 1218 static inline void 1219 mbufq_init(struct mbufq *mq, int maxlen) 1220 { 1221 1222 STAILQ_INIT(&mq->mq_head); 1223 mq->mq_maxlen = maxlen; 1224 mq->mq_len = 0; 1225 } 1226 1227 static inline struct mbuf * 1228 mbufq_flush(struct mbufq *mq) 1229 { 1230 struct mbuf *m; 1231 1232 m = STAILQ_FIRST(&mq->mq_head); 1233 STAILQ_INIT(&mq->mq_head); 1234 mq->mq_len = 0; 1235 return (m); 1236 } 1237 1238 static inline void 1239 mbufq_drain(struct mbufq *mq) 1240 { 1241 struct mbuf *m, *n; 1242 1243 n = mbufq_flush(mq); 1244 while ((m = n) != NULL) { 1245 n = STAILQ_NEXT(m, m_stailqpkt); 1246 m_freem(m); 1247 } 1248 } 1249 1250 static inline struct mbuf * 1251 mbufq_first(const struct mbufq *mq) 1252 { 1253 1254 return (STAILQ_FIRST(&mq->mq_head)); 1255 } 1256 1257 static inline struct mbuf * 1258 mbufq_last(const struct mbufq *mq) 1259 { 1260 1261 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1262 } 1263 1264 static inline int 1265 mbufq_full(const struct mbufq *mq) 1266 { 1267 1268 return (mq->mq_len >= mq->mq_maxlen); 1269 } 1270 1271 static inline int 1272 mbufq_len(const struct mbufq *mq) 1273 { 1274 1275 return (mq->mq_len); 1276 } 1277 1278 static inline int 1279 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1280 { 1281 1282 if (mbufq_full(mq)) 1283 return (ENOBUFS); 1284 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1285 mq->mq_len++; 1286 return (0); 1287 } 1288 1289 static inline struct mbuf * 1290 mbufq_dequeue(struct mbufq *mq) 1291 { 1292 struct mbuf *m; 1293 1294 m = STAILQ_FIRST(&mq->mq_head); 1295 if (m) { 1296 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1297 m->m_nextpkt = NULL; 1298 mq->mq_len--; 1299 } 1300 return (m); 1301 } 1302 1303 static inline void 1304 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1305 { 1306 1307 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1308 mq->mq_len++; 1309 } 1310 #endif /* _KERNEL */ 1311 #endif /* !_SYS_MBUF_H_ */ 1312