1 /*- 2 * Copyright (c) 1999-2008 Apple Inc. 3 * Copyright (c) 2006-2008 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/condvar.h> 36 #include <sys/conf.h> 37 #include <sys/file.h> 38 #include <sys/filedesc.h> 39 #include <sys/fcntl.h> 40 #include <sys/ipc.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/proc.h> 47 #include <sys/queue.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/domain.h> 52 #include <sys/sx.h> 53 #include <sys/sysproto.h> 54 #include <sys/sysent.h> 55 #include <sys/systm.h> 56 #include <sys/ucred.h> 57 #include <sys/uio.h> 58 #include <sys/un.h> 59 #include <sys/unistd.h> 60 #include <sys/vnode.h> 61 62 #include <bsm/audit.h> 63 #include <bsm/audit_internal.h> 64 #include <bsm/audit_kevents.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 69 #include <security/audit/audit.h> 70 #include <security/audit/audit_private.h> 71 72 #include <vm/uma.h> 73 74 /* 75 * Worker thread that will schedule disk I/O, etc. 76 */ 77 static struct proc *audit_thread; 78 79 /* 80 * audit_cred and audit_vp are the stored credential and vnode to use for 81 * active audit trail. They are protected by the audit worker lock, which 82 * will be held across all I/O and all rotation to prevent them from being 83 * replaced (rotated) while in use. The audit_file_rotate_wait flag is set 84 * when the kernel has delivered a trigger to auditd to rotate the trail, and 85 * is cleared when the next rotation takes place. It is also protected by 86 * the audit worker lock. 87 */ 88 static int audit_file_rotate_wait; 89 static struct ucred *audit_cred; 90 static struct vnode *audit_vp; 91 static off_t audit_size; 92 static struct sx audit_worker_lock; 93 94 #define AUDIT_WORKER_LOCK_INIT() sx_init(&audit_worker_lock, \ 95 "audit_worker_lock"); 96 #define AUDIT_WORKER_LOCK_ASSERT() sx_assert(&audit_worker_lock, \ 97 SA_XLOCKED) 98 #define AUDIT_WORKER_LOCK() sx_xlock(&audit_worker_lock) 99 #define AUDIT_WORKER_UNLOCK() sx_xunlock(&audit_worker_lock) 100 101 /* 102 * Write an audit record to a file, performed as the last stage after both 103 * preselection and BSM conversion. Both space management and write failures 104 * are handled in this function. 105 * 106 * No attempt is made to deal with possible failure to deliver a trigger to 107 * the audit daemon, since the message is asynchronous anyway. 108 */ 109 static void 110 audit_record_write(struct vnode *vp, struct ucred *cred, void *data, 111 size_t len) 112 { 113 static struct timeval last_lowspace_trigger; 114 static struct timeval last_fail; 115 static int cur_lowspace_trigger; 116 struct statfs *mnt_stat; 117 int error; 118 static int cur_fail; 119 long temp; 120 121 AUDIT_WORKER_LOCK_ASSERT(); 122 123 if (vp == NULL) 124 return; 125 126 mnt_stat = &vp->v_mount->mnt_stat; 127 128 /* 129 * First, gather statistics on the audit log file and file system so 130 * that we know how we're doing on space. Consider failure of these 131 * operations to indicate a future inability to write to the file. 132 */ 133 error = VFS_STATFS(vp->v_mount, mnt_stat); 134 if (error) 135 goto fail; 136 137 /* 138 * We handle four different space-related limits: 139 * 140 * - A fixed (hard) limit on the minimum free blocks we require on 141 * the file system, and results in record loss, a trigger, and 142 * possible fail stop due to violating invariants. 143 * 144 * - An administrative (soft) limit, which when fallen below, results 145 * in the kernel notifying the audit daemon of low space. 146 * 147 * - An audit trail size limit, which when gone above, results in the 148 * kernel notifying the audit daemon that rotation is desired. 149 * 150 * - The total depth of the kernel audit record exceeding free space, 151 * which can lead to possible fail stop (with drain), in order to 152 * prevent violating invariants. Failure here doesn't halt 153 * immediately, but prevents new records from being generated. 154 * 155 * Possibly, the last of these should be handled differently, always 156 * allowing a full queue to be lost, rather than trying to prevent 157 * loss. 158 * 159 * First, handle the hard limit, which generates a trigger and may 160 * fail stop. This is handled in the same manner as ENOSPC from 161 * VOP_WRITE, and results in record loss. 162 */ 163 if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) { 164 error = ENOSPC; 165 goto fail_enospc; 166 } 167 168 /* 169 * Second, handle falling below the soft limit, if defined; we send 170 * the daemon a trigger and continue processing the record. Triggers 171 * are limited to 1/sec. 172 */ 173 if (audit_qctrl.aq_minfree != 0) { 174 temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree); 175 if (mnt_stat->f_bfree < temp) { 176 if (ppsratecheck(&last_lowspace_trigger, 177 &cur_lowspace_trigger, 1)) { 178 (void)audit_send_trigger( 179 AUDIT_TRIGGER_LOW_SPACE); 180 printf("Warning: disk space low (< %d%% free) " 181 "on audit log file-system\n", 182 audit_qctrl.aq_minfree); 183 } 184 } 185 } 186 187 /* 188 * If the current file is getting full, generate a rotation trigger 189 * to the daemon. This is only approximate, which is fine as more 190 * records may be generated before the daemon rotates the file. 191 */ 192 if (audit_fstat.af_filesz != 0 && 193 audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) { 194 AUDIT_WORKER_LOCK_ASSERT(); 195 196 audit_file_rotate_wait++; 197 (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL); 198 } 199 200 /* 201 * If the estimated amount of audit data in the audit event queue 202 * (plus records allocated but not yet queued) has reached the amount 203 * of free space on the disk, then we need to go into an audit fail 204 * stop state, in which we do not permit the allocation/committing of 205 * any new audit records. We continue to process records but don't 206 * allow any activities that might generate new records. In the 207 * future, we might want to detect when space is available again and 208 * allow operation to continue, but this behavior is sufficient to 209 * meet fail stop requirements in CAPP. 210 */ 211 if (audit_fail_stop) { 212 if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) * 213 MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >= 214 (unsigned long)(mnt_stat->f_bfree)) { 215 if (ppsratecheck(&last_fail, &cur_fail, 1)) 216 printf("audit_record_write: free space " 217 "below size of audit queue, failing " 218 "stop\n"); 219 audit_in_failure = 1; 220 } else if (audit_in_failure) { 221 /* 222 * Note: if we want to handle recovery, this is the 223 * spot to do it: unset audit_in_failure, and issue a 224 * wakeup on the cv. 225 */ 226 } 227 } 228 229 error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE, 230 IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread); 231 if (error == ENOSPC) 232 goto fail_enospc; 233 else if (error) 234 goto fail; 235 AUDIT_WORKER_LOCK_ASSERT(); 236 audit_size += len; 237 238 /* 239 * Catch completion of a queue drain here; if we're draining and the 240 * queue is now empty, fail stop. That audit_fail_stop is implicitly 241 * true, since audit_in_failure can only be set of audit_fail_stop is 242 * set. 243 * 244 * Note: if we handle recovery from audit_in_failure, then we need to 245 * make panic here conditional. 246 */ 247 if (audit_in_failure) { 248 if (audit_q_len == 0 && audit_pre_q_len == 0) { 249 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 250 (void)VOP_FSYNC(vp, MNT_WAIT, curthread); 251 VOP_UNLOCK(vp, 0); 252 panic("Audit store overflow; record queue drained."); 253 } 254 } 255 256 return; 257 258 fail_enospc: 259 /* 260 * ENOSPC is considered a special case with respect to failures, as 261 * this can reflect either our preemptive detection of insufficient 262 * space, or ENOSPC returned by the vnode write call. 263 */ 264 if (audit_fail_stop) { 265 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 266 (void)VOP_FSYNC(vp, MNT_WAIT, curthread); 267 VOP_UNLOCK(vp, 0); 268 panic("Audit log space exhausted and fail-stop set."); 269 } 270 (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE); 271 audit_suspended = 1; 272 273 /* FALLTHROUGH */ 274 fail: 275 /* 276 * We have failed to write to the file, so the current record is 277 * lost, which may require an immediate system halt. 278 */ 279 if (audit_panic_on_write_fail) { 280 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 281 (void)VOP_FSYNC(vp, MNT_WAIT, curthread); 282 VOP_UNLOCK(vp, 0); 283 panic("audit_worker: write error %d\n", error); 284 } else if (ppsratecheck(&last_fail, &cur_fail, 1)) 285 printf("audit_worker: write error %d\n", error); 286 } 287 288 /* 289 * Given a kernel audit record, process as required. Kernel audit records 290 * are converted to one, or possibly two, BSM records, depending on whether 291 * there is a user audit record present also. Kernel records need be 292 * converted to BSM before they can be written out. Both types will be 293 * written to disk, and audit pipes. 294 */ 295 static void 296 audit_worker_process_record(struct kaudit_record *ar) 297 { 298 struct au_record *bsm; 299 au_class_t class; 300 au_event_t event; 301 au_id_t auid; 302 int error, sorf; 303 int locked; 304 305 /* 306 * We hold the audit worker lock over both writes, if there are two, 307 * so that the two records won't be split across a rotation and end 308 * up in two different trail files. 309 */ 310 if (((ar->k_ar_commit & AR_COMMIT_USER) && 311 (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) || 312 (ar->k_ar_commit & AR_PRESELECT_TRAIL)) { 313 AUDIT_WORKER_LOCK(); 314 locked = 1; 315 } else 316 locked = 0; 317 318 /* 319 * First, handle the user record, if any: commit to the system trail 320 * and audit pipes as selected. 321 */ 322 if ((ar->k_ar_commit & AR_COMMIT_USER) && 323 (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) { 324 AUDIT_WORKER_LOCK_ASSERT(); 325 audit_record_write(audit_vp, audit_cred, ar->k_udata, 326 ar->k_ulen); 327 } 328 329 if ((ar->k_ar_commit & AR_COMMIT_USER) && 330 (ar->k_ar_commit & AR_PRESELECT_USER_PIPE)) 331 audit_pipe_submit_user(ar->k_udata, ar->k_ulen); 332 333 if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) || 334 ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 && 335 (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0)) 336 goto out; 337 338 auid = ar->k_ar.ar_subj_auid; 339 event = ar->k_ar.ar_event; 340 class = au_event_class(event); 341 if (ar->k_ar.ar_errno == 0) 342 sorf = AU_PRS_SUCCESS; 343 else 344 sorf = AU_PRS_FAILURE; 345 346 error = kaudit_to_bsm(ar, &bsm); 347 switch (error) { 348 case BSM_NOAUDIT: 349 goto out; 350 351 case BSM_FAILURE: 352 printf("audit_worker_process_record: BSM_FAILURE\n"); 353 goto out; 354 355 case BSM_SUCCESS: 356 break; 357 358 default: 359 panic("kaudit_to_bsm returned %d", error); 360 } 361 362 if (ar->k_ar_commit & AR_PRESELECT_TRAIL) { 363 AUDIT_WORKER_LOCK_ASSERT(); 364 audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len); 365 } 366 367 if (ar->k_ar_commit & AR_PRESELECT_PIPE) 368 audit_pipe_submit(auid, event, class, sorf, 369 ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data, 370 bsm->len); 371 372 kau_free(bsm); 373 out: 374 if (locked) 375 AUDIT_WORKER_UNLOCK(); 376 } 377 378 /* 379 * The audit_worker thread is responsible for watching the event queue, 380 * dequeueing records, converting them to BSM format, and committing them to 381 * disk. In order to minimize lock thrashing, records are dequeued in sets 382 * to a thread-local work queue. 383 * 384 * Note: this means that the effect bound on the size of the pending record 385 * queue is 2x the length of the global queue. 386 */ 387 static void 388 audit_worker(void *arg) 389 { 390 struct kaudit_queue ar_worklist; 391 struct kaudit_record *ar; 392 int lowater_signal; 393 394 TAILQ_INIT(&ar_worklist); 395 mtx_lock(&audit_mtx); 396 while (1) { 397 mtx_assert(&audit_mtx, MA_OWNED); 398 399 /* 400 * Wait for a record. 401 */ 402 while (TAILQ_EMPTY(&audit_q)) 403 cv_wait(&audit_worker_cv, &audit_mtx); 404 405 /* 406 * If there are records in the global audit record queue, 407 * transfer them to a thread-local queue and process them 408 * one by one. If we cross the low watermark threshold, 409 * signal any waiting processes that they may wake up and 410 * continue generating records. 411 */ 412 lowater_signal = 0; 413 while ((ar = TAILQ_FIRST(&audit_q))) { 414 TAILQ_REMOVE(&audit_q, ar, k_q); 415 audit_q_len--; 416 if (audit_q_len == audit_qctrl.aq_lowater) 417 lowater_signal++; 418 TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); 419 } 420 if (lowater_signal) 421 cv_broadcast(&audit_watermark_cv); 422 423 mtx_unlock(&audit_mtx); 424 while ((ar = TAILQ_FIRST(&ar_worklist))) { 425 TAILQ_REMOVE(&ar_worklist, ar, k_q); 426 audit_worker_process_record(ar); 427 audit_free(ar); 428 } 429 mtx_lock(&audit_mtx); 430 } 431 } 432 433 /* 434 * audit_rotate_vnode() is called by a user or kernel thread to configure or 435 * de-configure auditing on a vnode. The arguments are the replacement 436 * credential (referenced) and vnode (referenced and opened) to substitute 437 * for the current credential and vnode, if any. If either is set to NULL, 438 * both should be NULL, and this is used to indicate that audit is being 439 * disabled. Any previous cred/vnode will be closed and freed. We re-enable 440 * generating rotation requests to auditd. 441 */ 442 void 443 audit_rotate_vnode(struct ucred *cred, struct vnode *vp) 444 { 445 struct ucred *old_audit_cred; 446 struct vnode *old_audit_vp; 447 struct vattr vattr; 448 449 KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL), 450 ("audit_rotate_vnode: cred %p vp %p", cred, vp)); 451 452 if (vp != NULL) { 453 vn_lock(vp, LK_SHARED | LK_RETRY); 454 if (VOP_GETATTR(vp, &vattr, cred) != 0) 455 vattr.va_size = 0; 456 VOP_UNLOCK(vp, 0); 457 } else { 458 vattr.va_size = 0; 459 } 460 461 /* 462 * Rotate the vnode/cred, and clear the rotate flag so that we will 463 * send a rotate trigger if the new file fills. 464 */ 465 AUDIT_WORKER_LOCK(); 466 old_audit_cred = audit_cred; 467 old_audit_vp = audit_vp; 468 audit_cred = cred; 469 audit_vp = vp; 470 audit_size = vattr.va_size; 471 audit_file_rotate_wait = 0; 472 audit_enabled = (audit_vp != NULL); 473 AUDIT_WORKER_UNLOCK(); 474 475 /* 476 * If there was an old vnode/credential, close and free. 477 */ 478 if (old_audit_vp != NULL) { 479 vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred, 480 curthread); 481 crfree(old_audit_cred); 482 } 483 } 484 485 void 486 audit_worker_init(void) 487 { 488 int error; 489 490 AUDIT_WORKER_LOCK_INIT(); 491 error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID, 492 0, "audit"); 493 if (error) 494 panic("audit_worker_init: kproc_create returned %d", error); 495 } 496