1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 33 * $FreeBSD$ 34 */ 35 36 #ifndef _SYS_MBUF_H_ 37 #define _SYS_MBUF_H_ 38 39 /* XXX: These includes suck. Sorry! */ 40 #include <sys/queue.h> 41 #ifdef _KERNEL 42 #include <sys/systm.h> 43 #include <sys/refcount.h> 44 #include <vm/uma.h> 45 #ifdef WITNESS 46 #include <sys/lock.h> 47 #endif 48 #endif 49 50 #ifdef _KERNEL 51 #include <sys/sdt.h> 52 53 #define MBUF_PROBE1(probe, arg0) \ 54 SDT_PROBE1(sdt, , , probe, arg0) 55 #define MBUF_PROBE2(probe, arg0, arg1) \ 56 SDT_PROBE2(sdt, , , probe, arg0, arg1) 57 #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ 58 SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) 59 #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ 60 SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) 61 #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ 62 SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) 63 64 SDT_PROBE_DECLARE(sdt, , , m__init); 65 SDT_PROBE_DECLARE(sdt, , , m__gethdr_raw); 66 SDT_PROBE_DECLARE(sdt, , , m__gethdr); 67 SDT_PROBE_DECLARE(sdt, , , m__get_raw); 68 SDT_PROBE_DECLARE(sdt, , , m__get); 69 SDT_PROBE_DECLARE(sdt, , , m__getcl); 70 SDT_PROBE_DECLARE(sdt, , , m__getjcl); 71 SDT_PROBE_DECLARE(sdt, , , m__clget); 72 SDT_PROBE_DECLARE(sdt, , , m__cljget); 73 SDT_PROBE_DECLARE(sdt, , , m__cljset); 74 SDT_PROBE_DECLARE(sdt, , , m__free); 75 SDT_PROBE_DECLARE(sdt, , , m__freem); 76 77 #endif /* _KERNEL */ 78 79 /* 80 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 81 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 82 * sys/param.h), which has no additional overhead and is used instead of the 83 * internal data area; this is done when at least MINCLSIZE of data must be 84 * stored. Additionally, it is possible to allocate a separate buffer 85 * externally and attach it to the mbuf in a way similar to that of mbuf 86 * clusters. 87 * 88 * NB: These calculation do not take actual compiler-induced alignment and 89 * padding inside the complete struct mbuf into account. Appropriate 90 * attention is required when changing members of struct mbuf. 91 * 92 * MLEN is data length in a normal mbuf. 93 * MHLEN is data length in an mbuf with pktheader. 94 * MINCLSIZE is a smallest amount of data that should be put into cluster. 95 * 96 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 97 * they are sensible. 98 */ 99 struct mbuf; 100 #define MHSIZE offsetof(struct mbuf, m_dat) 101 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 102 #define MLEN ((int)(MSIZE - MHSIZE)) 103 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 104 #define MINCLSIZE (MHLEN + 1) 105 #define M_NODOM 255 106 107 #ifdef _KERNEL 108 /*- 109 * Macro for type conversion: convert mbuf pointer to data pointer of correct 110 * type: 111 * 112 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 113 * mtodo(m, o) -- Same as above but with offset 'o' into data. 114 */ 115 #define mtod(m, t) ((t)((m)->m_data)) 116 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 117 118 /* 119 * Argument structure passed to UMA routines during mbuf and packet 120 * allocations. 121 */ 122 struct mb_args { 123 int flags; /* Flags for mbuf being allocated */ 124 short type; /* Type of mbuf being allocated */ 125 }; 126 #endif /* _KERNEL */ 127 128 /* 129 * Packet tag structure (see below for details). 130 */ 131 struct m_tag { 132 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 133 u_int16_t m_tag_id; /* Tag ID */ 134 u_int16_t m_tag_len; /* Length of data */ 135 u_int32_t m_tag_cookie; /* ABI/Module ID */ 136 void (*m_tag_free)(struct m_tag *); 137 }; 138 139 /* 140 * Static network interface owned tag. 141 * Allocated through ifp->if_snd_tag_alloc(). 142 */ 143 struct if_snd_tag_sw; 144 145 struct m_snd_tag { 146 struct ifnet *ifp; /* network interface tag belongs to */ 147 const struct if_snd_tag_sw *sw; 148 volatile u_int refcount; 149 }; 150 151 /* 152 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 153 * Size ILP32: 48 154 * LP64: 56 155 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 156 * they are correct. 157 */ 158 struct pkthdr { 159 union { 160 struct m_snd_tag *snd_tag; /* send tag, if any */ 161 struct ifnet *rcvif; /* rcv interface */ 162 }; 163 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 164 int32_t len; /* total packet length */ 165 166 /* Layer crossing persistent information. */ 167 uint32_t flowid; /* packet's 4-tuple system */ 168 uint32_t csum_flags; /* checksum and offload features */ 169 uint16_t fibnum; /* this packet should use this fib */ 170 uint8_t numa_domain; /* NUMA domain of recvd pkt */ 171 uint8_t rsstype; /* hash type */ 172 union { 173 uint64_t rcv_tstmp; /* timestamp in ns */ 174 struct { 175 uint8_t l2hlen; /* layer 2 hdr len */ 176 uint8_t l3hlen; /* layer 3 hdr len */ 177 uint8_t l4hlen; /* layer 4 hdr len */ 178 uint8_t l5hlen; /* layer 5 hdr len */ 179 uint8_t inner_l2hlen; 180 uint8_t inner_l3hlen; 181 uint8_t inner_l4hlen; 182 uint8_t inner_l5hlen; 183 }; 184 }; 185 union { 186 uint8_t eight[8]; 187 uint16_t sixteen[4]; 188 uint32_t thirtytwo[2]; 189 uint64_t sixtyfour[1]; 190 uintptr_t unintptr[1]; 191 void *ptr; 192 } PH_per; 193 194 /* Layer specific non-persistent local storage for reassembly, etc. */ 195 union { 196 uint8_t eight[8]; 197 uint16_t sixteen[4]; 198 uint32_t thirtytwo[2]; 199 uint64_t sixtyfour[1]; 200 uintptr_t unintptr[1]; 201 void *ptr; 202 } PH_loc; 203 }; 204 #define ether_vtag PH_per.sixteen[0] 205 #define tcp_tun_port PH_per.sixteen[0] /* outbound */ 206 #define PH_vt PH_per 207 #define vt_nrecs sixteen[0] /* mld and v6-ND */ 208 #define tso_segsz PH_per.sixteen[1] /* inbound after LRO */ 209 #define lro_nsegs tso_segsz /* inbound after LRO */ 210 #define csum_data PH_per.thirtytwo[1] /* inbound from hardware up */ 211 #define lro_tcp_d_len PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */ 212 #define lro_tcp_d_csum PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */ 213 #define lro_tcp_h_off PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */ 214 #define lro_etype PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */ 215 /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */ 216 217 /* 218 * TLS records for TLS 1.0-1.2 can have the following header lengths: 219 * - 5 (AES-CBC with implicit IV) 220 * - 21 (AES-CBC with explicit IV) 221 * - 13 (AES-GCM with 8 byte explicit IV) 222 */ 223 #define MBUF_PEXT_HDR_LEN 23 224 225 /* 226 * TLS records for TLS 1.0-1.2 can have the following maximum trailer 227 * lengths: 228 * - 16 (AES-GCM) 229 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding) 230 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding) 231 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding) 232 */ 233 #define MBUF_PEXT_TRAIL_LEN 64 234 235 #if defined(__LP64__) 236 #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t)) 237 #else 238 #define MBUF_PEXT_MAX_PGS (72 / sizeof(vm_paddr_t)) 239 #endif 240 241 #define MBUF_PEXT_MAX_BYTES \ 242 (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN) 243 244 struct ktls_session; 245 struct socket; 246 247 /* 248 * Description of external storage mapped into mbuf; valid only if M_EXT is 249 * set. 250 * Size ILP32: 28 251 * LP64: 48 252 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 253 * they are correct. 254 */ 255 typedef void m_ext_free_t(struct mbuf *); 256 struct m_ext { 257 union { 258 /* 259 * If EXT_FLAG_EMBREF is set, then we use refcount in the 260 * mbuf, the 'ext_count' member. Otherwise, we have a 261 * shadow copy and we use pointer 'ext_cnt'. The original 262 * mbuf is responsible to carry the pointer to free routine 263 * and its arguments. They aren't copied into shadows in 264 * mb_dupcl() to avoid dereferencing next cachelines. 265 */ 266 volatile u_int ext_count; 267 volatile u_int *ext_cnt; 268 }; 269 uint32_t ext_size; /* size of buffer, for ext_free */ 270 uint32_t ext_type:8, /* type of external storage */ 271 ext_flags:24; /* external storage mbuf flags */ 272 union { 273 struct { 274 /* 275 * Regular M_EXT mbuf: 276 * o ext_buf always points to the external buffer. 277 * o ext_free (below) and two optional arguments 278 * ext_arg1 and ext_arg2 store the free context for 279 * the external storage. They are set only in the 280 * refcount carrying mbuf, the one with 281 * EXT_FLAG_EMBREF flag, with exclusion for 282 * EXT_EXTREF type, where the free context is copied 283 * into all mbufs that use same external storage. 284 */ 285 char *ext_buf; /* start of buffer */ 286 #define m_ext_copylen offsetof(struct m_ext, ext_arg2) 287 void *ext_arg2; 288 }; 289 struct { 290 /* 291 * Multi-page M_EXTPG mbuf: 292 * o extpg_pa - page vector. 293 * o extpg_trail and extpg_hdr - TLS trailer and 294 * header. 295 * Uses ext_free and may also use ext_arg1. 296 */ 297 vm_paddr_t extpg_pa[MBUF_PEXT_MAX_PGS]; 298 char extpg_trail[MBUF_PEXT_TRAIL_LEN]; 299 char extpg_hdr[MBUF_PEXT_HDR_LEN]; 300 /* Pretend these 3 fields are part of mbuf itself. */ 301 #define m_epg_pa m_ext.extpg_pa 302 #define m_epg_trail m_ext.extpg_trail 303 #define m_epg_hdr m_ext.extpg_hdr 304 #define m_epg_ext_copylen offsetof(struct m_ext, ext_free) 305 }; 306 }; 307 /* 308 * Free method and optional argument pointer, both 309 * used by M_EXT and M_EXTPG. 310 */ 311 m_ext_free_t *ext_free; 312 void *ext_arg1; 313 }; 314 315 /* 316 * The core of the mbuf object along with some shortcut defines for practical 317 * purposes. 318 */ 319 struct mbuf { 320 /* 321 * Header present at the beginning of every mbuf. 322 * Size ILP32: 24 323 * LP64: 32 324 * Compile-time assertions in uipc_mbuf.c test these values to ensure 325 * that they are correct. 326 */ 327 union { /* next buffer in chain */ 328 struct mbuf *m_next; 329 SLIST_ENTRY(mbuf) m_slist; 330 STAILQ_ENTRY(mbuf) m_stailq; 331 }; 332 union { /* next chain in queue/record */ 333 struct mbuf *m_nextpkt; 334 SLIST_ENTRY(mbuf) m_slistpkt; 335 STAILQ_ENTRY(mbuf) m_stailqpkt; 336 }; 337 caddr_t m_data; /* location of data */ 338 int32_t m_len; /* amount of data in this mbuf */ 339 uint32_t m_type:8, /* type of data in this mbuf */ 340 m_flags:24; /* flags; see below */ 341 #if !defined(__LP64__) 342 uint32_t m_pad; /* pad for 64bit alignment */ 343 #endif 344 345 /* 346 * A set of optional headers (packet header, external storage header) 347 * and internal data storage. Historically, these arrays were sized 348 * to MHLEN (space left after a packet header) and MLEN (space left 349 * after only a regular mbuf header); they are now variable size in 350 * order to support future work on variable-size mbufs. 351 */ 352 union { 353 struct { 354 union { 355 /* M_PKTHDR set. */ 356 struct pkthdr m_pkthdr; 357 358 /* M_EXTPG set. 359 * Multi-page M_EXTPG mbuf has its meta data 360 * split between the below anonymous structure 361 * and m_ext. It carries vector of pages, 362 * optional header and trailer char vectors 363 * and pointers to socket/TLS data. 364 */ 365 #define m_epg_startcopy m_epg_npgs 366 #define m_epg_endcopy m_epg_stailq 367 struct { 368 /* Overall count of pages and count of 369 * pages with I/O pending. */ 370 uint8_t m_epg_npgs; 371 uint8_t m_epg_nrdy; 372 /* TLS header and trailer lengths. 373 * The data itself resides in m_ext. */ 374 uint8_t m_epg_hdrlen; 375 uint8_t m_epg_trllen; 376 /* Offset into 1st page and length of 377 * data in the last page. */ 378 uint16_t m_epg_1st_off; 379 uint16_t m_epg_last_len; 380 uint8_t m_epg_flags; 381 #define EPG_FLAG_ANON 0x1 /* Data can be encrypted in place. */ 382 #define EPG_FLAG_2FREE 0x2 /* Scheduled for free. */ 383 uint8_t m_epg_record_type; 384 uint8_t __spare[2]; 385 int m_epg_enc_cnt; 386 struct ktls_session *m_epg_tls; 387 struct socket *m_epg_so; 388 uint64_t m_epg_seqno; 389 STAILQ_ENTRY(mbuf) m_epg_stailq; 390 }; 391 }; 392 union { 393 /* M_EXT or M_EXTPG set. */ 394 struct m_ext m_ext; 395 /* M_PKTHDR set, neither M_EXT nor M_EXTPG. */ 396 char m_pktdat[0]; 397 }; 398 }; 399 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 400 }; 401 }; 402 403 #ifdef _KERNEL 404 static inline int 405 m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff) 406 { 407 408 KASSERT(pgoff == 0 || pidx == 0, 409 ("page %d with non-zero offset %d in %p", pidx, pgoff, m)); 410 411 if (pidx == m->m_epg_npgs - 1) { 412 return (m->m_epg_last_len); 413 } else { 414 return (PAGE_SIZE - pgoff); 415 } 416 } 417 418 #ifdef INVARIANTS 419 #define MCHECK(ex, msg) KASSERT((ex), \ 420 ("Multi page mbuf %p with " #msg " at %s:%d", \ 421 m, __FILE__, __LINE__)) 422 /* 423 * NB: This expects a non-empty buffer (npgs > 0 and 424 * last_pg_len > 0). 425 */ 426 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do { \ 427 MCHECK(m->m_epg_npgs > 0, "no valid pages"); \ 428 MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa), \ 429 "too many pages"); \ 430 MCHECK(m->m_epg_nrdy <= m->m_epg_npgs, \ 431 "too many ready pages"); \ 432 MCHECK(m->m_epg_1st_off < PAGE_SIZE, \ 433 "too large page offset"); \ 434 MCHECK(m->m_epg_last_len > 0, "zero last page length"); \ 435 MCHECK(m->m_epg_last_len <= PAGE_SIZE, \ 436 "too large last page length"); \ 437 if (m->m_epg_npgs == 1) \ 438 MCHECK(m->m_epg_1st_off + \ 439 m->m_epg_last_len <= PAGE_SIZE, \ 440 "single page too large"); \ 441 MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr), \ 442 "too large header length"); \ 443 MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail), \ 444 "too large header length"); \ 445 } while (0) 446 #else 447 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do {} while (0); 448 #endif 449 #endif 450 451 /* 452 * mbuf flags of global significance and layer crossing. 453 * Those of only protocol/layer specific significance are to be mapped 454 * to M_PROTO[1-11] and cleared at layer handoff boundaries. 455 * NB: Limited to the lower 24 bits. 456 */ 457 #define M_EXT 0x00000001 /* has associated external storage */ 458 #define M_PKTHDR 0x00000002 /* start of record */ 459 #define M_EOR 0x00000004 /* end of record */ 460 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 461 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 462 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 463 #define M_PROMISC 0x00000040 /* packet was not for us */ 464 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 465 #define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */ 466 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 467 #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ 468 #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically 469 hw-stamped on port (useful for IEEE 1588 470 and 802.1AS) */ 471 #define M_TSTMP_LRO 0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */ 472 473 #define M_PROTO1 0x00002000 /* protocol-specific */ 474 #define M_PROTO2 0x00004000 /* protocol-specific */ 475 #define M_PROTO3 0x00008000 /* protocol-specific */ 476 #define M_PROTO4 0x00010000 /* protocol-specific */ 477 #define M_PROTO5 0x00020000 /* protocol-specific */ 478 #define M_PROTO6 0x00040000 /* protocol-specific */ 479 #define M_PROTO7 0x00080000 /* protocol-specific */ 480 #define M_PROTO8 0x00100000 /* protocol-specific */ 481 #define M_PROTO9 0x00200000 /* protocol-specific */ 482 #define M_PROTO10 0x00400000 /* protocol-specific */ 483 #define M_PROTO11 0x00800000 /* protocol-specific */ 484 485 /* 486 * Flags to purge when crossing layers. 487 */ 488 #define M_PROTOFLAGS \ 489 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 490 M_PROTO9|M_PROTO10|M_PROTO11) 491 492 /* 493 * Flags preserved when copying m_pkthdr. 494 */ 495 #define M_COPYFLAGS \ 496 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ 497 M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS) 498 499 /* 500 * Flags preserved during demote. 501 */ 502 #define M_DEMOTEFLAGS \ 503 (M_EXT | M_RDONLY | M_NOFREE | M_EXTPG) 504 505 /* 506 * Mbuf flag description for use with printf(9) %b identifier. 507 */ 508 #define M_FLAG_BITS \ 509 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 510 "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO" 511 #define M_FLAG_PROTOBITS \ 512 "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \ 513 "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \ 514 "\27M_PROTO10\28M_PROTO11" 515 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 516 517 /* 518 * Network interface cards are able to hash protocol fields (such as IPv4 519 * addresses and TCP port numbers) classify packets into flows. These flows 520 * can then be used to maintain ordering while delivering packets to the OS 521 * via parallel input queues, as well as to provide a stateless affinity 522 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 523 * m_flag fields to indicate how the hash should be interpreted by the 524 * network stack. 525 * 526 * Most NICs support RSS, which provides ordering and explicit affinity, and 527 * use the hash m_flag bits to indicate what header fields were covered by 528 * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- 529 * RSS cards or configurations that provide an opaque flow identifier, allowing 530 * for ordering and distribution without explicit affinity. Additionally, 531 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash 532 * properties. 533 * 534 * The meaning of the IPV6_EX suffix: 535 * "o Home address from the home address option in the IPv6 destination 536 * options header. If the extension header is not present, use the Source 537 * IPv6 Address. 538 * o IPv6 address that is contained in the Routing-Header-Type-2 from the 539 * associated extension header. If the extension header is not present, 540 * use the Destination IPv6 Address." 541 * Quoted from: 542 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex 543 */ 544 #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ 545 #define M_HASHTYPE_INNER 0x40 /* calculated from inner headers */ 546 #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) 547 /* Microsoft RSS standard hash types */ 548 #define M_HASHTYPE_NONE 0 549 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ 550 #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ 551 #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ 552 #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ 553 #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + 554 * ext hdrs */ 555 #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + 556 * ext hdrs */ 557 #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ 558 #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ 559 #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + 560 * ext hdrs */ 561 562 #define M_HASHTYPE_OPAQUE 0x3f /* ordering, not affinity */ 563 #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) 564 /* ordering+hash, not affinity*/ 565 566 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 567 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER) 568 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 569 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 570 #define M_HASHTYPE_ISHASH(m) \ 571 (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0) 572 #define M_HASHTYPE_SETINNER(m) do { \ 573 (m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER; \ 574 } while (0) 575 576 /* 577 * External mbuf storage buffer types. 578 */ 579 #define EXT_CLUSTER 1 /* mbuf cluster */ 580 #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ 581 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 582 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 583 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 584 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 585 #define EXT_MBUF 7 /* external mbuf reference */ 586 #define EXT_RXRING 8 /* data in NIC receive ring */ 587 588 #define EXT_VENDOR1 224 /* for vendor-internal use */ 589 #define EXT_VENDOR2 225 /* for vendor-internal use */ 590 #define EXT_VENDOR3 226 /* for vendor-internal use */ 591 #define EXT_VENDOR4 227 /* for vendor-internal use */ 592 593 #define EXT_EXP1 244 /* for experimental use */ 594 #define EXT_EXP2 245 /* for experimental use */ 595 #define EXT_EXP3 246 /* for experimental use */ 596 #define EXT_EXP4 247 /* for experimental use */ 597 598 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 599 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 600 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 601 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 602 603 /* 604 * Flags for external mbuf buffer types. 605 * NB: limited to the lower 24 bits. 606 */ 607 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ 608 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 609 610 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 611 612 #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ 613 #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ 614 #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ 615 #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ 616 617 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 618 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 619 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 620 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 621 622 /* 623 * EXT flag description for use with printf(9) %b identifier. 624 */ 625 #define EXT_FLAG_BITS \ 626 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 627 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 628 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 629 "\30EXT_FLAG_EXP4" 630 631 /* 632 * Flags indicating checksum, segmentation and other offload work to be 633 * done, or already done, by hardware or lower layers. It is split into 634 * separate inbound and outbound flags. 635 * 636 * Outbound flags that are set by upper protocol layers requesting lower 637 * layers, or ideally the hardware, to perform these offloading tasks. 638 * For outbound packets this field and its flags can be directly tested 639 * against ifnet if_hwassist. Note that the outbound and the inbound flags do 640 * not collide right now but they could be allowed to (as long as the flags are 641 * scrubbed appropriately when the direction of an mbuf changes). CSUM_BITS 642 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX. 643 * 644 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame. 645 * The CSUM_ENCAP_<x> bits identify the outer encapsulation. 646 */ 647 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 648 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 649 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 650 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 651 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 652 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 653 654 #define CSUM_INNER_IP6_UDP 0x00000040 655 #define CSUM_INNER_IP6_TCP 0x00000080 656 #define CSUM_INNER_IP6_TSO 0x00000100 657 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 658 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 659 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 660 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 661 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 662 663 #define CSUM_INNER_IP 0x00004000 664 #define CSUM_INNER_IP_UDP 0x00008000 665 #define CSUM_INNER_IP_TCP 0x00010000 666 #define CSUM_INNER_IP_TSO 0x00020000 667 668 #define CSUM_ENCAP_VXLAN 0x00040000 /* VXLAN outer encapsulation */ 669 #define CSUM_ENCAP_RSVD1 0x00080000 670 671 /* Inbound checksum support where the checksum was verified by hardware. */ 672 #define CSUM_INNER_L3_CALC 0x00100000 673 #define CSUM_INNER_L3_VALID 0x00200000 674 #define CSUM_INNER_L4_CALC 0x00400000 675 #define CSUM_INNER_L4_VALID 0x00800000 676 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 677 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 678 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 679 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 680 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 681 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 682 #define CSUM_COALESCED 0x40000000 /* contains merged segments */ 683 684 #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ 685 686 #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 687 CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \ 688 CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \ 689 CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \ 690 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \ 691 CSUM_ENCAP_RSVD1 | CSUM_SND_TAG) 692 693 #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \ 694 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \ 695 CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \ 696 CSUM_COALESCED) 697 698 /* 699 * CSUM flag description for use with printf(9) %b identifier. 700 */ 701 #define CSUM_BITS \ 702 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 703 "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \ 704 "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \ 705 "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \ 706 "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \ 707 "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \ 708 "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \ 709 "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \ 710 "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" 711 712 /* CSUM flags compatibility mappings. */ 713 #define CSUM_IP_CHECKED CSUM_L3_CALC 714 #define CSUM_IP_VALID CSUM_L3_VALID 715 #define CSUM_DATA_VALID CSUM_L4_VALID 716 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 717 #define CSUM_SCTP_VALID CSUM_L4_VALID 718 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 719 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 720 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 721 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 722 #define CSUM_TCP CSUM_IP_TCP 723 #define CSUM_UDP CSUM_IP_UDP 724 #define CSUM_SCTP CSUM_IP_SCTP 725 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 726 #define CSUM_INNER_TSO (CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO) 727 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 728 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 729 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 730 #define CSUM_TLS_MASK (CSUM_L5_CALC|CSUM_L5_VALID) 731 #define CSUM_TLS_DECRYPTED CSUM_L5_CALC 732 733 /* 734 * mbuf types describing the content of the mbuf (including external storage). 735 */ 736 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 737 #define MT_DATA 1 /* dynamic (data) allocation */ 738 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 739 740 #define MT_VENDOR1 4 /* for vendor-internal use */ 741 #define MT_VENDOR2 5 /* for vendor-internal use */ 742 #define MT_VENDOR3 6 /* for vendor-internal use */ 743 #define MT_VENDOR4 7 /* for vendor-internal use */ 744 745 #define MT_SONAME 8 /* socket name */ 746 747 #define MT_EXP1 9 /* for experimental use */ 748 #define MT_EXP2 10 /* for experimental use */ 749 #define MT_EXP3 11 /* for experimental use */ 750 #define MT_EXP4 12 /* for experimental use */ 751 752 #define MT_CONTROL 14 /* extra-data protocol message */ 753 #define MT_EXTCONTROL 15 /* control message with externalized contents */ 754 #define MT_OOBDATA 16 /* expedited data */ 755 756 #define MT_NOINIT 255 /* Not a type but a flag to allocate 757 a non-initialized mbuf */ 758 759 /* 760 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 761 * !_KERNEL so that monitoring tools can look up the zones with 762 * libmemstat(3). 763 */ 764 #define MBUF_MEM_NAME "mbuf" 765 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 766 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 767 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 768 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 769 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 770 #define MBUF_TAG_MEM_NAME "mbuf_tag" 771 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 772 #define MBUF_EXTPGS_MEM_NAME "mbuf_extpgs" 773 774 #ifdef _KERNEL 775 union if_snd_tag_alloc_params; 776 777 #ifdef WITNESS 778 #define MBUF_CHECKSLEEP(how) do { \ 779 if (how == M_WAITOK) \ 780 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 781 "Sleeping in \"%s\"", __func__); \ 782 } while (0) 783 #else 784 #define MBUF_CHECKSLEEP(how) 785 #endif 786 787 /* 788 * Network buffer allocation API 789 * 790 * The rest of it is defined in kern/kern_mbuf.c 791 */ 792 extern uma_zone_t zone_mbuf; 793 extern uma_zone_t zone_clust; 794 extern uma_zone_t zone_pack; 795 extern uma_zone_t zone_jumbop; 796 extern uma_zone_t zone_jumbo9; 797 extern uma_zone_t zone_jumbo16; 798 extern uma_zone_t zone_extpgs; 799 800 void mb_dupcl(struct mbuf *, struct mbuf *); 801 void mb_free_ext(struct mbuf *); 802 void mb_free_extpg(struct mbuf *); 803 void mb_free_mext_pgs(struct mbuf *); 804 struct mbuf *mb_alloc_ext_pgs(int, m_ext_free_t); 805 struct mbuf *mb_alloc_ext_plus_pages(int, int); 806 struct mbuf *mb_mapped_to_unmapped(struct mbuf *, int, int, int, 807 struct mbuf **); 808 int mb_unmapped_compress(struct mbuf *m); 809 struct mbuf *mb_unmapped_to_ext(struct mbuf *m); 810 void mb_free_notready(struct mbuf *m, int count); 811 void m_adj(struct mbuf *, int); 812 void m_adj_decap(struct mbuf *, int); 813 int m_apply(struct mbuf *, int, int, 814 int (*)(void *, void *, u_int), void *); 815 int m_append(struct mbuf *, int, c_caddr_t); 816 void m_cat(struct mbuf *, struct mbuf *); 817 void m_catpkt(struct mbuf *, struct mbuf *); 818 int m_clget(struct mbuf *m, int how); 819 void *m_cljget(struct mbuf *m, int how, int size); 820 struct mbuf *m_collapse(struct mbuf *, int, int); 821 void m_copyback(struct mbuf *, int, int, c_caddr_t); 822 void m_copydata(const struct mbuf *, int, int, caddr_t); 823 struct mbuf *m_copym(struct mbuf *, int, int, int); 824 struct mbuf *m_copypacket(struct mbuf *, int); 825 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 826 struct mbuf *m_copyup(struct mbuf *, int, int); 827 struct mbuf *m_defrag(struct mbuf *, int); 828 void m_demote_pkthdr(struct mbuf *); 829 void m_demote(struct mbuf *, int, int); 830 struct mbuf *m_devget(char *, int, int, struct ifnet *, 831 void (*)(char *, caddr_t, u_int)); 832 void m_dispose_extcontrolm(struct mbuf *m); 833 struct mbuf *m_dup(const struct mbuf *, int); 834 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 835 void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, 836 void *, void *, int, int); 837 u_int m_fixhdr(struct mbuf *); 838 struct mbuf *m_fragment(struct mbuf *, int, int); 839 void m_freem(struct mbuf *); 840 void m_free_raw(struct mbuf *); 841 struct mbuf *m_get2(int, int, short, int); 842 struct mbuf *m_get3(int, int, short, int); 843 struct mbuf *m_getjcl(int, short, int, int); 844 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 845 struct mbuf *m_getptr(struct mbuf *, int, int *); 846 u_int m_length(struct mbuf *, struct mbuf **); 847 int m_mbuftouio(struct uio *, const struct mbuf *, int); 848 void m_move_pkthdr(struct mbuf *, struct mbuf *); 849 int m_pkthdr_init(struct mbuf *, int); 850 struct mbuf *m_prepend(struct mbuf *, int, int); 851 void m_print(const struct mbuf *, int); 852 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 853 struct mbuf *m_pullup(struct mbuf *, int); 854 int m_sanity(struct mbuf *, int); 855 struct mbuf *m_split(struct mbuf *, int, int); 856 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 857 int m_unmapped_uiomove(const struct mbuf *, int, struct uio *, 858 int); 859 struct mbuf *m_unshare(struct mbuf *, int); 860 int m_snd_tag_alloc(struct ifnet *, 861 union if_snd_tag_alloc_params *, struct m_snd_tag **); 862 void m_snd_tag_init(struct m_snd_tag *, struct ifnet *, 863 const struct if_snd_tag_sw *); 864 void m_snd_tag_destroy(struct m_snd_tag *); 865 866 static __inline int 867 m_gettype(int size) 868 { 869 int type; 870 871 switch (size) { 872 case MSIZE: 873 type = EXT_MBUF; 874 break; 875 case MCLBYTES: 876 type = EXT_CLUSTER; 877 break; 878 #if MJUMPAGESIZE != MCLBYTES 879 case MJUMPAGESIZE: 880 type = EXT_JUMBOP; 881 break; 882 #endif 883 case MJUM9BYTES: 884 type = EXT_JUMBO9; 885 break; 886 case MJUM16BYTES: 887 type = EXT_JUMBO16; 888 break; 889 default: 890 panic("%s: invalid cluster size %d", __func__, size); 891 } 892 893 return (type); 894 } 895 896 /* 897 * Associated an external reference counted buffer with an mbuf. 898 */ 899 static __inline void 900 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, 901 m_ext_free_t freef, void *arg1, void *arg2) 902 { 903 904 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 905 906 atomic_add_int(ref_cnt, 1); 907 m->m_flags |= M_EXT; 908 m->m_ext.ext_buf = buf; 909 m->m_ext.ext_cnt = ref_cnt; 910 m->m_data = m->m_ext.ext_buf; 911 m->m_ext.ext_size = size; 912 m->m_ext.ext_free = freef; 913 m->m_ext.ext_arg1 = arg1; 914 m->m_ext.ext_arg2 = arg2; 915 m->m_ext.ext_type = EXT_EXTREF; 916 m->m_ext.ext_flags = 0; 917 } 918 919 static __inline uma_zone_t 920 m_getzone(int size) 921 { 922 uma_zone_t zone; 923 924 switch (size) { 925 case MCLBYTES: 926 zone = zone_clust; 927 break; 928 #if MJUMPAGESIZE != MCLBYTES 929 case MJUMPAGESIZE: 930 zone = zone_jumbop; 931 break; 932 #endif 933 case MJUM9BYTES: 934 zone = zone_jumbo9; 935 break; 936 case MJUM16BYTES: 937 zone = zone_jumbo16; 938 break; 939 default: 940 panic("%s: invalid cluster size %d", __func__, size); 941 } 942 943 return (zone); 944 } 945 946 /* 947 * Initialize an mbuf with linear storage. 948 * 949 * Inline because the consumer text overhead will be roughly the same to 950 * initialize or call a function with this many parameters and M_PKTHDR 951 * should go away with constant propagation for !MGETHDR. 952 */ 953 static __inline int 954 m_init(struct mbuf *m, int how, short type, int flags) 955 { 956 int error; 957 958 m->m_next = NULL; 959 m->m_nextpkt = NULL; 960 m->m_data = m->m_dat; 961 m->m_len = 0; 962 m->m_flags = flags; 963 m->m_type = type; 964 if (flags & M_PKTHDR) 965 error = m_pkthdr_init(m, how); 966 else 967 error = 0; 968 969 MBUF_PROBE5(m__init, m, how, type, flags, error); 970 return (error); 971 } 972 973 static __inline struct mbuf * 974 m_get_raw(int how, short type) 975 { 976 struct mbuf *m; 977 struct mb_args args; 978 979 args.flags = 0; 980 args.type = type | MT_NOINIT; 981 m = uma_zalloc_arg(zone_mbuf, &args, how); 982 MBUF_PROBE3(m__get_raw, how, type, m); 983 return (m); 984 } 985 986 static __inline struct mbuf * 987 m_get(int how, short type) 988 { 989 struct mbuf *m; 990 struct mb_args args; 991 992 args.flags = 0; 993 args.type = type; 994 m = uma_zalloc_arg(zone_mbuf, &args, how); 995 MBUF_PROBE3(m__get, how, type, m); 996 return (m); 997 } 998 999 static __inline struct mbuf * 1000 m_gethdr_raw(int how, short type) 1001 { 1002 struct mbuf *m; 1003 struct mb_args args; 1004 1005 args.flags = M_PKTHDR; 1006 args.type = type | MT_NOINIT; 1007 m = uma_zalloc_arg(zone_mbuf, &args, how); 1008 MBUF_PROBE3(m__gethdr_raw, how, type, m); 1009 return (m); 1010 } 1011 1012 static __inline struct mbuf * 1013 m_gethdr(int how, short type) 1014 { 1015 struct mbuf *m; 1016 struct mb_args args; 1017 1018 args.flags = M_PKTHDR; 1019 args.type = type; 1020 m = uma_zalloc_arg(zone_mbuf, &args, how); 1021 MBUF_PROBE3(m__gethdr, how, type, m); 1022 return (m); 1023 } 1024 1025 static __inline struct mbuf * 1026 m_getcl(int how, short type, int flags) 1027 { 1028 struct mbuf *m; 1029 struct mb_args args; 1030 1031 args.flags = flags; 1032 args.type = type; 1033 m = uma_zalloc_arg(zone_pack, &args, how); 1034 MBUF_PROBE4(m__getcl, how, type, flags, m); 1035 return (m); 1036 } 1037 1038 /* 1039 * XXX: m_cljset() is a dangerous API. One must attach only a new, 1040 * unreferenced cluster to an mbuf(9). It is not possible to assert 1041 * that, so care can be taken only by users of the API. 1042 */ 1043 static __inline void 1044 m_cljset(struct mbuf *m, void *cl, int type) 1045 { 1046 int size; 1047 1048 switch (type) { 1049 case EXT_CLUSTER: 1050 size = MCLBYTES; 1051 break; 1052 #if MJUMPAGESIZE != MCLBYTES 1053 case EXT_JUMBOP: 1054 size = MJUMPAGESIZE; 1055 break; 1056 #endif 1057 case EXT_JUMBO9: 1058 size = MJUM9BYTES; 1059 break; 1060 case EXT_JUMBO16: 1061 size = MJUM16BYTES; 1062 break; 1063 default: 1064 panic("%s: unknown cluster type %d", __func__, type); 1065 break; 1066 } 1067 1068 m->m_data = m->m_ext.ext_buf = cl; 1069 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 1070 m->m_ext.ext_size = size; 1071 m->m_ext.ext_type = type; 1072 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 1073 m->m_ext.ext_count = 1; 1074 m->m_flags |= M_EXT; 1075 MBUF_PROBE3(m__cljset, m, cl, type); 1076 } 1077 1078 static __inline void 1079 m_chtype(struct mbuf *m, short new_type) 1080 { 1081 1082 m->m_type = new_type; 1083 } 1084 1085 static __inline void 1086 m_clrprotoflags(struct mbuf *m) 1087 { 1088 1089 while (m) { 1090 m->m_flags &= ~M_PROTOFLAGS; 1091 m = m->m_next; 1092 } 1093 } 1094 1095 static __inline struct mbuf * 1096 m_last(struct mbuf *m) 1097 { 1098 1099 while (m->m_next) 1100 m = m->m_next; 1101 return (m); 1102 } 1103 1104 static inline u_int 1105 m_extrefcnt(struct mbuf *m) 1106 { 1107 1108 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); 1109 1110 return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : 1111 *m->m_ext.ext_cnt); 1112 } 1113 1114 /* 1115 * mbuf, cluster, and external object allocation macros (for compatibility 1116 * purposes). 1117 */ 1118 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 1119 #define MGET(m, how, type) ((m) = m_get((how), (type))) 1120 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 1121 #define MCLGET(m, how) m_clget((m), (how)) 1122 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 1123 m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ 1124 (flags), (type)) 1125 #define m_getm(m, len, how, type) \ 1126 m_getm2((m), (len), (how), (type), M_PKTHDR) 1127 1128 /* 1129 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 1130 * be both the local data payload, or an external buffer area, depending on 1131 * whether M_EXT is set). 1132 */ 1133 #define M_WRITABLE(m) (((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 && \ 1134 (!(((m)->m_flags & M_EXT)) || \ 1135 (m_extrefcnt(m) == 1))) 1136 1137 /* Check if the supplied mbuf has a packet header, or else panic. */ 1138 #define M_ASSERTPKTHDR(m) \ 1139 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 1140 ("%s: no mbuf packet header!", __func__)) 1141 1142 /* Check if mbuf is multipage. */ 1143 #define M_ASSERTEXTPG(m) \ 1144 KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG, \ 1145 ("%s: m %p is not multipage!", __func__, m)) 1146 1147 /* 1148 * Ensure that the supplied mbuf is a valid, non-free mbuf. 1149 * 1150 * XXX: Broken at the moment. Need some UMA magic to make it work again. 1151 */ 1152 #define M_ASSERTVALID(m) \ 1153 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 1154 ("%s: attempted use of a free mbuf!", __func__)) 1155 1156 /* Check whether any mbuf in the chain is unmapped. */ 1157 #ifdef INVARIANTS 1158 #define M_ASSERTMAPPED(m) do { \ 1159 for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next) \ 1160 KASSERT((__m->m_flags & M_EXTPG) == 0, \ 1161 ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\ 1162 } while (0) 1163 #else 1164 #define M_ASSERTMAPPED(m) 1165 #endif 1166 1167 /* 1168 * Return the address of the start of the buffer associated with an mbuf, 1169 * handling external storage, packet-header mbufs, and regular data mbufs. 1170 */ 1171 #define M_START(m) \ 1172 (((m)->m_flags & M_EXTPG) ? NULL : \ 1173 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 1174 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 1175 &(m)->m_dat[0]) 1176 1177 /* 1178 * Return the size of the buffer associated with an mbuf, handling external 1179 * storage, packet-header mbufs, and regular data mbufs. 1180 */ 1181 #define M_SIZE(m) \ 1182 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 1183 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 1184 MLEN) 1185 1186 /* 1187 * Set the m_data pointer of a newly allocated mbuf to place an object of the 1188 * specified size at the end of the mbuf, longword aligned. 1189 * 1190 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 1191 * separate macros, each asserting that it was called at the proper moment. 1192 * This required callers to themselves test the storage type and call the 1193 * right one. Rather than require callers to be aware of those layout 1194 * decisions, we centralize here. 1195 */ 1196 static __inline void 1197 m_align(struct mbuf *m, int len) 1198 { 1199 #ifdef INVARIANTS 1200 const char *msg = "%s: not a virgin mbuf"; 1201 #endif 1202 int adjust; 1203 1204 KASSERT(m->m_data == M_START(m), (msg, __func__)); 1205 1206 adjust = M_SIZE(m) - len; 1207 m->m_data += adjust &~ (sizeof(long)-1); 1208 } 1209 1210 #define M_ALIGN(m, len) m_align(m, len) 1211 #define MH_ALIGN(m, len) m_align(m, len) 1212 #define MEXT_ALIGN(m, len) m_align(m, len) 1213 1214 /* 1215 * Compute the amount of space available before the current start of data in 1216 * an mbuf. 1217 * 1218 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1219 * of checking writability of the mbuf data area rests solely with the caller. 1220 * 1221 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 1222 * for mbufs with external storage. We now allow mbuf-embedded data to be 1223 * read-only as well. 1224 */ 1225 #define M_LEADINGSPACE(m) \ 1226 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 1227 1228 /* 1229 * Compute the amount of space available after the end of data in an mbuf. 1230 * 1231 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1232 * of checking writability of the mbuf data area rests solely with the caller. 1233 * 1234 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 1235 * for mbufs with external storage. We now allow mbuf-embedded data to be 1236 * read-only as well. 1237 */ 1238 #define M_TRAILINGSPACE(m) \ 1239 (M_WRITABLE(m) ? \ 1240 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 1241 1242 /* 1243 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 1244 * allocated, how specifies whether to wait. If the allocation fails, the 1245 * original mbuf chain is freed and m is set to NULL. 1246 */ 1247 #define M_PREPEND(m, plen, how) do { \ 1248 struct mbuf **_mmp = &(m); \ 1249 struct mbuf *_mm = *_mmp; \ 1250 int _mplen = (plen); \ 1251 int __mhow = (how); \ 1252 \ 1253 MBUF_CHECKSLEEP(how); \ 1254 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 1255 _mm->m_data -= _mplen; \ 1256 _mm->m_len += _mplen; \ 1257 } else \ 1258 _mm = m_prepend(_mm, _mplen, __mhow); \ 1259 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 1260 _mm->m_pkthdr.len += _mplen; \ 1261 *_mmp = _mm; \ 1262 } while (0) 1263 1264 /* 1265 * Change mbuf to new type. This is a relatively expensive operation and 1266 * should be avoided. 1267 */ 1268 #define MCHTYPE(m, t) m_chtype((m), (t)) 1269 1270 /* Return the rcvif of a packet header. */ 1271 static __inline struct ifnet * 1272 m_rcvif(struct mbuf *m) 1273 { 1274 1275 M_ASSERTPKTHDR(m); 1276 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1277 return (NULL); 1278 return (m->m_pkthdr.rcvif); 1279 } 1280 1281 /* Length to m_copy to copy all. */ 1282 #define M_COPYALL 1000000000 1283 1284 extern int max_datalen; /* MHLEN - max_hdr */ 1285 extern int max_hdr; /* Largest link + protocol header */ 1286 extern int max_linkhdr; /* Largest link-level header */ 1287 extern int max_protohdr; /* Largest protocol header */ 1288 extern int nmbclusters; /* Maximum number of clusters */ 1289 extern bool mb_use_ext_pgs; /* Use ext_pgs for sendfile */ 1290 1291 /*- 1292 * Network packets may have annotations attached by affixing a list of 1293 * "packet tags" to the pkthdr structure. Packet tags are dynamically 1294 * allocated semi-opaque data structures that have a fixed header 1295 * (struct m_tag) that specifies the size of the memory block and a 1296 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 1297 * unsigned value used to identify a module or ABI. By convention this value 1298 * is chosen as the date+time that the module is created, expressed as the 1299 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 1300 * value is an ABI/module-specific value that identifies a particular 1301 * annotation and is private to the module. For compatibility with systems 1302 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 1303 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1304 * compatibility shim functions and several tag types are defined below. 1305 * Users that do not require compatibility should use a private cookie value 1306 * so that packet tag-related definitions can be maintained privately. 1307 * 1308 * Note that the packet tag returned by m_tag_alloc has the default memory 1309 * alignment implemented by malloc. To reference private data one can use a 1310 * construct like: 1311 * 1312 * struct m_tag *mtag = m_tag_alloc(...); 1313 * struct foo *p = (struct foo *)(mtag+1); 1314 * 1315 * if the alignment of struct m_tag is sufficient for referencing members of 1316 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1317 * private data structure to insure proper alignment; e.g., 1318 * 1319 * struct foo { 1320 * struct m_tag tag; 1321 * ... 1322 * }; 1323 * struct foo *p = (struct foo *) m_tag_alloc(...); 1324 * struct m_tag *mtag = &p->tag; 1325 */ 1326 1327 /* 1328 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1329 * tags are expected to ``vanish'' when they pass through a network 1330 * interface. For most interfaces this happens normally as the tags are 1331 * reclaimed when the mbuf is free'd. However in some special cases 1332 * reclaiming must be done manually. An example is packets that pass through 1333 * the loopback interface. Also, one must be careful to do this when 1334 * ``turning around'' packets (e.g., icmp_reflect). 1335 * 1336 * To mark a tag persistent bit-or this flag in when defining the tag id. 1337 * The tag will then be treated as described above. 1338 */ 1339 #define MTAG_PERSISTENT 0x800 1340 1341 #define PACKET_TAG_NONE 0 /* Nadda */ 1342 1343 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1344 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1345 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1346 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1347 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1348 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1349 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1350 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1351 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1352 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1353 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1354 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1355 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1356 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1357 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1358 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1359 #define PACKET_TAG_DIVERT 17 /* divert info */ 1360 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1361 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1362 #define PACKET_TAG_PF 21 /* PF/ALTQ information */ 1363 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1364 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1365 #define PACKET_TAG_CARP 28 /* CARP info */ 1366 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1367 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1368 1369 /* Specific cookies and tags. */ 1370 1371 /* Packet tag routines. */ 1372 struct m_tag *m_tag_alloc(uint32_t, uint16_t, int, int); 1373 void m_tag_delete(struct mbuf *, struct m_tag *); 1374 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1375 void m_tag_free_default(struct m_tag *); 1376 struct m_tag *m_tag_locate(struct mbuf *, uint32_t, uint16_t, 1377 struct m_tag *); 1378 struct m_tag *m_tag_copy(struct m_tag *, int); 1379 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1380 void m_tag_delete_nonpersistent(struct mbuf *); 1381 1382 /* 1383 * Initialize the list of tags associated with an mbuf. 1384 */ 1385 static __inline void 1386 m_tag_init(struct mbuf *m) 1387 { 1388 1389 SLIST_INIT(&m->m_pkthdr.tags); 1390 } 1391 1392 /* 1393 * Set up the contents of a tag. Note that this does not fill in the free 1394 * method; the caller is expected to do that. 1395 * 1396 * XXX probably should be called m_tag_init, but that was already taken. 1397 */ 1398 static __inline void 1399 m_tag_setup(struct m_tag *t, uint32_t cookie, uint16_t type, int len) 1400 { 1401 1402 t->m_tag_id = type; 1403 t->m_tag_len = len; 1404 t->m_tag_cookie = cookie; 1405 } 1406 1407 /* 1408 * Reclaim resources associated with a tag. 1409 */ 1410 static __inline void 1411 m_tag_free(struct m_tag *t) 1412 { 1413 1414 (*t->m_tag_free)(t); 1415 } 1416 1417 /* 1418 * Return the first tag associated with an mbuf. 1419 */ 1420 static __inline struct m_tag * 1421 m_tag_first(struct mbuf *m) 1422 { 1423 1424 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1425 } 1426 1427 /* 1428 * Return the next tag in the list of tags associated with an mbuf. 1429 */ 1430 static __inline struct m_tag * 1431 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1432 { 1433 1434 return (SLIST_NEXT(t, m_tag_link)); 1435 } 1436 1437 /* 1438 * Prepend a tag to the list of tags associated with an mbuf. 1439 */ 1440 static __inline void 1441 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1442 { 1443 1444 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1445 } 1446 1447 /* 1448 * Unlink a tag from the list of tags associated with an mbuf. 1449 */ 1450 static __inline void 1451 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1452 { 1453 1454 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1455 } 1456 1457 /* These are for OpenBSD compatibility. */ 1458 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1459 1460 static __inline struct m_tag * 1461 m_tag_get(uint16_t type, int length, int wait) 1462 { 1463 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1464 } 1465 1466 static __inline struct m_tag * 1467 m_tag_find(struct mbuf *m, uint16_t type, struct m_tag *start) 1468 { 1469 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1470 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1471 } 1472 1473 static inline struct m_snd_tag * 1474 m_snd_tag_ref(struct m_snd_tag *mst) 1475 { 1476 1477 refcount_acquire(&mst->refcount); 1478 return (mst); 1479 } 1480 1481 static inline void 1482 m_snd_tag_rele(struct m_snd_tag *mst) 1483 { 1484 1485 if (refcount_release(&mst->refcount)) 1486 m_snd_tag_destroy(mst); 1487 } 1488 1489 static __inline struct mbuf * 1490 m_free(struct mbuf *m) 1491 { 1492 struct mbuf *n = m->m_next; 1493 1494 MBUF_PROBE1(m__free, m); 1495 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1496 m_tag_delete_chain(m, NULL); 1497 if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1498 m_snd_tag_rele(m->m_pkthdr.snd_tag); 1499 if (m->m_flags & M_EXTPG) 1500 mb_free_extpg(m); 1501 else if (m->m_flags & M_EXT) 1502 mb_free_ext(m); 1503 else if ((m->m_flags & M_NOFREE) == 0) 1504 uma_zfree(zone_mbuf, m); 1505 return (n); 1506 } 1507 1508 static __inline int 1509 rt_m_getfib(struct mbuf *m) 1510 { 1511 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1512 return (m->m_pkthdr.fibnum); 1513 } 1514 1515 #define M_GETFIB(_m) rt_m_getfib(_m) 1516 1517 #define M_SETFIB(_m, _fib) do { \ 1518 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1519 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1520 } while (0) 1521 1522 /* flags passed as first argument for "m_xxx_tcpip_hash()" */ 1523 #define MBUF_HASHFLAG_L2 (1 << 2) 1524 #define MBUF_HASHFLAG_L3 (1 << 3) 1525 #define MBUF_HASHFLAG_L4 (1 << 4) 1526 1527 /* mbuf hashing helper routines */ 1528 uint32_t m_ether_tcpip_hash_init(void); 1529 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1530 uint32_t m_infiniband_tcpip_hash_init(void); 1531 uint32_t m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1532 1533 #ifdef MBUF_PROFILING 1534 void m_profile(struct mbuf *m); 1535 #define M_PROFILE(m) m_profile(m) 1536 #else 1537 #define M_PROFILE(m) 1538 #endif 1539 1540 struct mbufq { 1541 STAILQ_HEAD(, mbuf) mq_head; 1542 int mq_len; 1543 int mq_maxlen; 1544 }; 1545 1546 static inline void 1547 mbufq_init(struct mbufq *mq, int maxlen) 1548 { 1549 1550 STAILQ_INIT(&mq->mq_head); 1551 mq->mq_maxlen = maxlen; 1552 mq->mq_len = 0; 1553 } 1554 1555 static inline struct mbuf * 1556 mbufq_flush(struct mbufq *mq) 1557 { 1558 struct mbuf *m; 1559 1560 m = STAILQ_FIRST(&mq->mq_head); 1561 STAILQ_INIT(&mq->mq_head); 1562 mq->mq_len = 0; 1563 return (m); 1564 } 1565 1566 static inline void 1567 mbufq_drain(struct mbufq *mq) 1568 { 1569 struct mbuf *m, *n; 1570 1571 n = mbufq_flush(mq); 1572 while ((m = n) != NULL) { 1573 n = STAILQ_NEXT(m, m_stailqpkt); 1574 m_freem(m); 1575 } 1576 } 1577 1578 static inline struct mbuf * 1579 mbufq_first(const struct mbufq *mq) 1580 { 1581 1582 return (STAILQ_FIRST(&mq->mq_head)); 1583 } 1584 1585 static inline struct mbuf * 1586 mbufq_last(const struct mbufq *mq) 1587 { 1588 1589 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1590 } 1591 1592 static inline int 1593 mbufq_full(const struct mbufq *mq) 1594 { 1595 1596 return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen); 1597 } 1598 1599 static inline int 1600 mbufq_len(const struct mbufq *mq) 1601 { 1602 1603 return (mq->mq_len); 1604 } 1605 1606 static inline int 1607 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1608 { 1609 1610 if (mbufq_full(mq)) 1611 return (ENOBUFS); 1612 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1613 mq->mq_len++; 1614 return (0); 1615 } 1616 1617 static inline struct mbuf * 1618 mbufq_dequeue(struct mbufq *mq) 1619 { 1620 struct mbuf *m; 1621 1622 m = STAILQ_FIRST(&mq->mq_head); 1623 if (m) { 1624 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1625 m->m_nextpkt = NULL; 1626 mq->mq_len--; 1627 } 1628 return (m); 1629 } 1630 1631 static inline void 1632 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1633 { 1634 1635 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1636 mq->mq_len++; 1637 } 1638 1639 /* 1640 * Note: this doesn't enforce the maximum list size for dst. 1641 */ 1642 static inline void 1643 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) 1644 { 1645 1646 mq_dst->mq_len += mq_src->mq_len; 1647 STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); 1648 mq_src->mq_len = 0; 1649 } 1650 1651 #ifdef _SYS_TIMESPEC_H_ 1652 static inline void 1653 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) 1654 { 1655 1656 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1657 KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); 1658 ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1659 ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; 1660 } 1661 #endif 1662 1663 #ifdef DEBUGNET 1664 /* Invoked from the debugnet client code. */ 1665 void debugnet_mbuf_drain(void); 1666 void debugnet_mbuf_start(void); 1667 void debugnet_mbuf_finish(void); 1668 void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize); 1669 #endif 1670 1671 static inline bool 1672 mbuf_has_tls_session(struct mbuf *m) 1673 { 1674 1675 if (m->m_flags & M_EXTPG) { 1676 if (m->m_epg_tls != NULL) { 1677 return (true); 1678 } 1679 } 1680 return (false); 1681 } 1682 1683 #endif /* _KERNEL */ 1684 #endif /* !_SYS_MBUF_H_ */ 1685