1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 33 */ 34 35 #ifndef _SYS_MBUF_H_ 36 #define _SYS_MBUF_H_ 37 38 /* XXX: These includes suck. Sorry! */ 39 #include <sys/queue.h> 40 #ifdef _KERNEL 41 #include <sys/systm.h> 42 #include <sys/refcount.h> 43 #include <vm/uma.h> 44 45 #include <sys/sdt.h> 46 47 #define MBUF_PROBE1(probe, arg0) \ 48 SDT_PROBE1(sdt, , , probe, arg0) 49 #define MBUF_PROBE2(probe, arg0, arg1) \ 50 SDT_PROBE2(sdt, , , probe, arg0, arg1) 51 #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ 52 SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) 53 #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ 54 SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) 55 #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ 56 SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) 57 58 SDT_PROBE_DECLARE(sdt, , , m__init); 59 SDT_PROBE_DECLARE(sdt, , , m__gethdr_raw); 60 SDT_PROBE_DECLARE(sdt, , , m__gethdr); 61 SDT_PROBE_DECLARE(sdt, , , m__get_raw); 62 SDT_PROBE_DECLARE(sdt, , , m__get); 63 SDT_PROBE_DECLARE(sdt, , , m__getcl); 64 SDT_PROBE_DECLARE(sdt, , , m__getjcl); 65 SDT_PROBE_DECLARE(sdt, , , m__clget); 66 SDT_PROBE_DECLARE(sdt, , , m__cljget); 67 SDT_PROBE_DECLARE(sdt, , , m__cljset); 68 SDT_PROBE_DECLARE(sdt, , , m__free); 69 SDT_PROBE_DECLARE(sdt, , , m__freem); 70 71 #endif /* _KERNEL */ 72 73 /* 74 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. 75 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in 76 * sys/param.h), which has no additional overhead and is used instead of the 77 * internal data area; this is done when at least MINCLSIZE of data must be 78 * stored. Additionally, it is possible to allocate a separate buffer 79 * externally and attach it to the mbuf in a way similar to that of mbuf 80 * clusters. 81 * 82 * NB: These calculation do not take actual compiler-induced alignment and 83 * padding inside the complete struct mbuf into account. Appropriate 84 * attention is required when changing members of struct mbuf. 85 * 86 * MLEN is data length in a normal mbuf. 87 * MHLEN is data length in an mbuf with pktheader. 88 * MINCLSIZE is a smallest amount of data that should be put into cluster. 89 * 90 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 91 * they are sensible. 92 */ 93 struct mbuf; 94 #define MHSIZE offsetof(struct mbuf, m_dat) 95 #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) 96 #define MLEN ((int)(MSIZE - MHSIZE)) 97 #define MHLEN ((int)(MSIZE - MPKTHSIZE)) 98 #define MINCLSIZE (MHLEN + 1) 99 #define M_NODOM 255 100 101 #ifdef _KERNEL 102 /*- 103 * Macro for type conversion: convert mbuf pointer to data pointer of correct 104 * type: 105 * 106 * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. 107 * mtodo(m, o) -- Same as above but with offset 'o' into data. 108 */ 109 #define mtod(m, t) ((t)((m)->m_data)) 110 #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) 111 112 /* 113 * Argument structure passed to UMA routines during mbuf and packet 114 * allocations. 115 */ 116 struct mb_args { 117 int flags; /* Flags for mbuf being allocated */ 118 short type; /* Type of mbuf being allocated */ 119 }; 120 #endif /* _KERNEL */ 121 122 /* 123 * Packet tag structure (see below for details). 124 */ 125 struct m_tag { 126 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ 127 u_int16_t m_tag_id; /* Tag ID */ 128 u_int16_t m_tag_len; /* Length of data */ 129 u_int32_t m_tag_cookie; /* ABI/Module ID */ 130 void (*m_tag_free)(struct m_tag *); 131 }; 132 133 /* 134 * Static network interface owned tag. 135 * Allocated through ifp->if_snd_tag_alloc(). 136 */ 137 struct if_snd_tag_sw; 138 139 struct m_snd_tag { 140 struct ifnet *ifp; /* network interface tag belongs to */ 141 const struct if_snd_tag_sw *sw; 142 volatile u_int refcount; 143 }; 144 145 /* 146 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. 147 * Size ILP32: 56 148 * LP64: 64 149 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 150 * they are correct. 151 */ 152 struct pkthdr { 153 union { 154 struct m_snd_tag *snd_tag; /* send tag, if any */ 155 struct ifnet *rcvif; /* rcv interface */ 156 struct { 157 uint16_t rcvidx; /* rcv interface index ... */ 158 uint16_t rcvgen; /* ... and generation count */ 159 }; 160 }; 161 union { 162 struct ifnet *leaf_rcvif; /* leaf rcv interface */ 163 struct { 164 uint16_t leaf_rcvidx; /* leaf rcv interface index ... */ 165 uint16_t leaf_rcvgen; /* ... and generation count */ 166 }; 167 }; 168 SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ 169 int32_t len; /* total packet length */ 170 171 /* Layer crossing persistent information. */ 172 uint32_t flowid; /* packet's 4-tuple system */ 173 uint32_t csum_flags; /* checksum and offload features */ 174 uint16_t fibnum; /* this packet should use this fib */ 175 uint8_t numa_domain; /* NUMA domain of recvd pkt */ 176 uint8_t rsstype; /* hash type */ 177 #if !defined(__LP64__) 178 uint32_t pad; /* pad for 64bit alignment */ 179 #endif 180 union { 181 uint64_t rcv_tstmp; /* timestamp in ns */ 182 struct { 183 uint8_t l2hlen; /* layer 2 hdr len */ 184 uint8_t l3hlen; /* layer 3 hdr len */ 185 uint8_t l4hlen; /* layer 4 hdr len */ 186 uint8_t l5hlen; /* layer 5 hdr len */ 187 uint8_t inner_l2hlen; 188 uint8_t inner_l3hlen; 189 uint8_t inner_l4hlen; 190 uint8_t inner_l5hlen; 191 }; 192 }; 193 union { 194 uint8_t eight[8]; 195 uint16_t sixteen[4]; 196 uint32_t thirtytwo[2]; 197 uint64_t sixtyfour[1]; 198 uintptr_t unintptr[1]; 199 void *ptr; 200 } PH_per; 201 202 /* Layer specific non-persistent local storage for reassembly, etc. */ 203 union { 204 union { 205 uint8_t eight[8]; 206 uint16_t sixteen[4]; 207 uint32_t thirtytwo[2]; 208 uint64_t sixtyfour[1]; 209 uintptr_t unintptr[1]; 210 void *ptr; 211 } PH_loc; 212 /* Upon allocation: total packet memory consumption. */ 213 u_int memlen; 214 }; 215 }; 216 #define ether_vtag PH_per.sixteen[0] 217 #define tcp_tun_port PH_per.sixteen[0] /* outbound */ 218 #define vt_nrecs PH_per.sixteen[0] /* mld and v6-ND */ 219 #define tso_segsz PH_per.sixteen[1] /* inbound after LRO */ 220 #define lro_nsegs tso_segsz /* inbound after LRO */ 221 #define csum_data PH_per.thirtytwo[1] /* inbound from hardware up */ 222 #define lro_tcp_d_len PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */ 223 #define lro_tcp_d_csum PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */ 224 #define lro_tcp_h_off PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */ 225 #define lro_etype PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */ 226 /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */ 227 228 /* 229 * TLS records for TLS 1.0-1.2 can have the following header lengths: 230 * - 5 (AES-CBC with implicit IV) 231 * - 21 (AES-CBC with explicit IV) 232 * - 13 (AES-GCM with 8 byte explicit IV) 233 */ 234 #define MBUF_PEXT_HDR_LEN 23 235 236 /* 237 * TLS records for TLS 1.0-1.2 can have the following maximum trailer 238 * lengths: 239 * - 16 (AES-GCM) 240 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding) 241 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding) 242 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding) 243 */ 244 #define MBUF_PEXT_TRAIL_LEN 64 245 246 #if defined(__LP64__) 247 #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t)) 248 #else 249 #define MBUF_PEXT_MAX_PGS (64 / sizeof(vm_paddr_t)) 250 #endif 251 252 #define MBUF_PEXT_MAX_BYTES \ 253 (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN) 254 255 struct ktls_session; 256 struct socket; 257 258 /* 259 * Description of external storage mapped into mbuf; valid only if M_EXT is 260 * set. 261 * Size ILP32: 28 262 * LP64: 48 263 * Compile-time assertions in uipc_mbuf.c test these values to ensure that 264 * they are correct. 265 */ 266 typedef void m_ext_free_t(struct mbuf *); 267 struct m_ext { 268 union { 269 /* 270 * If EXT_FLAG_EMBREF is set, then we use refcount in the 271 * mbuf, the 'ext_count' member. Otherwise, we have a 272 * shadow copy and we use pointer 'ext_cnt'. The original 273 * mbuf is responsible to carry the pointer to free routine 274 * and its arguments. They aren't copied into shadows in 275 * mb_dupcl() to avoid dereferencing next cachelines. 276 */ 277 volatile u_int ext_count; 278 volatile u_int *ext_cnt; 279 }; 280 uint32_t ext_size; /* size of buffer, for ext_free */ 281 uint32_t ext_type:8, /* type of external storage */ 282 ext_flags:24; /* external storage mbuf flags */ 283 union { 284 struct { 285 /* 286 * Regular M_EXT mbuf: 287 * o ext_buf always points to the external buffer. 288 * o ext_free (below) and two optional arguments 289 * ext_arg1 and ext_arg2 store the free context for 290 * the external storage. They are set only in the 291 * refcount carrying mbuf, the one with 292 * EXT_FLAG_EMBREF flag, with exclusion for 293 * EXT_EXTREF type, where the free context is copied 294 * into all mbufs that use same external storage. 295 */ 296 char *ext_buf; /* start of buffer */ 297 #define m_ext_copylen offsetof(struct m_ext, ext_arg2) 298 void *ext_arg2; 299 }; 300 struct { 301 /* 302 * Multi-page M_EXTPG mbuf: 303 * o extpg_pa - page vector. 304 * o extpg_trail and extpg_hdr - TLS trailer and 305 * header. 306 * Uses ext_free and may also use ext_arg1. 307 */ 308 vm_paddr_t extpg_pa[MBUF_PEXT_MAX_PGS]; 309 char extpg_trail[MBUF_PEXT_TRAIL_LEN]; 310 char extpg_hdr[MBUF_PEXT_HDR_LEN]; 311 /* Pretend these 3 fields are part of mbuf itself. */ 312 #define m_epg_pa m_ext.extpg_pa 313 #define m_epg_trail m_ext.extpg_trail 314 #define m_epg_hdr m_ext.extpg_hdr 315 #define m_epg_ext_copylen offsetof(struct m_ext, ext_free) 316 }; 317 }; 318 /* 319 * Free method and optional argument pointer, both 320 * used by M_EXT and M_EXTPG. 321 */ 322 m_ext_free_t *ext_free; 323 void *ext_arg1; 324 }; 325 326 /* 327 * The core of the mbuf object along with some shortcut defines for practical 328 * purposes. 329 */ 330 struct mbuf { 331 /* 332 * Header present at the beginning of every mbuf. 333 * Size ILP32: 24 334 * LP64: 32 335 * Compile-time assertions in uipc_mbuf.c test these values to ensure 336 * that they are correct. 337 */ 338 union { /* next buffer in chain */ 339 struct mbuf *m_next; 340 SLIST_ENTRY(mbuf) m_slist; 341 STAILQ_ENTRY(mbuf) m_stailq; 342 }; 343 union { /* next chain in queue/record */ 344 struct mbuf *m_nextpkt; 345 SLIST_ENTRY(mbuf) m_slistpkt; 346 STAILQ_ENTRY(mbuf) m_stailqpkt; 347 }; 348 caddr_t m_data; /* location of data */ 349 int32_t m_len; /* amount of data in this mbuf */ 350 uint32_t m_type:8, /* type of data in this mbuf */ 351 m_flags:24; /* flags; see below */ 352 #if !defined(__LP64__) 353 uint32_t m_pad; /* pad for 64bit alignment */ 354 #endif 355 356 /* 357 * A set of optional headers (packet header, external storage header) 358 * and internal data storage. Historically, these arrays were sized 359 * to MHLEN (space left after a packet header) and MLEN (space left 360 * after only a regular mbuf header); they are now variable size in 361 * order to support future work on variable-size mbufs. 362 */ 363 union { 364 struct { 365 union { 366 /* M_PKTHDR set. */ 367 struct pkthdr m_pkthdr; 368 369 /* M_EXTPG set. 370 * Multi-page M_EXTPG mbuf has its meta data 371 * split between the below anonymous structure 372 * and m_ext. It carries vector of pages, 373 * optional header and trailer char vectors 374 * and pointers to socket/TLS data. 375 */ 376 #define m_epg_startcopy m_epg_npgs 377 #define m_epg_endcopy m_epg_stailq 378 struct { 379 /* Overall count of pages and count of 380 * pages with I/O pending. */ 381 uint8_t m_epg_npgs; 382 uint8_t m_epg_nrdy; 383 /* TLS header and trailer lengths. 384 * The data itself resides in m_ext. */ 385 uint8_t m_epg_hdrlen; 386 uint8_t m_epg_trllen; 387 /* Offset into 1st page and length of 388 * data in the last page. */ 389 uint16_t m_epg_1st_off; 390 uint16_t m_epg_last_len; 391 uint8_t m_epg_flags; 392 #define EPG_FLAG_ANON 0x1 /* Data can be encrypted in place. */ 393 #define EPG_FLAG_2FREE 0x2 /* Scheduled for free. */ 394 uint8_t m_epg_record_type; 395 uint8_t __spare[2]; 396 int m_epg_enc_cnt; 397 struct ktls_session *m_epg_tls; 398 struct socket *m_epg_so; 399 uint64_t m_epg_seqno; 400 STAILQ_ENTRY(mbuf) m_epg_stailq; 401 }; 402 }; 403 union { 404 /* M_EXT or M_EXTPG set. */ 405 struct m_ext m_ext; 406 /* M_PKTHDR set, neither M_EXT nor M_EXTPG. */ 407 char m_pktdat[0]; 408 }; 409 }; 410 char m_dat[0]; /* !M_PKTHDR, !M_EXT */ 411 }; 412 }; 413 414 #ifdef _KERNEL 415 static inline int 416 m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff) 417 { 418 419 KASSERT(pgoff == 0 || pidx == 0, 420 ("page %d with non-zero offset %d in %p", pidx, pgoff, m)); 421 422 if (pidx == m->m_epg_npgs - 1) { 423 return (m->m_epg_last_len); 424 } else { 425 return (PAGE_SIZE - pgoff); 426 } 427 } 428 429 #ifdef INVARIANTS 430 #define MCHECK(ex, msg) KASSERT((ex), \ 431 ("Multi page mbuf %p with " #msg " at %s:%d", \ 432 m, __FILE__, __LINE__)) 433 /* 434 * NB: This expects a non-empty buffer (npgs > 0 and 435 * last_pg_len > 0). 436 */ 437 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do { \ 438 MCHECK(m->m_epg_npgs > 0, "no valid pages"); \ 439 MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa), \ 440 "too many pages"); \ 441 MCHECK(m->m_epg_nrdy <= m->m_epg_npgs, \ 442 "too many ready pages"); \ 443 MCHECK(m->m_epg_1st_off < PAGE_SIZE, \ 444 "too large page offset"); \ 445 MCHECK(m->m_epg_last_len > 0, "zero last page length"); \ 446 MCHECK(m->m_epg_last_len <= PAGE_SIZE, \ 447 "too large last page length"); \ 448 if (m->m_epg_npgs == 1) \ 449 MCHECK(m->m_epg_1st_off + \ 450 m->m_epg_last_len <= PAGE_SIZE, \ 451 "single page too large"); \ 452 MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr), \ 453 "too large header length"); \ 454 MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail), \ 455 "too large header length"); \ 456 } while (0) 457 #else 458 #define MBUF_EXT_PGS_ASSERT_SANITY(m) do {} while (0) 459 #endif 460 #endif 461 462 /* 463 * mbuf flags of global significance and layer crossing. 464 * Those of only protocol/layer specific significance are to be mapped 465 * to M_PROTO[1-11] and cleared at layer handoff boundaries. 466 * NB: Limited to the lower 24 bits. 467 */ 468 #define M_EXT 0x00000001 /* has associated external storage */ 469 #define M_PKTHDR 0x00000002 /* start of record */ 470 #define M_EOR 0x00000004 /* end of record */ 471 #define M_RDONLY 0x00000008 /* associated data is marked read-only */ 472 #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ 473 #define M_MCAST 0x00000020 /* send/received as link-level multicast */ 474 #define M_PROMISC 0x00000040 /* packet was not for us */ 475 #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ 476 #define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */ 477 #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ 478 #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ 479 #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically 480 hw-stamped on port (useful for IEEE 1588 481 and 802.1AS) */ 482 #define M_TSTMP_LRO 0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */ 483 484 #define M_PROTO1 0x00002000 /* protocol-specific */ 485 #define M_PROTO2 0x00004000 /* protocol-specific */ 486 #define M_PROTO3 0x00008000 /* protocol-specific */ 487 #define M_PROTO4 0x00010000 /* protocol-specific */ 488 #define M_PROTO5 0x00020000 /* protocol-specific */ 489 #define M_PROTO6 0x00040000 /* protocol-specific */ 490 #define M_PROTO7 0x00080000 /* protocol-specific */ 491 #define M_PROTO8 0x00100000 /* protocol-specific */ 492 #define M_PROTO9 0x00200000 /* protocol-specific */ 493 #define M_PROTO10 0x00400000 /* protocol-specific */ 494 #define M_PROTO11 0x00800000 /* protocol-specific */ 495 496 /* 497 * Flags to purge when crossing layers. 498 */ 499 #define M_PROTOFLAGS \ 500 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ 501 M_PROTO9|M_PROTO10|M_PROTO11) 502 503 /* 504 * Flags preserved when copying m_pkthdr. 505 */ 506 #define M_COPYFLAGS \ 507 (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ 508 M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS) 509 510 /* 511 * Flags preserved during demote. 512 */ 513 #define M_DEMOTEFLAGS \ 514 (M_EXT | M_RDONLY | M_NOFREE | M_EXTPG) 515 516 /* 517 * Mbuf flag description for use with printf(9) %b identifier. 518 */ 519 #define M_FLAG_BITS \ 520 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ 521 "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO" 522 #define M_FLAG_PROTOBITS \ 523 "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \ 524 "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \ 525 "\27M_PROTO10\28M_PROTO11" 526 #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) 527 528 /* 529 * Network interface cards are able to hash protocol fields (such as IPv4 530 * addresses and TCP port numbers) classify packets into flows. These flows 531 * can then be used to maintain ordering while delivering packets to the OS 532 * via parallel input queues, as well as to provide a stateless affinity 533 * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set 534 * m_flag fields to indicate how the hash should be interpreted by the 535 * network stack. 536 * 537 * Most NICs support RSS, which provides ordering and explicit affinity, and 538 * use the hash m_flag bits to indicate what header fields were covered by 539 * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- 540 * RSS cards or configurations that provide an opaque flow identifier, allowing 541 * for ordering and distribution without explicit affinity. Additionally, 542 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash 543 * properties. 544 * 545 * The meaning of the IPV6_EX suffix: 546 * "o Home address from the home address option in the IPv6 destination 547 * options header. If the extension header is not present, use the Source 548 * IPv6 Address. 549 * o IPv6 address that is contained in the Routing-Header-Type-2 from the 550 * associated extension header. If the extension header is not present, 551 * use the Destination IPv6 Address." 552 * Quoted from: 553 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex 554 */ 555 #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ 556 #define M_HASHTYPE_INNER 0x40 /* calculated from inner headers */ 557 #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) 558 /* Microsoft RSS standard hash types */ 559 #define M_HASHTYPE_NONE 0 560 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ 561 #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ 562 #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ 563 #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ 564 #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + 565 * ext hdrs */ 566 #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + 567 * ext hdrs */ 568 #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ 569 #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ 570 #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + 571 * ext hdrs */ 572 573 #define M_HASHTYPE_OPAQUE 0x3f /* ordering, not affinity */ 574 #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) 575 /* ordering+hash, not affinity*/ 576 577 #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) 578 #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER) 579 #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) 580 #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) 581 #define M_HASHTYPE_ISHASH(m) \ 582 (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0) 583 #define M_HASHTYPE_SETINNER(m) do { \ 584 (m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER; \ 585 } while (0) 586 587 /* 588 * External mbuf storage buffer types. 589 */ 590 #define EXT_CLUSTER 1 /* mbuf cluster */ 591 #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ 592 #define EXT_JUMBOP 3 /* jumbo cluster page sized */ 593 #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ 594 #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ 595 #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ 596 #define EXT_MBUF 7 /* external mbuf reference */ 597 #define EXT_RXRING 8 /* data in NIC receive ring */ 598 599 #define EXT_VENDOR1 224 /* for vendor-internal use */ 600 #define EXT_VENDOR2 225 /* for vendor-internal use */ 601 #define EXT_VENDOR3 226 /* for vendor-internal use */ 602 #define EXT_VENDOR4 227 /* for vendor-internal use */ 603 604 #define EXT_EXP1 244 /* for experimental use */ 605 #define EXT_EXP2 245 /* for experimental use */ 606 #define EXT_EXP3 246 /* for experimental use */ 607 #define EXT_EXP4 247 /* for experimental use */ 608 609 #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ 610 #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ 611 #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ 612 #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ 613 614 /* 615 * Flags for external mbuf buffer types. 616 * NB: limited to the lower 24 bits. 617 */ 618 #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ 619 #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ 620 621 #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ 622 623 #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ 624 #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ 625 #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ 626 #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ 627 628 #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ 629 #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ 630 #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ 631 #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ 632 633 /* 634 * EXT flag description for use with printf(9) %b identifier. 635 */ 636 #define EXT_FLAG_BITS \ 637 "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ 638 "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ 639 "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ 640 "\30EXT_FLAG_EXP4" 641 642 /* 643 * Flags indicating checksum, segmentation and other offload work to be 644 * done, or already done, by hardware or lower layers. It is split into 645 * separate inbound and outbound flags. 646 * 647 * Outbound flags that are set by upper protocol layers requesting lower 648 * layers, or ideally the hardware, to perform these offloading tasks. 649 * For outbound packets this field and its flags can be directly tested 650 * against ifnet if_hwassist. Note that the outbound and the inbound flags do 651 * not collide right now but they could be allowed to (as long as the flags are 652 * scrubbed appropriately when the direction of an mbuf changes). CSUM_BITS 653 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX. 654 * 655 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame. 656 * The CSUM_ENCAP_<x> bits identify the outer encapsulation. 657 */ 658 #define CSUM_IP 0x00000001 /* IP header checksum offload */ 659 #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ 660 #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ 661 #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ 662 #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ 663 #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ 664 665 #define CSUM_INNER_IP6_UDP 0x00000040 666 #define CSUM_INNER_IP6_TCP 0x00000080 667 #define CSUM_INNER_IP6_TSO 0x00000100 668 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ 669 #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ 670 #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ 671 #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ 672 #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ 673 674 #define CSUM_INNER_IP 0x00004000 675 #define CSUM_INNER_IP_UDP 0x00008000 676 #define CSUM_INNER_IP_TCP 0x00010000 677 #define CSUM_INNER_IP_TSO 0x00020000 678 679 #define CSUM_ENCAP_VXLAN 0x00040000 /* VXLAN outer encapsulation */ 680 #define CSUM_ENCAP_RSVD1 0x00080000 681 682 /* Inbound checksum support where the checksum was verified by hardware. */ 683 #define CSUM_INNER_L3_CALC 0x00100000 684 #define CSUM_INNER_L3_VALID 0x00200000 685 #define CSUM_INNER_L4_CALC 0x00400000 686 #define CSUM_INNER_L4_VALID 0x00800000 687 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ 688 #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ 689 #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ 690 #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ 691 #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ 692 #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ 693 #define CSUM_COALESCED 0x40000000 /* contains merged segments */ 694 695 #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ 696 697 #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 698 CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \ 699 CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \ 700 CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \ 701 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \ 702 CSUM_ENCAP_RSVD1 | CSUM_SND_TAG) 703 704 #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \ 705 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \ 706 CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \ 707 CSUM_COALESCED) 708 709 /* 710 * CSUM flag description for use with printf(9) %b identifier. 711 */ 712 #define CSUM_BITS \ 713 "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ 714 "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \ 715 "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \ 716 "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \ 717 "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \ 718 "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \ 719 "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \ 720 "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \ 721 "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" 722 723 /* CSUM flags compatibility mappings. */ 724 #define CSUM_IP_CHECKED CSUM_L3_CALC 725 #define CSUM_IP_VALID CSUM_L3_VALID 726 #define CSUM_DATA_VALID CSUM_L4_VALID 727 #define CSUM_PSEUDO_HDR CSUM_L4_CALC 728 #define CSUM_SCTP_VALID CSUM_L4_VALID 729 #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) 730 #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ 731 #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) 732 #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID 733 #define CSUM_TCP CSUM_IP_TCP 734 #define CSUM_UDP CSUM_IP_UDP 735 #define CSUM_SCTP CSUM_IP_SCTP 736 #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) 737 #define CSUM_INNER_TSO (CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO) 738 #define CSUM_UDP_IPV6 CSUM_IP6_UDP 739 #define CSUM_TCP_IPV6 CSUM_IP6_TCP 740 #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP 741 #define CSUM_TLS_MASK (CSUM_L5_CALC|CSUM_L5_VALID) 742 #define CSUM_TLS_DECRYPTED CSUM_L5_CALC 743 744 /* 745 * mbuf types describing the content of the mbuf (including external storage). 746 */ 747 #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ 748 #define MT_DATA 1 /* dynamic (data) allocation */ 749 #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ 750 751 #define MT_VENDOR1 4 /* for vendor-internal use */ 752 #define MT_VENDOR2 5 /* for vendor-internal use */ 753 #define MT_VENDOR3 6 /* for vendor-internal use */ 754 #define MT_VENDOR4 7 /* for vendor-internal use */ 755 756 #define MT_SONAME 8 /* socket name */ 757 758 #define MT_EXP1 9 /* for experimental use */ 759 #define MT_EXP2 10 /* for experimental use */ 760 #define MT_EXP3 11 /* for experimental use */ 761 #define MT_EXP4 12 /* for experimental use */ 762 763 #define MT_CONTROL 14 /* extra-data protocol message */ 764 #define MT_EXTCONTROL 15 /* control message with externalized contents */ 765 #define MT_OOBDATA 16 /* expedited data */ 766 767 #define MT_NOINIT 255 /* Not a type but a flag to allocate 768 a non-initialized mbuf */ 769 770 /* 771 * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to 772 * !_KERNEL so that monitoring tools can look up the zones with 773 * libmemstat(3). 774 */ 775 #define MBUF_MEM_NAME "mbuf" 776 #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" 777 #define MBUF_PACKET_MEM_NAME "mbuf_packet" 778 #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" 779 #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" 780 #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" 781 #define MBUF_TAG_MEM_NAME "mbuf_tag" 782 #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" 783 #define MBUF_EXTPGS_MEM_NAME "mbuf_extpgs" 784 785 #ifdef _KERNEL 786 union if_snd_tag_alloc_params; 787 788 #define MBUF_CHECKSLEEP(how) do { \ 789 if (how == M_WAITOK) \ 790 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ 791 "Sleeping in \"%s\"", __func__); \ 792 } while (0) 793 794 /* 795 * Network buffer allocation API 796 * 797 * The rest of it is defined in kern/kern_mbuf.c 798 */ 799 extern uma_zone_t zone_mbuf; 800 extern uma_zone_t zone_clust; 801 extern uma_zone_t zone_pack; 802 extern uma_zone_t zone_jumbop; 803 extern uma_zone_t zone_jumbo9; 804 extern uma_zone_t zone_jumbo16; 805 extern uma_zone_t zone_extpgs; 806 807 void mb_dupcl(struct mbuf *, struct mbuf *); 808 void mb_free_ext(struct mbuf *); 809 void mb_free_extpg(struct mbuf *); 810 void mb_free_mext_pgs(struct mbuf *); 811 struct mbuf *mb_alloc_ext_pgs(int, m_ext_free_t); 812 struct mbuf *mb_alloc_ext_plus_pages(int, int); 813 struct mbuf *mb_mapped_to_unmapped(struct mbuf *, int, int, int, 814 struct mbuf **); 815 int mb_unmapped_compress(struct mbuf *m); 816 struct mbuf *mb_unmapped_to_ext(struct mbuf *m); 817 void mb_free_notready(struct mbuf *m, int count); 818 void m_adj(struct mbuf *, int); 819 void m_adj_decap(struct mbuf *, int); 820 int m_apply(struct mbuf *, int, int, 821 int (*)(void *, void *, u_int), void *); 822 int m_append(struct mbuf *, int, c_caddr_t); 823 void m_cat(struct mbuf *, struct mbuf *); 824 void m_catpkt(struct mbuf *, struct mbuf *); 825 int m_clget(struct mbuf *m, int how); 826 void *m_cljget(struct mbuf *m, int how, int size); 827 struct mbuf *m_collapse(struct mbuf *, int, int); 828 void m_copyback(struct mbuf *, int, int, c_caddr_t); 829 void m_copydata(const struct mbuf *, int, int, caddr_t); 830 struct mbuf *m_copym(struct mbuf *, int, int, int); 831 struct mbuf *m_copypacket(struct mbuf *, int); 832 void m_copy_pkthdr(struct mbuf *, struct mbuf *); 833 struct mbuf *m_copyup(struct mbuf *, int, int); 834 struct mbuf *m_defrag(struct mbuf *, int); 835 void m_demote_pkthdr(struct mbuf *); 836 void m_demote(struct mbuf *, int, int); 837 struct mbuf *m_devget(char *, int, int, struct ifnet *, 838 void (*)(char *, caddr_t, u_int)); 839 void m_dispose_extcontrolm(struct mbuf *m); 840 struct mbuf *m_dup(const struct mbuf *, int); 841 int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); 842 void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, 843 void *, void *, int, int); 844 u_int m_fixhdr(struct mbuf *); 845 struct mbuf *m_fragment(struct mbuf *, int, int); 846 void m_freem(struct mbuf *); 847 void m_free_raw(struct mbuf *); 848 struct mbuf *m_get2(int, int, short, int); 849 struct mbuf *m_get3(int, int, short, int); 850 struct mbuf *m_getjcl(int, short, int, int); 851 struct mbuf *m_getm2(struct mbuf *, int, int, short, int); 852 struct mbuf *m_getptr(struct mbuf *, int, int *); 853 u_int m_length(struct mbuf *, struct mbuf **); 854 int m_mbuftouio(struct uio *, const struct mbuf *, int); 855 void m_move_pkthdr(struct mbuf *, struct mbuf *); 856 int m_pkthdr_init(struct mbuf *, int); 857 struct mbuf *m_prepend(struct mbuf *, int, int); 858 void m_print(const struct mbuf *, int); 859 struct mbuf *m_pulldown(struct mbuf *, int, int, int *); 860 struct mbuf *m_pullup(struct mbuf *, int); 861 int m_sanity(struct mbuf *, int); 862 struct mbuf *m_split(struct mbuf *, int, int); 863 struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); 864 int m_unmapped_uiomove(const struct mbuf *, int, struct uio *, 865 int); 866 struct mbuf *m_unshare(struct mbuf *, int); 867 int m_snd_tag_alloc(struct ifnet *, 868 union if_snd_tag_alloc_params *, struct m_snd_tag **); 869 void m_snd_tag_init(struct m_snd_tag *, struct ifnet *, 870 const struct if_snd_tag_sw *); 871 void m_snd_tag_destroy(struct m_snd_tag *); 872 void m_rcvif_serialize(struct mbuf *); 873 struct ifnet *m_rcvif_restore(struct mbuf *); 874 875 static __inline int 876 m_gettype(int size) 877 { 878 int type; 879 880 switch (size) { 881 case MSIZE: 882 type = EXT_MBUF; 883 break; 884 case MCLBYTES: 885 type = EXT_CLUSTER; 886 break; 887 case MJUMPAGESIZE: 888 type = EXT_JUMBOP; 889 break; 890 case MJUM9BYTES: 891 type = EXT_JUMBO9; 892 break; 893 case MJUM16BYTES: 894 type = EXT_JUMBO16; 895 break; 896 default: 897 panic("%s: invalid cluster size %d", __func__, size); 898 } 899 900 return (type); 901 } 902 903 /* 904 * Associated an external reference counted buffer with an mbuf. 905 */ 906 static __inline void 907 m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, 908 m_ext_free_t freef, void *arg1, void *arg2) 909 { 910 911 KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); 912 913 atomic_add_int(ref_cnt, 1); 914 m->m_flags |= M_EXT; 915 m->m_ext.ext_buf = buf; 916 m->m_ext.ext_cnt = ref_cnt; 917 m->m_data = m->m_ext.ext_buf; 918 m->m_ext.ext_size = size; 919 m->m_ext.ext_free = freef; 920 m->m_ext.ext_arg1 = arg1; 921 m->m_ext.ext_arg2 = arg2; 922 m->m_ext.ext_type = EXT_EXTREF; 923 m->m_ext.ext_flags = 0; 924 } 925 926 static __inline uma_zone_t 927 m_getzone(int size) 928 { 929 uma_zone_t zone; 930 931 switch (size) { 932 case MCLBYTES: 933 zone = zone_clust; 934 break; 935 case MJUMPAGESIZE: 936 zone = zone_jumbop; 937 break; 938 case MJUM9BYTES: 939 zone = zone_jumbo9; 940 break; 941 case MJUM16BYTES: 942 zone = zone_jumbo16; 943 break; 944 default: 945 panic("%s: invalid cluster size %d", __func__, size); 946 } 947 948 return (zone); 949 } 950 951 /* 952 * Initialize an mbuf with linear storage. 953 * 954 * Inline because the consumer text overhead will be roughly the same to 955 * initialize or call a function with this many parameters and M_PKTHDR 956 * should go away with constant propagation for !MGETHDR. 957 */ 958 static __inline int 959 m_init(struct mbuf *m, int how, short type, int flags) 960 { 961 int error; 962 963 m->m_next = NULL; 964 m->m_nextpkt = NULL; 965 m->m_data = m->m_dat; 966 m->m_len = 0; 967 m->m_flags = flags; 968 m->m_type = type; 969 if (flags & M_PKTHDR) 970 error = m_pkthdr_init(m, how); 971 else 972 error = 0; 973 974 MBUF_PROBE5(m__init, m, how, type, flags, error); 975 return (error); 976 } 977 978 static __inline struct mbuf * 979 m_get_raw(int how, short type) 980 { 981 struct mbuf *m; 982 struct mb_args args; 983 984 args.flags = 0; 985 args.type = type | MT_NOINIT; 986 m = uma_zalloc_arg(zone_mbuf, &args, how); 987 MBUF_PROBE3(m__get_raw, how, type, m); 988 return (m); 989 } 990 991 static __inline struct mbuf * 992 m_get(int how, short type) 993 { 994 struct mbuf *m; 995 struct mb_args args; 996 997 args.flags = 0; 998 args.type = type; 999 m = uma_zalloc_arg(zone_mbuf, &args, how); 1000 MBUF_PROBE3(m__get, how, type, m); 1001 return (m); 1002 } 1003 1004 static __inline struct mbuf * 1005 m_gethdr_raw(int how, short type) 1006 { 1007 struct mbuf *m; 1008 struct mb_args args; 1009 1010 args.flags = M_PKTHDR; 1011 args.type = type | MT_NOINIT; 1012 m = uma_zalloc_arg(zone_mbuf, &args, how); 1013 MBUF_PROBE3(m__gethdr_raw, how, type, m); 1014 return (m); 1015 } 1016 1017 static __inline struct mbuf * 1018 m_gethdr(int how, short type) 1019 { 1020 struct mbuf *m; 1021 struct mb_args args; 1022 1023 args.flags = M_PKTHDR; 1024 args.type = type; 1025 m = uma_zalloc_arg(zone_mbuf, &args, how); 1026 MBUF_PROBE3(m__gethdr, how, type, m); 1027 return (m); 1028 } 1029 1030 static __inline struct mbuf * 1031 m_getcl(int how, short type, int flags) 1032 { 1033 struct mbuf *m; 1034 struct mb_args args; 1035 1036 args.flags = flags; 1037 args.type = type; 1038 m = uma_zalloc_arg(zone_pack, &args, how); 1039 MBUF_PROBE4(m__getcl, how, type, flags, m); 1040 return (m); 1041 } 1042 1043 /* 1044 * XXX: m_cljset() is a dangerous API. One must attach only a new, 1045 * unreferenced cluster to an mbuf(9). It is not possible to assert 1046 * that, so care can be taken only by users of the API. 1047 */ 1048 static __inline void 1049 m_cljset(struct mbuf *m, void *cl, int type) 1050 { 1051 int size; 1052 1053 switch (type) { 1054 case EXT_CLUSTER: 1055 size = MCLBYTES; 1056 break; 1057 case EXT_JUMBOP: 1058 size = MJUMPAGESIZE; 1059 break; 1060 case EXT_JUMBO9: 1061 size = MJUM9BYTES; 1062 break; 1063 case EXT_JUMBO16: 1064 size = MJUM16BYTES; 1065 break; 1066 default: 1067 panic("%s: unknown cluster type %d", __func__, type); 1068 break; 1069 } 1070 1071 m->m_data = m->m_ext.ext_buf = cl; 1072 m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; 1073 m->m_ext.ext_size = size; 1074 m->m_ext.ext_type = type; 1075 m->m_ext.ext_flags = EXT_FLAG_EMBREF; 1076 m->m_ext.ext_count = 1; 1077 m->m_flags |= M_EXT; 1078 MBUF_PROBE3(m__cljset, m, cl, type); 1079 } 1080 1081 static __inline void 1082 m_chtype(struct mbuf *m, short new_type) 1083 { 1084 1085 m->m_type = new_type; 1086 } 1087 1088 static __inline void 1089 m_clrprotoflags(struct mbuf *m) 1090 { 1091 1092 while (m) { 1093 m->m_flags &= ~M_PROTOFLAGS; 1094 m = m->m_next; 1095 } 1096 } 1097 1098 static __inline struct mbuf * 1099 m_last(struct mbuf *m) 1100 { 1101 1102 while (m->m_next) 1103 m = m->m_next; 1104 return (m); 1105 } 1106 1107 static inline u_int 1108 m_extrefcnt(struct mbuf *m) 1109 { 1110 1111 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); 1112 1113 return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : 1114 *m->m_ext.ext_cnt); 1115 } 1116 1117 /* 1118 * mbuf, cluster, and external object allocation macros (for compatibility 1119 * purposes). 1120 */ 1121 #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) 1122 #define MGET(m, how, type) ((m) = m_get((how), (type))) 1123 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) 1124 #define MCLGET(m, how) m_clget((m), (how)) 1125 #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ 1126 m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ 1127 (flags), (type)) 1128 #define m_getm(m, len, how, type) \ 1129 m_getm2((m), (len), (how), (type), M_PKTHDR) 1130 1131 /* 1132 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can 1133 * be both the local data payload, or an external buffer area, depending on 1134 * whether M_EXT is set). 1135 */ 1136 #define M_WRITABLE(m) (((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 && \ 1137 (!(((m)->m_flags & M_EXT)) || \ 1138 (m_extrefcnt(m) == 1))) 1139 1140 /* Check if the supplied mbuf has a packet header, or else panic. */ 1141 #define M_ASSERTPKTHDR(m) \ 1142 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ 1143 ("%s: no mbuf packet header!", __func__)) 1144 1145 /* Check if the supplied mbuf has no send tag, or else panic. */ 1146 #define M_ASSERT_NO_SND_TAG(m) \ 1147 KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR && \ 1148 ((m)->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0, \ 1149 ("%s: receive mbuf has send tag!", __func__)) 1150 1151 /* Check if mbuf is multipage. */ 1152 #define M_ASSERTEXTPG(m) \ 1153 KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG, \ 1154 ("%s: m %p is not multipage!", __func__, m)) 1155 1156 /* 1157 * Ensure that the supplied mbuf is a valid, non-free mbuf. 1158 * 1159 * XXX: Broken at the moment. Need some UMA magic to make it work again. 1160 */ 1161 #define M_ASSERTVALID(m) \ 1162 KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ 1163 ("%s: attempted use of a free mbuf!", __func__)) 1164 1165 /* Check whether any mbuf in the chain is unmapped. */ 1166 #ifdef INVARIANTS 1167 #define M_ASSERTMAPPED(m) do { \ 1168 for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next) \ 1169 KASSERT((__m->m_flags & M_EXTPG) == 0, \ 1170 ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\ 1171 } while (0) 1172 #else 1173 #define M_ASSERTMAPPED(m) do {} while (0) 1174 #endif 1175 1176 /* 1177 * Return the address of the start of the buffer associated with an mbuf, 1178 * handling external storage, packet-header mbufs, and regular data mbufs. 1179 */ 1180 #define M_START(m) \ 1181 (((m)->m_flags & M_EXTPG) ? NULL : \ 1182 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ 1183 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ 1184 &(m)->m_dat[0]) 1185 1186 /* 1187 * Return the size of the buffer associated with an mbuf, handling external 1188 * storage, packet-header mbufs, and regular data mbufs. 1189 */ 1190 #define M_SIZE(m) \ 1191 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ 1192 ((m)->m_flags & M_PKTHDR) ? MHLEN : \ 1193 MLEN) 1194 1195 /* 1196 * Set the m_data pointer of a newly allocated mbuf to place an object of the 1197 * specified size at the end of the mbuf, longword aligned. 1198 * 1199 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as 1200 * separate macros, each asserting that it was called at the proper moment. 1201 * This required callers to themselves test the storage type and call the 1202 * right one. Rather than require callers to be aware of those layout 1203 * decisions, we centralize here. 1204 */ 1205 static __inline void 1206 m_align(struct mbuf *m, int len) 1207 { 1208 #ifdef INVARIANTS 1209 const char *msg = "%s: not a virgin mbuf"; 1210 #endif 1211 int adjust; 1212 1213 KASSERT(m->m_data == M_START(m), (msg, __func__)); 1214 1215 adjust = M_SIZE(m) - len; 1216 m->m_data += adjust &~ (sizeof(long)-1); 1217 } 1218 1219 #define M_ALIGN(m, len) m_align(m, len) 1220 #define MH_ALIGN(m, len) m_align(m, len) 1221 #define MEXT_ALIGN(m, len) m_align(m, len) 1222 1223 /* 1224 * Compute the amount of space available before the current start of data in 1225 * an mbuf. 1226 * 1227 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1228 * of checking writability of the mbuf data area rests solely with the caller. 1229 * 1230 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() 1231 * for mbufs with external storage. We now allow mbuf-embedded data to be 1232 * read-only as well. 1233 */ 1234 #define M_LEADINGSPACE(m) \ 1235 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) 1236 1237 /* 1238 * So M_TRAILINGROOM() is for when you want to know how much space 1239 * would be there if it was writable. This can be used to 1240 * detect changes in mbufs by knowing the value at one point 1241 * and then being able to compare it later to the current M_TRAILINGROOM(). 1242 * The TRAILINGSPACE() macro is not suitable for this since an mbuf 1243 * at one point might not be writable and then later it becomes writable 1244 * even though the space at the back of it has not changed. 1245 */ 1246 #define M_TRAILINGROOM(m) ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) 1247 /* 1248 * Compute the amount of space available after the end of data in an mbuf. 1249 * 1250 * The M_WRITABLE() is a temporary, conservative safety measure: the burden 1251 * of checking writability of the mbuf data area rests solely with the caller. 1252 * 1253 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() 1254 * for mbufs with external storage. We now allow mbuf-embedded data to be 1255 * read-only as well. 1256 */ 1257 #define M_TRAILINGSPACE(m) (M_WRITABLE(m) ? M_TRAILINGROOM(m) : 0) 1258 1259 /* 1260 * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be 1261 * allocated, how specifies whether to wait. If the allocation fails, the 1262 * original mbuf chain is freed and m is set to NULL. 1263 */ 1264 #define M_PREPEND(m, plen, how) do { \ 1265 struct mbuf **_mmp = &(m); \ 1266 struct mbuf *_mm = *_mmp; \ 1267 int _mplen = (plen); \ 1268 int __mhow = (how); \ 1269 \ 1270 MBUF_CHECKSLEEP(how); \ 1271 if (M_LEADINGSPACE(_mm) >= _mplen) { \ 1272 _mm->m_data -= _mplen; \ 1273 _mm->m_len += _mplen; \ 1274 } else \ 1275 _mm = m_prepend(_mm, _mplen, __mhow); \ 1276 if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ 1277 _mm->m_pkthdr.len += _mplen; \ 1278 *_mmp = _mm; \ 1279 } while (0) 1280 1281 /* 1282 * Change mbuf to new type. This is a relatively expensive operation and 1283 * should be avoided. 1284 */ 1285 #define MCHTYPE(m, t) m_chtype((m), (t)) 1286 1287 /* Return the rcvif of a packet header. */ 1288 static __inline struct ifnet * 1289 m_rcvif(struct mbuf *m) 1290 { 1291 1292 M_ASSERTPKTHDR(m); 1293 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1294 return (NULL); 1295 return (m->m_pkthdr.rcvif); 1296 } 1297 1298 /* Length to m_copy to copy all. */ 1299 #define M_COPYALL 1000000000 1300 1301 extern u_int max_linkhdr; /* Largest link-level header */ 1302 extern u_int max_hdr; /* Largest link + protocol header */ 1303 extern u_int max_protohdr; /* Largest protocol header */ 1304 void max_linkhdr_grow(u_int); 1305 void max_protohdr_grow(u_int); 1306 1307 extern int nmbclusters; /* Maximum number of clusters */ 1308 extern bool mb_use_ext_pgs; /* Use ext_pgs for sendfile */ 1309 1310 /*- 1311 * Network packets may have annotations attached by affixing a list of 1312 * "packet tags" to the pkthdr structure. Packet tags are dynamically 1313 * allocated semi-opaque data structures that have a fixed header 1314 * (struct m_tag) that specifies the size of the memory block and a 1315 * <cookie,type> pair that identifies it. The cookie is a 32-bit unique 1316 * unsigned value used to identify a module or ABI. By convention this value 1317 * is chosen as the date+time that the module is created, expressed as the 1318 * number of seconds since the epoch (e.g., using date -u +'%s'). The type 1319 * value is an ABI/module-specific value that identifies a particular 1320 * annotation and is private to the module. For compatibility with systems 1321 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value 1322 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find 1323 * compatibility shim functions and several tag types are defined below. 1324 * Users that do not require compatibility should use a private cookie value 1325 * so that packet tag-related definitions can be maintained privately. 1326 * 1327 * Note that the packet tag returned by m_tag_alloc has the default memory 1328 * alignment implemented by malloc. To reference private data one can use a 1329 * construct like: 1330 * 1331 * struct m_tag *mtag = m_tag_alloc(...); 1332 * struct foo *p = (struct foo *)(mtag+1); 1333 * 1334 * if the alignment of struct m_tag is sufficient for referencing members of 1335 * struct foo. Otherwise it is necessary to embed struct m_tag within the 1336 * private data structure to insure proper alignment; e.g., 1337 * 1338 * struct foo { 1339 * struct m_tag tag; 1340 * ... 1341 * }; 1342 * struct foo *p = (struct foo *) m_tag_alloc(...); 1343 * struct m_tag *mtag = &p->tag; 1344 */ 1345 1346 /* 1347 * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise 1348 * tags are expected to ``vanish'' when they pass through a network 1349 * interface. For most interfaces this happens normally as the tags are 1350 * reclaimed when the mbuf is free'd. However in some special cases 1351 * reclaiming must be done manually. An example is packets that pass through 1352 * the loopback interface. Also, one must be careful to do this when 1353 * ``turning around'' packets (e.g., icmp_reflect). 1354 * 1355 * To mark a tag persistent bit-or this flag in when defining the tag id. 1356 * The tag will then be treated as described above. 1357 */ 1358 #define MTAG_PERSISTENT 0x800 1359 1360 #define PACKET_TAG_NONE 0 /* Nadda */ 1361 1362 /* Packet tags for use with PACKET_ABI_COMPAT. */ 1363 #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ 1364 #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ 1365 #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ 1366 #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ 1367 #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ 1368 #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ 1369 #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ 1370 #define PACKET_TAG_GIF 8 /* GIF processing done */ 1371 #define PACKET_TAG_GRE 9 /* GRE processing done */ 1372 #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ 1373 #define PACKET_TAG_ENCAP 11 /* Encap. processing */ 1374 #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ 1375 #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ 1376 #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ 1377 #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ 1378 #define PACKET_TAG_DIVERT 17 /* divert info */ 1379 #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ 1380 #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ 1381 #define PACKET_TAG_PF 21 /* PF/ALTQ information */ 1382 /* was PACKET_TAG_RTSOCKFAM 25 rtsock sa family */ 1383 #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ 1384 #define PACKET_TAG_CARP 28 /* CARP info */ 1385 #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ 1386 #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ 1387 #define PACKET_TAG_PF_REASSEMBLED 31 1388 1389 /* Specific cookies and tags. */ 1390 1391 /* Packet tag routines. */ 1392 struct m_tag *m_tag_alloc(uint32_t, uint16_t, int, int); 1393 void m_tag_delete(struct mbuf *, struct m_tag *); 1394 void m_tag_delete_chain(struct mbuf *, struct m_tag *); 1395 void m_tag_free_default(struct m_tag *); 1396 struct m_tag *m_tag_locate(struct mbuf *, uint32_t, uint16_t, 1397 struct m_tag *); 1398 struct m_tag *m_tag_copy(struct m_tag *, int); 1399 int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); 1400 void m_tag_delete_nonpersistent(struct mbuf *); 1401 1402 /* 1403 * Initialize the list of tags associated with an mbuf. 1404 */ 1405 static __inline void 1406 m_tag_init(struct mbuf *m) 1407 { 1408 1409 SLIST_INIT(&m->m_pkthdr.tags); 1410 } 1411 1412 /* 1413 * Set up the contents of a tag. Note that this does not fill in the free 1414 * method; the caller is expected to do that. 1415 * 1416 * XXX probably should be called m_tag_init, but that was already taken. 1417 */ 1418 static __inline void 1419 m_tag_setup(struct m_tag *t, uint32_t cookie, uint16_t type, int len) 1420 { 1421 1422 t->m_tag_id = type; 1423 t->m_tag_len = len; 1424 t->m_tag_cookie = cookie; 1425 } 1426 1427 /* 1428 * Reclaim resources associated with a tag. 1429 */ 1430 static __inline void 1431 m_tag_free(struct m_tag *t) 1432 { 1433 1434 (*t->m_tag_free)(t); 1435 } 1436 1437 /* 1438 * Return the first tag associated with an mbuf. 1439 */ 1440 static __inline struct m_tag * 1441 m_tag_first(struct mbuf *m) 1442 { 1443 1444 return (SLIST_FIRST(&m->m_pkthdr.tags)); 1445 } 1446 1447 /* 1448 * Return the next tag in the list of tags associated with an mbuf. 1449 */ 1450 static __inline struct m_tag * 1451 m_tag_next(struct mbuf *m __unused, struct m_tag *t) 1452 { 1453 1454 return (SLIST_NEXT(t, m_tag_link)); 1455 } 1456 1457 /* 1458 * Prepend a tag to the list of tags associated with an mbuf. 1459 */ 1460 static __inline void 1461 m_tag_prepend(struct mbuf *m, struct m_tag *t) 1462 { 1463 1464 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); 1465 } 1466 1467 /* 1468 * Unlink a tag from the list of tags associated with an mbuf. 1469 */ 1470 static __inline void 1471 m_tag_unlink(struct mbuf *m, struct m_tag *t) 1472 { 1473 1474 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); 1475 } 1476 1477 /* These are for OpenBSD compatibility. */ 1478 #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ 1479 1480 static __inline struct m_tag * 1481 m_tag_get(uint16_t type, int length, int wait) 1482 { 1483 return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); 1484 } 1485 1486 static __inline struct m_tag * 1487 m_tag_find(struct mbuf *m, uint16_t type, struct m_tag *start) 1488 { 1489 return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : 1490 m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); 1491 } 1492 1493 static inline struct m_snd_tag * 1494 m_snd_tag_ref(struct m_snd_tag *mst) 1495 { 1496 1497 refcount_acquire(&mst->refcount); 1498 return (mst); 1499 } 1500 1501 static inline void 1502 m_snd_tag_rele(struct m_snd_tag *mst) 1503 { 1504 1505 if (refcount_release(&mst->refcount)) 1506 m_snd_tag_destroy(mst); 1507 } 1508 1509 static __inline struct mbuf * 1510 m_free(struct mbuf *m) 1511 { 1512 struct mbuf *n = m->m_next; 1513 1514 MBUF_PROBE1(m__free, m); 1515 if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) 1516 m_tag_delete_chain(m, NULL); 1517 if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) 1518 m_snd_tag_rele(m->m_pkthdr.snd_tag); 1519 if (m->m_flags & M_EXTPG) 1520 mb_free_extpg(m); 1521 else if (m->m_flags & M_EXT) 1522 mb_free_ext(m); 1523 else if ((m->m_flags & M_NOFREE) == 0) 1524 uma_zfree(zone_mbuf, m); 1525 return (n); 1526 } 1527 1528 static __inline int 1529 rt_m_getfib(struct mbuf *m) 1530 { 1531 KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); 1532 return (m->m_pkthdr.fibnum); 1533 } 1534 1535 #define M_GETFIB(_m) rt_m_getfib(_m) 1536 1537 #define M_SETFIB(_m, _fib) do { \ 1538 KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ 1539 ((_m)->m_pkthdr.fibnum) = (_fib); \ 1540 } while (0) 1541 1542 /* flags passed as first argument for "m_xxx_tcpip_hash()" */ 1543 #define MBUF_HASHFLAG_L2 (1 << 2) 1544 #define MBUF_HASHFLAG_L3 (1 << 3) 1545 #define MBUF_HASHFLAG_L4 (1 << 4) 1546 1547 /* mbuf hashing helper routines */ 1548 uint32_t m_ether_tcpip_hash_init(void); 1549 uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1550 uint32_t m_infiniband_tcpip_hash_init(void); 1551 uint32_t m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); 1552 1553 #ifdef MBUF_PROFILING 1554 void m_profile(struct mbuf *m); 1555 #define M_PROFILE(m) m_profile(m) 1556 #else 1557 #define M_PROFILE(m) 1558 #endif 1559 1560 struct mbufq { 1561 STAILQ_HEAD(, mbuf) mq_head; 1562 int mq_len; 1563 int mq_maxlen; 1564 }; 1565 1566 static inline void 1567 mbufq_init(struct mbufq *mq, int maxlen) 1568 { 1569 1570 STAILQ_INIT(&mq->mq_head); 1571 mq->mq_maxlen = maxlen; 1572 mq->mq_len = 0; 1573 } 1574 1575 static inline struct mbuf * 1576 mbufq_flush(struct mbufq *mq) 1577 { 1578 struct mbuf *m; 1579 1580 m = STAILQ_FIRST(&mq->mq_head); 1581 STAILQ_INIT(&mq->mq_head); 1582 mq->mq_len = 0; 1583 return (m); 1584 } 1585 1586 static inline void 1587 mbufq_drain(struct mbufq *mq) 1588 { 1589 struct mbuf *m, *n; 1590 1591 n = mbufq_flush(mq); 1592 while ((m = n) != NULL) { 1593 n = STAILQ_NEXT(m, m_stailqpkt); 1594 m_freem(m); 1595 } 1596 } 1597 1598 static inline struct mbuf * 1599 mbufq_first(const struct mbufq *mq) 1600 { 1601 1602 return (STAILQ_FIRST(&mq->mq_head)); 1603 } 1604 1605 static inline struct mbuf * 1606 mbufq_last(const struct mbufq *mq) 1607 { 1608 1609 return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); 1610 } 1611 1612 static inline int 1613 mbufq_full(const struct mbufq *mq) 1614 { 1615 1616 return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen); 1617 } 1618 1619 static inline int 1620 mbufq_len(const struct mbufq *mq) 1621 { 1622 1623 return (mq->mq_len); 1624 } 1625 1626 static inline int 1627 mbufq_enqueue(struct mbufq *mq, struct mbuf *m) 1628 { 1629 1630 if (mbufq_full(mq)) 1631 return (ENOBUFS); 1632 STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); 1633 mq->mq_len++; 1634 return (0); 1635 } 1636 1637 static inline struct mbuf * 1638 mbufq_dequeue(struct mbufq *mq) 1639 { 1640 struct mbuf *m; 1641 1642 m = STAILQ_FIRST(&mq->mq_head); 1643 if (m) { 1644 STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); 1645 m->m_nextpkt = NULL; 1646 mq->mq_len--; 1647 } 1648 return (m); 1649 } 1650 1651 static inline void 1652 mbufq_prepend(struct mbufq *mq, struct mbuf *m) 1653 { 1654 1655 STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); 1656 mq->mq_len++; 1657 } 1658 1659 /* 1660 * Note: this doesn't enforce the maximum list size for dst. 1661 */ 1662 static inline void 1663 mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) 1664 { 1665 1666 mq_dst->mq_len += mq_src->mq_len; 1667 STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); 1668 mq_src->mq_len = 0; 1669 } 1670 1671 #ifdef _SYS_TIMESPEC_H_ 1672 static inline void 1673 mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) 1674 { 1675 1676 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1677 KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, 1678 ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); 1679 ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1680 ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; 1681 } 1682 #endif 1683 1684 static inline void 1685 mbuf_tstmp2timeval(struct mbuf *m, struct timeval *tv) 1686 { 1687 1688 KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); 1689 KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, 1690 ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); 1691 tv->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; 1692 tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000; 1693 } 1694 1695 #ifdef DEBUGNET 1696 /* Invoked from the debugnet client code. */ 1697 void debugnet_mbuf_drain(void); 1698 void debugnet_mbuf_start(void); 1699 void debugnet_mbuf_finish(void); 1700 void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize); 1701 #endif 1702 1703 static inline bool 1704 mbuf_has_tls_session(struct mbuf *m) 1705 { 1706 1707 if (m->m_flags & M_EXTPG) { 1708 if (m->m_epg_tls != NULL) { 1709 return (true); 1710 } 1711 } 1712 return (false); 1713 } 1714 1715 #endif /* _KERNEL */ 1716 #endif /* !_SYS_MBUF_H_ */ 1717