1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 31 * $FreeBSD$ 32 */ 33 34 #ifndef _SYS_MBUF_H_ 35 #define _SYS_MBUF_H_ 36 37 /* XXX: These includes suck. Sorry! */ 38 #include <sys/queue.h> 39 #ifdef _KERNEL 40 #include <sys/systm.h> 41 #include <vm/uma.h> 42 #ifdef WITNESS 43 #include <sys/lock.h> 44 #endif 45 #endif 46 47 /* 48 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 49 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 50 * sys/param.h), which has no additional overhead and is used instead of the 51 * internal data area; this is done when at least MINCLSIZE of data must be 52 * stored. Additionally, it is possible to allocate a separate buffer 53 * externally and attach it to the mbuf in a way similar to that of mbuf 54 * clusters. 55 * 56 * NB: These calculation do not take actual compiler-induced alignment and 57 * padding inside the complete struct mbuf into account. Appropriate 58 * attention is required when changing members of struct mbuf. 59 * 60 * MLEN is data length in a normal mbuf. 61 * MHLEN is data length in an mbuf with pktheader. 62 * MINCLSIZE is a smallest amount of data that should be put into cluster. 63 * 64 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 65 * they are sensible. 66 */ 67 struct mbuf; 68 #define MHSIZE offsetof(struct mbuf, m_dat) 69 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 70 #define MLEN ((int)(MSIZE - MHSIZE)) 71 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 72 #define MINCLSIZE (MHLEN + 1) 73 74 #ifdef _KERNEL 75 /*- 76 * Macro for type conversion: convert mbuf pointer to data pointer of correct 77 * type: 78 * 79 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 80 * mtodo(m, o) -- Same as above but with offset 'o' into data. 81 */ 82 #define mtod(m, t) ((t)((m)->m_data)) 83 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 84 85 /* 86 * Argument structure passed to UMA routines during mbuf and packet 87 * allocations. 88 */ 89 struct mb_args { 90 int flags; /* Flags for mbuf being allocated */ 91 short type; /* Type of mbuf being allocated */ 92 }; 93 #endif /* _KERNEL */ 94 95 /* 96 * Packet tag structure (see below for details). 97 */ 98 struct m_tag { 99 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 100 u_int16_t m_tag_id; /* Tag ID */ 101 u_int16_t m_tag_len; /* Length of data */ 102 u_int32_t m_tag_cookie; /* ABI/Module ID */ 103 void (*m_tag_free)(struct m_tag *); 104 }; 105 106 /* 107 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 108 * Size ILP32: 48 109 * LP64: 56 110 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 111 * they are correct. 112 */ 113 struct pkthdr { 114 struct ifnet *rcvif; /* rcv interface */ 115 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 116 int32_t len; /* total packet length */ 117 118 /* Layer crossing persistent information. */ 119 uint32_t flowid; /* packet's 4-tuple system */ 120 uint64_t csum_flags; /* checksum and offload features */ 121 uint16_t fibnum; /* this packet should use this fib */ 122 uint8_t cosqos; /* class/quality of service */ 123 uint8_t rsstype; /* hash type */ 124 uint8_t l2hlen; /* layer 2 header length */ 125 uint8_t l3hlen; /* layer 3 header length */ 126 uint8_t l4hlen; /* layer 4 header length */ 127 uint8_t l5hlen; /* layer 5 header length */ 128 union { 129 uint8_t eight[8]; 130 uint16_t sixteen[4]; 131 uint32_t thirtytwo[2]; 132 uint64_t sixtyfour[1]; 133 uintptr_t unintptr[1]; 134 void *ptr; 135 } PH_per; 136 137 /* Layer specific non-persistent local storage for reassembly, etc. */ 138 union { 139 uint8_t eight[8]; 140 uint16_t sixteen[4]; 141 uint32_t thirtytwo[2]; 142 uint64_t sixtyfour[1]; 143 uintptr_t unintptr[1]; 144 void *ptr; 145 } PH_loc; 146 }; 147 #define ether_vtag PH_per.sixteen[0] 148 #define PH_vt PH_per 149 #define vt_nrecs sixteen[0] 150 #define tso_segsz PH_per.sixteen[1] 151 #define csum_phsum PH_per.sixteen[2] 152 #define csum_data PH_per.thirtytwo[1] 153 154 /* 155 * Description of external storage mapped into mbuf; valid only if M_EXT is 156 * set. 157 * Size ILP32: 28 158 * LP64: 48 159 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 160 * they are correct. 161 */ 162 struct m_ext { 163 volatile u_int *ext_cnt; /* pointer to ref count info */ 164 caddr_t ext_buf; /* start of buffer */ 165 uint32_t ext_size; /* size of buffer, for ext_free */ 166 uint32_t ext_type:8, /* type of external storage */ 167 ext_flags:24; /* external storage mbuf flags */ 168 void (*ext_free) /* free routine if not the usual */ 169 (struct mbuf *, void *, void *); 170 void *ext_arg1; /* optional argument pointer */ 171 void *ext_arg2; /* optional argument pointer */ 172 }; 173 174 /* 175 * The core of the mbuf object along with some shortcut defines for practical 176 * purposes. 177 */ 178 struct mbuf { 179 /* 180 * Header present at the beginning of every mbuf. 181 * Size ILP32: 24 182 * LP64: 32 183 * Compile-time assertions in uipc_mbuf.c test these values to ensure 184 * that they are correct. 185 */ 186 union { /* next buffer in chain */ 187 struct mbuf *m_next; 188 SLIST_ENTRY(mbuf) m_slist; 189 STAILQ_ENTRY(mbuf) m_stailq; 190 }; 191 union { /* next chain in queue/record */ 192 struct mbuf *m_nextpkt; 193 SLIST_ENTRY(mbuf) m_slistpkt; 194 STAILQ_ENTRY(mbuf) m_stailqpkt; 195 }; 196 caddr_t m_data; /* location of data */ 197 int32_t m_len; /* amount of data in this mbuf */ 198 uint32_t m_type:8, /* type of data in this mbuf */ 199 m_flags:24; /* flags; see below */ 200 #if !defined(__LP64__) 201 uint32_t m_pad; /* pad for 64bit alignment */ 202 #endif 203 204 /* 205 * A set of optional headers (packet header, external storage header) 206 * and internal data storage. Historically, these arrays were sized 207 * to MHLEN (space left after a packet header) and MLEN (space left 208 * after only a regular mbuf header); they are now variable size in 209 * order to support future work on variable-size mbufs. 210 */ 211 union { 212 struct { 213 struct pkthdr m_pkthdr; /* M_PKTHDR set */ 214 union { 215 struct m_ext m_ext; /* M_EXT set */ 216 char m_pktdat[0]; 217 }; 218 }; 219 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 220 }; 221 }; 222 223 /* 224 * mbuf flags of global significance and layer crossing. 225 * Those of only protocol/layer specific significance are to be mapped 226 * to M_PROTO[1-12] and cleared at layer handoff boundaries. 227 * NB: Limited to the lower 24 bits. 228 */ 229 #define M_EXT 0x00000001 /* has associated external storage */ 230 #define M_PKTHDR 0x00000002 /* start of record */ 231 #define M_EOR 0x00000004 /* end of record */ 232 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 233 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 234 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 235 #define M_PROMISC 0x00000040 /* packet was not for us */ 236 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 237 #define M_UNUSED_8 0x00000100 /* --available-- */ 238 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 239 240 #define M_PROTO1 0x00001000 /* protocol-specific */ 241 #define M_PROTO2 0x00002000 /* protocol-specific */ 242 #define M_PROTO3 0x00004000 /* protocol-specific */ 243 #define M_PROTO4 0x00008000 /* protocol-specific */ 244 #define M_PROTO5 0x00010000 /* protocol-specific */ 245 #define M_PROTO6 0x00020000 /* protocol-specific */ 246 #define M_PROTO7 0x00040000 /* protocol-specific */ 247 #define M_PROTO8 0x00080000 /* protocol-specific */ 248 #define M_PROTO9 0x00100000 /* protocol-specific */ 249 #define M_PROTO10 0x00200000 /* protocol-specific */ 250 #define M_PROTO11 0x00400000 /* protocol-specific */ 251 #define M_PROTO12 0x00800000 /* protocol-specific */ 252 253 /* 254 * Flags to purge when crossing layers. 255 */ 256 #define M_PROTOFLAGS \ 257 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 258 M_PROTO9|M_PROTO10|M_PROTO11|M_PROTO12) 259 260 /* 261 * Flags preserved when copying m_pkthdr. 262 */ 263 #define M_COPYFLAGS \ 264 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG| \ 265 M_PROTOFLAGS) 266 267 /* 268 * Mbuf flag description for use with printf(9) %b identifier. 269 */ 270 #define M_FLAG_BITS \ 271 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 272 "\7M_PROMISC\10M_VLANTAG" 273 #define M_FLAG_PROTOBITS \ 274 "\15M_PROTO1\16M_PROTO2\17M_PROTO3\20M_PROTO4\21M_PROTO5" \ 275 "\22M_PROTO6\23M_PROTO7\24M_PROTO8\25M_PROTO9\26M_PROTO10" \ 276 "\27M_PROTO11\30M_PROTO12" 277 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 278 279 /* 280 * Network interface cards are able to hash protocol fields (such as IPv4 281 * addresses and TCP port numbers) classify packets into flows. These flows 282 * can then be used to maintain ordering while delivering packets to the OS 283 * via parallel input queues, as well as to provide a stateless affinity 284 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 285 * m_flag fields to indicate how the hash should be interpreted by the 286 * network stack. 287 * 288 * Most NICs support RSS, which provides ordering and explicit affinity, and 289 * use the hash m_flag bits to indicate what header fields were covered by 290 * the hash. M_HASHTYPE_OPAQUE can be set by non-RSS cards or configurations 291 * that provide an opaque flow identifier, allowing for ordering and 292 * distribution without explicit affinity. 293 */ 294 /* Microsoft RSS standard hash types */ 295 #define M_HASHTYPE_NONE 0 296 #define M_HASHTYPE_RSS_IPV4 1 /* IPv4 2-tuple */ 297 #define M_HASHTYPE_RSS_TCP_IPV4 2 /* TCPv4 4-tuple */ 298 #define M_HASHTYPE_RSS_IPV6 3 /* IPv6 2-tuple */ 299 #define M_HASHTYPE_RSS_TCP_IPV6 4 /* TCPv6 4-tuple */ 300 #define M_HASHTYPE_RSS_IPV6_EX 5 /* IPv6 2-tuple + ext hdrs */ 301 #define M_HASHTYPE_RSS_TCP_IPV6_EX 6 /* TCPv6 4-tiple + ext hdrs */ 302 /* Non-standard RSS hash types */ 303 #define M_HASHTYPE_RSS_UDP_IPV4 7 /* IPv4 UDP 4-tuple */ 304 #define M_HASHTYPE_RSS_UDP_IPV4_EX 8 /* IPv4 UDP 4-tuple + ext hdrs */ 305 #define M_HASHTYPE_RSS_UDP_IPV6 9 /* IPv6 UDP 4-tuple */ 306 #define M_HASHTYPE_RSS_UDP_IPV6_EX 10 /* IPv6 UDP 4-tuple + ext hdrs */ 307 308 #define M_HASHTYPE_OPAQUE 255 /* ordering, not affinity */ 309 310 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 311 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype) 312 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 313 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 314 315 /* 316 * COS/QOS class and quality of service tags. 317 * It uses DSCP code points as base. 318 */ 319 #define QOS_DSCP_CS0 0x00 320 #define QOS_DSCP_DEF QOS_DSCP_CS0 321 #define QOS_DSCP_CS1 0x20 322 #define QOS_DSCP_AF11 0x28 323 #define QOS_DSCP_AF12 0x30 324 #define QOS_DSCP_AF13 0x38 325 #define QOS_DSCP_CS2 0x40 326 #define QOS_DSCP_AF21 0x48 327 #define QOS_DSCP_AF22 0x50 328 #define QOS_DSCP_AF23 0x58 329 #define QOS_DSCP_CS3 0x60 330 #define QOS_DSCP_AF31 0x68 331 #define QOS_DSCP_AF32 0x70 332 #define QOS_DSCP_AF33 0x78 333 #define QOS_DSCP_CS4 0x80 334 #define QOS_DSCP_AF41 0x88 335 #define QOS_DSCP_AF42 0x90 336 #define QOS_DSCP_AF43 0x98 337 #define QOS_DSCP_CS5 0xa0 338 #define QOS_DSCP_EF 0xb8 339 #define QOS_DSCP_CS6 0xc0 340 #define QOS_DSCP_CS7 0xe0 341 342 /* 343 * External mbuf storage buffer types. 344 */ 345 #define EXT_CLUSTER 1 /* mbuf cluster */ 346 #define EXT_SFBUF 2 /* sendfile(2)'s sf_bufs */ 347 #define EXT_JUMBOP 3 /* jumbo cluster 4096 bytes */ 348 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 349 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 350 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 351 #define EXT_MBUF 7 /* external mbuf reference (M_IOVEC) */ 352 353 #define EXT_VENDOR1 224 /* for vendor-internal use */ 354 #define EXT_VENDOR2 225 /* for vendor-internal use */ 355 #define EXT_VENDOR3 226 /* for vendor-internal use */ 356 #define EXT_VENDOR4 227 /* for vendor-internal use */ 357 358 #define EXT_EXP1 244 /* for experimental use */ 359 #define EXT_EXP2 245 /* for experimental use */ 360 #define EXT_EXP3 246 /* for experimental use */ 361 #define EXT_EXP4 247 /* for experimental use */ 362 363 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 364 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 365 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 366 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 367 368 /* 369 * Flags for external mbuf buffer types. 370 * NB: limited to the lower 24 bits. 371 */ 372 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_cnt, notyet */ 373 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 374 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 375 376 #define EXT_FLAG_VENDOR1 0x010000 /* for vendor-internal use */ 377 #define EXT_FLAG_VENDOR2 0x020000 /* for vendor-internal use */ 378 #define EXT_FLAG_VENDOR3 0x040000 /* for vendor-internal use */ 379 #define EXT_FLAG_VENDOR4 0x080000 /* for vendor-internal use */ 380 381 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 382 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 383 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 384 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 385 386 /* 387 * EXT flag description for use with printf(9) %b identifier. 388 */ 389 #define EXT_FLAG_BITS \ 390 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 391 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 392 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 393 "\30EXT_FLAG_EXP4" 394 395 /* 396 * External reference/free functions. 397 */ 398 void sf_ext_ref(void *, void *); 399 void sf_ext_free(void *, void *); 400 401 /* 402 * Flags indicating checksum, segmentation and other offload work to be 403 * done, or already done, by hardware or lower layers. It is split into 404 * separate inbound and outbound flags. 405 * 406 * Outbound flags that are set by upper protocol layers requesting lower 407 * layers, or ideally the hardware, to perform these offloading tasks. 408 * For outbound packets this field and its flags can be directly tested 409 * against ifnet if_hwassist. 410 */ 411 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 412 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 413 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 414 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 415 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 416 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 417 418 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 419 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 420 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 421 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 422 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 423 424 /* Inbound checksum support where the checksum was verified by hardware. */ 425 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 426 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 427 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 428 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 429 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 430 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 431 #define CSUM_COALESED 0x40000000 /* contains merged segments */ 432 433 /* 434 * CSUM flag description for use with printf(9) %b identifier. 435 */ 436 #define CSUM_BITS \ 437 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 438 "\6CSUM_IP_ISCSI" \ 439 "\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP\15CSUM_IP6_TSO" \ 440 "\16CSUM_IP6_ISCSI" \ 441 "\31CSUM_L3_CALC\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID" \ 442 "\35CSUM_L5_CALC\36CSUM_L5_VALID\37CSUM_COALESED" 443 444 /* CSUM flags compatibility mappings. */ 445 #define CSUM_IP_CHECKED CSUM_L3_CALC 446 #define CSUM_IP_VALID CSUM_L3_VALID 447 #define CSUM_DATA_VALID CSUM_L4_VALID 448 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 449 #define CSUM_SCTP_VALID CSUM_L4_VALID 450 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 451 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 452 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 453 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 454 #define CSUM_TCP CSUM_IP_TCP 455 #define CSUM_UDP CSUM_IP_UDP 456 #define CSUM_SCTP CSUM_IP_SCTP 457 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 458 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 459 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 460 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 461 462 /* 463 * mbuf types describing the content of the mbuf (including external storage). 464 */ 465 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 466 #define MT_DATA 1 /* dynamic (data) allocation */ 467 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 468 469 #define MT_VENDOR1 4 /* for vendor-internal use */ 470 #define MT_VENDOR2 5 /* for vendor-internal use */ 471 #define MT_VENDOR3 6 /* for vendor-internal use */ 472 #define MT_VENDOR4 7 /* for vendor-internal use */ 473 474 #define MT_SONAME 8 /* socket name */ 475 476 #define MT_EXP1 9 /* for experimental use */ 477 #define MT_EXP2 10 /* for experimental use */ 478 #define MT_EXP3 11 /* for experimental use */ 479 #define MT_EXP4 12 /* for experimental use */ 480 481 #define MT_CONTROL 14 /* extra-data protocol message */ 482 #define MT_OOBDATA 15 /* expedited data */ 483 #define MT_NTYPES 16 /* number of mbuf types for mbtypes[] */ 484 485 #define MT_NOINIT 255 /* Not a type but a flag to allocate 486 a non-initialized mbuf */ 487 488 /* 489 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 490 * !_KERNEL so that monitoring tools can look up the zones with 491 * libmemstat(3). 492 */ 493 #define MBUF_MEM_NAME "mbuf" 494 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 495 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 496 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 497 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 498 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 499 #define MBUF_TAG_MEM_NAME "mbuf_tag" 500 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 501 502 #ifdef _KERNEL 503 504 #ifdef WITNESS 505 #define MBUF_CHECKSLEEP(how) do { \ 506 if (how == M_WAITOK) \ 507 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 508 "Sleeping in \"%s\"", __func__); \ 509 } while (0) 510 #else 511 #define MBUF_CHECKSLEEP(how) 512 #endif 513 514 /* 515 * Network buffer allocation API 516 * 517 * The rest of it is defined in kern/kern_mbuf.c 518 */ 519 extern uma_zone_t zone_mbuf; 520 extern uma_zone_t zone_clust; 521 extern uma_zone_t zone_pack; 522 extern uma_zone_t zone_jumbop; 523 extern uma_zone_t zone_jumbo9; 524 extern uma_zone_t zone_jumbo16; 525 extern uma_zone_t zone_ext_refcnt; 526 527 void mb_free_ext(struct mbuf *); 528 int m_pkthdr_init(struct mbuf *, int); 529 530 static __inline int 531 m_gettype(int size) 532 { 533 int type; 534 535 switch (size) { 536 case MSIZE: 537 type = EXT_MBUF; 538 break; 539 case MCLBYTES: 540 type = EXT_CLUSTER; 541 break; 542 #if MJUMPAGESIZE != MCLBYTES 543 case MJUMPAGESIZE: 544 type = EXT_JUMBOP; 545 break; 546 #endif 547 case MJUM9BYTES: 548 type = EXT_JUMBO9; 549 break; 550 case MJUM16BYTES: 551 type = EXT_JUMBO16; 552 break; 553 default: 554 panic("%s: invalid cluster size %d", __func__, size); 555 } 556 557 return (type); 558 } 559 560 /* 561 * Associated an external reference counted buffer with an mbuf. 562 */ 563 static __inline void 564 m_extaddref(struct mbuf *m, caddr_t buf, u_int size, u_int *ref_cnt, 565 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2) 566 { 567 568 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 569 570 atomic_add_int(ref_cnt, 1); 571 m->m_flags |= M_EXT; 572 m->m_ext.ext_buf = buf; 573 m->m_ext.ext_cnt = ref_cnt; 574 m->m_data = m->m_ext.ext_buf; 575 m->m_ext.ext_size = size; 576 m->m_ext.ext_free = freef; 577 m->m_ext.ext_arg1 = arg1; 578 m->m_ext.ext_arg2 = arg2; 579 m->m_ext.ext_type = EXT_EXTREF; 580 m->m_ext.ext_flags = 0; 581 } 582 583 static __inline uma_zone_t 584 m_getzone(int size) 585 { 586 uma_zone_t zone; 587 588 switch (size) { 589 case MCLBYTES: 590 zone = zone_clust; 591 break; 592 #if MJUMPAGESIZE != MCLBYTES 593 case MJUMPAGESIZE: 594 zone = zone_jumbop; 595 break; 596 #endif 597 case MJUM9BYTES: 598 zone = zone_jumbo9; 599 break; 600 case MJUM16BYTES: 601 zone = zone_jumbo16; 602 break; 603 default: 604 panic("%s: invalid cluster size %d", __func__, size); 605 } 606 607 return (zone); 608 } 609 610 /* 611 * Initialize an mbuf with linear storage. 612 * 613 * Inline because the consumer text overhead will be roughly the same to 614 * initialize or call a function with this many parameters and M_PKTHDR 615 * should go away with constant propagation for !MGETHDR. 616 */ 617 static __inline int 618 m_init(struct mbuf *m, uma_zone_t zone __unused, int size __unused, int how, 619 short type, int flags) 620 { 621 int error; 622 623 m->m_next = NULL; 624 m->m_nextpkt = NULL; 625 m->m_data = m->m_dat; 626 m->m_len = 0; 627 m->m_flags = flags; 628 m->m_type = type; 629 if (flags & M_PKTHDR) { 630 if ((error = m_pkthdr_init(m, how)) != 0) 631 return (error); 632 } 633 634 return (0); 635 } 636 637 static __inline struct mbuf * 638 m_get(int how, short type) 639 { 640 struct mb_args args; 641 642 args.flags = 0; 643 args.type = type; 644 return (uma_zalloc_arg(zone_mbuf, &args, how)); 645 } 646 647 /* 648 * XXX This should be deprecated, very little use. 649 */ 650 static __inline struct mbuf * 651 m_getclr(int how, short type) 652 { 653 struct mbuf *m; 654 struct mb_args args; 655 656 args.flags = 0; 657 args.type = type; 658 m = uma_zalloc_arg(zone_mbuf, &args, how); 659 if (m != NULL) 660 bzero(m->m_data, MLEN); 661 return (m); 662 } 663 664 static __inline struct mbuf * 665 m_gethdr(int how, short type) 666 { 667 struct mb_args args; 668 669 args.flags = M_PKTHDR; 670 args.type = type; 671 return (uma_zalloc_arg(zone_mbuf, &args, how)); 672 } 673 674 static __inline struct mbuf * 675 m_getcl(int how, short type, int flags) 676 { 677 struct mb_args args; 678 679 args.flags = flags; 680 args.type = type; 681 return (uma_zalloc_arg(zone_pack, &args, how)); 682 } 683 684 static __inline int 685 m_clget(struct mbuf *m, int how) 686 { 687 688 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 689 __func__, m)); 690 m->m_ext.ext_buf = (char *)NULL; 691 uma_zalloc_arg(zone_clust, m, how); 692 /* 693 * On a cluster allocation failure, drain the packet zone and retry, 694 * we might be able to loosen a few clusters up on the drain. 695 */ 696 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { 697 zone_drain(zone_pack); 698 uma_zalloc_arg(zone_clust, m, how); 699 } 700 return (m->m_flags & M_EXT); 701 } 702 703 /* 704 * m_cljget() is different from m_clget() as it can allocate clusters without 705 * attaching them to an mbuf. In that case the return value is the pointer 706 * to the cluster of the requested size. If an mbuf was specified, it gets 707 * the cluster attached to it and the return value can be safely ignored. 708 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 709 */ 710 static __inline void * 711 m_cljget(struct mbuf *m, int how, int size) 712 { 713 uma_zone_t zone; 714 715 if (m != NULL) { 716 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", 717 __func__, m)); 718 m->m_ext.ext_buf = NULL; 719 } 720 721 zone = m_getzone(size); 722 return (uma_zalloc_arg(zone, m, how)); 723 } 724 725 static __inline void 726 m_cljset(struct mbuf *m, void *cl, int type) 727 { 728 uma_zone_t zone; 729 int size; 730 731 switch (type) { 732 case EXT_CLUSTER: 733 size = MCLBYTES; 734 zone = zone_clust; 735 break; 736 #if MJUMPAGESIZE != MCLBYTES 737 case EXT_JUMBOP: 738 size = MJUMPAGESIZE; 739 zone = zone_jumbop; 740 break; 741 #endif 742 case EXT_JUMBO9: 743 size = MJUM9BYTES; 744 zone = zone_jumbo9; 745 break; 746 case EXT_JUMBO16: 747 size = MJUM16BYTES; 748 zone = zone_jumbo16; 749 break; 750 default: 751 panic("%s: unknown cluster type %d", __func__, type); 752 break; 753 } 754 755 m->m_data = m->m_ext.ext_buf = cl; 756 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 757 m->m_ext.ext_size = size; 758 m->m_ext.ext_type = type; 759 m->m_ext.ext_flags = 0; 760 m->m_ext.ext_cnt = uma_find_refcnt(zone, cl); 761 m->m_flags |= M_EXT; 762 763 } 764 765 static __inline void 766 m_chtype(struct mbuf *m, short new_type) 767 { 768 769 m->m_type = new_type; 770 } 771 772 static __inline void 773 m_clrprotoflags(struct mbuf *m) 774 { 775 776 while (m) { 777 m->m_flags &= ~M_PROTOFLAGS; 778 m = m->m_next; 779 } 780 } 781 782 static __inline struct mbuf * 783 m_last(struct mbuf *m) 784 { 785 786 while (m->m_next) 787 m = m->m_next; 788 return (m); 789 } 790 791 /* 792 * mbuf, cluster, and external object allocation macros (for compatibility 793 * purposes). 794 */ 795 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 796 #define MGET(m, how, type) ((m) = m_get((how), (type))) 797 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 798 #define MCLGET(m, how) m_clget((m), (how)) 799 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 800 (void )m_extadd((m), (caddr_t)(buf), (size), (free), (arg1), (arg2),\ 801 (flags), (type), M_NOWAIT) 802 #define m_getm(m, len, how, type) \ 803 m_getm2((m), (len), (how), (type), M_PKTHDR) 804 805 /* 806 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 807 * be both the local data payload, or an external buffer area, depending on 808 * whether M_EXT is set). 809 */ 810 #define M_WRITABLE(m) (!((m)->m_flags & M_RDONLY) && \ 811 (!(((m)->m_flags & M_EXT)) || \ 812 (*((m)->m_ext.ext_cnt) == 1)) ) \ 813 814 /* Check if the supplied mbuf has a packet header, or else panic. */ 815 #define M_ASSERTPKTHDR(m) \ 816 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 817 ("%s: no mbuf packet header!", __func__)) 818 819 /* 820 * Ensure that the supplied mbuf is a valid, non-free mbuf. 821 * 822 * XXX: Broken at the moment. Need some UMA magic to make it work again. 823 */ 824 #define M_ASSERTVALID(m) \ 825 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 826 ("%s: attempted use of a free mbuf!", __func__)) 827 828 /* 829 * Return the address of the start of the buffer associated with an mbuf, 830 * handling external storage, packet-header mbufs, and regular data mbufs. 831 */ 832 #define M_START(m) \ 833 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 834 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 835 &(m)->m_dat[0]) 836 837 /* 838 * Return the size of the buffer associated with an mbuf, handling external 839 * storage, packet-header mbufs, and regular data mbufs. 840 */ 841 #define M_SIZE(m) \ 842 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 843 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 844 MLEN) 845 846 /* 847 * Set the m_data pointer of a newly allocated mbuf to place an object of the 848 * specified size at the end of the mbuf, longword aligned. 849 * 850 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 851 * separate macros, each asserting that it was called at the proper moment. 852 * This required callers to themselves test the storage type and call the 853 * right one. Rather than require callers to be aware of those layout 854 * decisions, we centralize here. 855 */ 856 static __inline void 857 m_align(struct mbuf *m, int len) 858 { 859 #ifdef INVARIANTS 860 const char *msg = "%s: not a virgin mbuf"; 861 #endif 862 int adjust; 863 864 KASSERT(m->m_data == M_START(m), (msg, __func__)); 865 866 adjust = M_SIZE(m) - len; 867 m->m_data += adjust &~ (sizeof(long)-1); 868 } 869 870 #define M_ALIGN(m, len) m_align(m, len) 871 #define MH_ALIGN(m, len) m_align(m, len) 872 #define MEXT_ALIGN(m, len) m_align(m, len) 873 874 /* 875 * Compute the amount of space available before the current start of data in 876 * an mbuf. 877 * 878 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 879 * of checking writability of the mbuf data area rests solely with the caller. 880 * 881 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 882 * for mbufs with external storage. We now allow mbuf-embedded data to be 883 * read-only as well. 884 */ 885 #define M_LEADINGSPACE(m) \ 886 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 887 888 /* 889 * Compute the amount of space available after the end of data in an mbuf. 890 * 891 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 892 * of checking writability of the mbuf data area rests solely with the caller. 893 * 894 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 895 * for mbufs with external storage. We now allow mbuf-embedded data to be 896 * read-only as well. 897 */ 898 #define M_TRAILINGSPACE(m) \ 899 (M_WRITABLE(m) ? \ 900 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) 901 902 /* 903 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 904 * allocated, how specifies whether to wait. If the allocation fails, the 905 * original mbuf chain is freed and m is set to NULL. 906 */ 907 #define M_PREPEND(m, plen, how) do { \ 908 struct mbuf **_mmp = &(m); \ 909 struct mbuf *_mm = *_mmp; \ 910 int _mplen = (plen); \ 911 int __mhow = (how); \ 912 \ 913 MBUF_CHECKSLEEP(how); \ 914 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 915 _mm->m_data -= _mplen; \ 916 _mm->m_len += _mplen; \ 917 } else \ 918 _mm = m_prepend(_mm, _mplen, __mhow); \ 919 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 920 _mm->m_pkthdr.len += _mplen; \ 921 *_mmp = _mm; \ 922 } while (0) 923 924 /* 925 * Change mbuf to new type. This is a relatively expensive operation and 926 * should be avoided. 927 */ 928 #define MCHTYPE(m, t) m_chtype((m), (t)) 929 930 /* Length to m_copy to copy all. */ 931 #define M_COPYALL 1000000000 932 933 /* Compatibility with 4.3. */ 934 #define m_copy(m, o, l) m_copym((m), (o), (l), M_NOWAIT) 935 936 extern int max_datalen; /* MHLEN - max_hdr */ 937 extern int max_hdr; /* Largest link + protocol header */ 938 extern int max_linkhdr; /* Largest link-level header */ 939 extern int max_protohdr; /* Largest protocol header */ 940 extern int nmbclusters; /* Maximum number of clusters */ 941 942 struct uio; 943 944 void m_adj(struct mbuf *, int); 945 int m_apply(struct mbuf *, int, int, 946 int (*)(void *, void *, u_int), void *); 947 int m_append(struct mbuf *, int, c_caddr_t); 948 void m_cat(struct mbuf *, struct mbuf *); 949 void m_catpkt(struct mbuf *, struct mbuf *); 950 int m_extadd(struct mbuf *, caddr_t, u_int, 951 void (*)(struct mbuf *, void *, void *), void *, void *, 952 int, int, int); 953 struct mbuf *m_collapse(struct mbuf *, int, int); 954 void m_copyback(struct mbuf *, int, int, c_caddr_t); 955 void m_copydata(const struct mbuf *, int, int, caddr_t); 956 struct mbuf *m_copym(struct mbuf *, int, int, int); 957 struct mbuf *m_copypacket(struct mbuf *, int); 958 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 959 struct mbuf *m_copyup(struct mbuf *, int, int); 960 struct mbuf *m_defrag(struct mbuf *, int); 961 void m_demote_pkthdr(struct mbuf *); 962 void m_demote(struct mbuf *, int, int); 963 struct mbuf *m_devget(char *, int, int, struct ifnet *, 964 void (*)(char *, caddr_t, u_int)); 965 struct mbuf *m_dup(struct mbuf *, int); 966 int m_dup_pkthdr(struct mbuf *, struct mbuf *, int); 967 u_int m_fixhdr(struct mbuf *); 968 struct mbuf *m_fragment(struct mbuf *, int, int); 969 void m_freem(struct mbuf *); 970 struct mbuf *m_get2(int, int, short, int); 971 struct mbuf *m_getjcl(int, short, int, int); 972 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 973 struct mbuf *m_getptr(struct mbuf *, int, int *); 974 u_int m_length(struct mbuf *, struct mbuf **); 975 int m_mbuftouio(struct uio *, struct mbuf *, int); 976 void m_move_pkthdr(struct mbuf *, struct mbuf *); 977 struct mbuf *m_prepend(struct mbuf *, int, int); 978 void m_print(const struct mbuf *, int); 979 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 980 struct mbuf *m_pullup(struct mbuf *, int); 981 int m_sanity(struct mbuf *, int); 982 struct mbuf *m_split(struct mbuf *, int, int); 983 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 984 struct mbuf *m_unshare(struct mbuf *, int); 985 986 /*- 987 * Network packets may have annotations attached by affixing a list of 988 * "packet tags" to the pkthdr structure. Packet tags are dynamically 989 * allocated semi-opaque data structures that have a fixed header 990 * (struct m_tag) that specifies the size of the memory block and a 991 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 992 * unsigned value used to identify a module or ABI. By convention this value 993 * is chosen as the date+time that the module is created, expressed as the 994 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 995 * value is an ABI/module-specific value that identifies a particular 996 * annotation and is private to the module. For compatibility with systems 997 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 998 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 999 * compatibility shim functions and several tag types are defined below. 1000 * Users that do not require compatibility should use a private cookie value 1001 * so that packet tag-related definitions can be maintained privately. 1002 * 1003 * Note that the packet tag returned by m_tag_alloc has the default memory 1004 * alignment implemented by malloc. To reference private data one can use a 1005 * construct like: 1006 * 1007 * struct m_tag *mtag = m_tag_alloc(...); 1008 * struct foo *p = (struct foo *)(mtag+1); 1009 * 1010 * if the alignment of struct m_tag is sufficient for referencing members of 1011 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1012 * private data structure to insure proper alignment; e.g., 1013 * 1014 * struct foo { 1015 * struct m_tag tag; 1016 * ... 1017 * }; 1018 * struct foo *p = (struct foo *) m_tag_alloc(...); 1019 * struct m_tag *mtag = &p->tag; 1020 */ 1021 1022 /* 1023 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1024 * tags are expected to ``vanish'' when they pass through a network 1025 * interface. For most interfaces this happens normally as the tags are 1026 * reclaimed when the mbuf is free'd. However in some special cases 1027 * reclaiming must be done manually. An example is packets that pass through 1028 * the loopback interface. Also, one must be careful to do this when 1029 * ``turning around'' packets (e.g., icmp_reflect). 1030 * 1031 * To mark a tag persistent bit-or this flag in when defining the tag id. 1032 * The tag will then be treated as described above. 1033 */ 1034 #define MTAG_PERSISTENT 0x800 1035 1036 #define PACKET_TAG_NONE 0 /* Nadda */ 1037 1038 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1039 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1040 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1041 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1042 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1043 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1044 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1045 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1046 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1047 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1048 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1049 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1050 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1051 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1052 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1053 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1054 #define PACKET_TAG_DIVERT 17 /* divert info */ 1055 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1056 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1057 #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ 1058 #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ 1059 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1060 #define PACKET_TAG_CARP 28 /* CARP info */ 1061 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1062 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1063 1064 /* Specific cookies and tags. */ 1065 1066 /* Packet tag routines. */ 1067 struct m_tag *m_tag_alloc(u_int32_t, int, int, int); 1068 void m_tag_delete(struct mbuf *, struct m_tag *); 1069 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1070 void m_tag_free_default(struct m_tag *); 1071 struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); 1072 struct m_tag *m_tag_copy(struct m_tag *, int); 1073 int m_tag_copy_chain(struct mbuf *, struct mbuf *, int); 1074 void m_tag_delete_nonpersistent(struct mbuf *); 1075 1076 /* 1077 * Initialize the list of tags associated with an mbuf. 1078 */ 1079 static __inline void 1080 m_tag_init(struct mbuf *m) 1081 { 1082 1083 SLIST_INIT(&m->m_pkthdr.tags); 1084 } 1085 1086 /* 1087 * Set up the contents of a tag. Note that this does not fill in the free 1088 * method; the caller is expected to do that. 1089 * 1090 * XXX probably should be called m_tag_init, but that was already taken. 1091 */ 1092 static __inline void 1093 m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) 1094 { 1095 1096 t->m_tag_id = type; 1097 t->m_tag_len = len; 1098 t->m_tag_cookie = cookie; 1099 } 1100 1101 /* 1102 * Reclaim resources associated with a tag. 1103 */ 1104 static __inline void 1105 m_tag_free(struct m_tag *t) 1106 { 1107 1108 (*t->m_tag_free)(t); 1109 } 1110 1111 /* 1112 * Return the first tag associated with an mbuf. 1113 */ 1114 static __inline struct m_tag * 1115 m_tag_first(struct mbuf *m) 1116 { 1117 1118 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1119 } 1120 1121 /* 1122 * Return the next tag in the list of tags associated with an mbuf. 1123 */ 1124 static __inline struct m_tag * 1125 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1126 { 1127 1128 return (SLIST_NEXT(t, m_tag_link)); 1129 } 1130 1131 /* 1132 * Prepend a tag to the list of tags associated with an mbuf. 1133 */ 1134 static __inline void 1135 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1136 { 1137 1138 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1139 } 1140 1141 /* 1142 * Unlink a tag from the list of tags associated with an mbuf. 1143 */ 1144 static __inline void 1145 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1146 { 1147 1148 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1149 } 1150 1151 /* These are for OpenBSD compatibility. */ 1152 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1153 1154 static __inline struct m_tag * 1155 m_tag_get(int type, int length, int wait) 1156 { 1157 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1158 } 1159 1160 static __inline struct m_tag * 1161 m_tag_find(struct mbuf *m, int type, struct m_tag *start) 1162 { 1163 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1164 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1165 } 1166 1167 static __inline struct mbuf * 1168 m_free(struct mbuf *m) 1169 { 1170 struct mbuf *n = m->m_next; 1171 1172 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1173 m_tag_delete_chain(m, NULL); 1174 if (m->m_flags & M_EXT) 1175 mb_free_ext(m); 1176 else if ((m->m_flags & M_NOFREE) == 0) 1177 uma_zfree(zone_mbuf, m); 1178 return (n); 1179 } 1180 1181 static __inline int 1182 rt_m_getfib(struct mbuf *m) 1183 { 1184 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1185 return (m->m_pkthdr.fibnum); 1186 } 1187 1188 #define M_GETFIB(_m) rt_m_getfib(_m) 1189 1190 #define M_SETFIB(_m, _fib) do { \ 1191 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1192 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1193 } while (0) 1194 1195 /* flags passed as first argument for "m_ether_tcpip_hash()" */ 1196 #define MBUF_HASHFLAG_L2 (1 << 2) 1197 #define MBUF_HASHFLAG_L3 (1 << 3) 1198 #define MBUF_HASHFLAG_L4 (1 << 4) 1199 1200 /* mbuf hashing helper routines */ 1201 uint32_t m_ether_tcpip_hash_init(void); 1202 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, const uint32_t); 1203 1204 #ifdef MBUF_PROFILING 1205 void m_profile(struct mbuf *m); 1206 #define M_PROFILE(m) m_profile(m) 1207 #else 1208 #define M_PROFILE(m) 1209 #endif 1210 1211 struct mbufq { 1212 STAILQ_HEAD(, mbuf) mq_head; 1213 int mq_len; 1214 int mq_maxlen; 1215 }; 1216 1217 static inline void 1218 mbufq_init(struct mbufq *mq, int maxlen) 1219 { 1220 1221 STAILQ_INIT(&mq->mq_head); 1222 mq->mq_maxlen = maxlen; 1223 mq->mq_len = 0; 1224 } 1225 1226 static inline struct mbuf * 1227 mbufq_flush(struct mbufq *mq) 1228 { 1229 struct mbuf *m; 1230 1231 m = STAILQ_FIRST(&mq->mq_head); 1232 STAILQ_INIT(&mq->mq_head); 1233 mq->mq_len = 0; 1234 return (m); 1235 } 1236 1237 static inline void 1238 mbufq_drain(struct mbufq *mq) 1239 { 1240 struct mbuf *m, *n; 1241 1242 n = mbufq_flush(mq); 1243 while ((m = n) != NULL) { 1244 n = STAILQ_NEXT(m, m_stailqpkt); 1245 m_freem(m); 1246 } 1247 } 1248 1249 static inline struct mbuf * 1250 mbufq_first(const struct mbufq *mq) 1251 { 1252 1253 return (STAILQ_FIRST(&mq->mq_head)); 1254 } 1255 1256 static inline struct mbuf * 1257 mbufq_last(const struct mbufq *mq) 1258 { 1259 1260 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1261 } 1262 1263 static inline int 1264 mbufq_full(const struct mbufq *mq) 1265 { 1266 1267 return (mq->mq_len >= mq->mq_maxlen); 1268 } 1269 1270 static inline int 1271 mbufq_len(const struct mbufq *mq) 1272 { 1273 1274 return (mq->mq_len); 1275 } 1276 1277 static inline int 1278 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1279 { 1280 1281 if (mbufq_full(mq)) 1282 return (ENOBUFS); 1283 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1284 mq->mq_len++; 1285 return (0); 1286 } 1287 1288 static inline struct mbuf * 1289 mbufq_dequeue(struct mbufq *mq) 1290 { 1291 struct mbuf *m; 1292 1293 m = STAILQ_FIRST(&mq->mq_head); 1294 if (m) { 1295 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1296 m->m_nextpkt = NULL; 1297 mq->mq_len--; 1298 } 1299 return (m); 1300 } 1301 1302 static inline void 1303 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1304 { 1305 1306 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1307 mq->mq_len++; 1308 } 1309 #endif /* _KERNEL */ 1310 #endif /* !_SYS_MBUF_H_ */ 1311