xref: /freebsd/sys/security/audit/audit_worker.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*
2  * Copyright (c) 1999-2005 Apple Computer, Inc.
3  * Copyright (c) 2006 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/condvar.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/filedesc.h>
38 #include <sys/fcntl.h>
39 #include <sys/ipc.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/protosw.h>
50 #include <sys/domain.h>
51 #include <sys/sysproto.h>
52 #include <sys/sysent.h>
53 #include <sys/systm.h>
54 #include <sys/ucred.h>
55 #include <sys/uio.h>
56 #include <sys/un.h>
57 #include <sys/unistd.h>
58 #include <sys/vnode.h>
59 
60 #include <bsm/audit.h>
61 #include <bsm/audit_internal.h>
62 #include <bsm/audit_kevents.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 
67 #include <security/audit/audit.h>
68 #include <security/audit/audit_private.h>
69 
70 #include <vm/uma.h>
71 
72 /*
73  * Worker thread that will schedule disk I/O, etc.
74  */
75 static struct proc		*audit_thread;
76 
77 /*
78  * When an audit log is rotated, the actual rotation must be performed by the
79  * audit worker thread, as it may have outstanding writes on the current
80  * audit log.  audit_replacement_vp holds the vnode replacing the current
81  * vnode.  We can't let more than one replacement occur at a time, so if more
82  * than one thread requests a replacement, only one can have the replacement
83  * "in progress" at any given moment.  If a thread tries to replace the audit
84  * vnode and discovers a replacement is already in progress (i.e.,
85  * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86  * waiting its turn to perform a replacement.  When a replacement is
87  * completed, this cv is signalled by the worker thread so a waiting thread
88  * can start another replacement.  We also store a credential to perform
89  * audit log write operations with.
90  *
91  * The current credential and vnode are thread-local to audit_worker.
92  */
93 static struct cv		audit_replacement_cv;
94 
95 static int			audit_replacement_flag;
96 static struct vnode		*audit_replacement_vp;
97 static struct ucred		*audit_replacement_cred;
98 
99 /*
100  * Flags related to Kernel->user-space communication.
101  */
102 static int			audit_file_rotate_wait;
103 
104 /*
105  * XXXAUDIT: Should adjust comments below to make it clear that we get to
106  * this point only if we believe we have storage, so not having space here is
107  * a violation of invariants derived from administrative procedures. I.e.,
108  * someone else has written to the audit partition, leaving less space than
109  * we accounted for.
110  */
111 static int
112 audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
113     void *data, size_t len)
114 {
115 	int ret;
116 	long temp;
117 	struct vattr vattr;
118 	struct statfs *mnt_stat;
119 	int vfslocked;
120 
121 	if (vp == NULL)
122 		return (0);
123 
124  	mnt_stat = &vp->v_mount->mnt_stat;
125 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
126 
127 	/*
128 	 * First, gather statistics on the audit log file and file system so
129 	 * that we know how we're doing on space.  In both cases, if we're
130 	 * unable to perform the operation, we drop the record and return.
131 	 * However, this is arguably an assertion failure.
132 	 * XXX Need a FreeBSD equivalent.
133 	 */
134 	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
135 	if (ret)
136 		goto out;
137 
138 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
139 	ret = VOP_GETATTR(vp, &vattr, cred, td);
140 	VOP_UNLOCK(vp, 0, td);
141 	if (ret)
142 		goto out;
143 
144 	/* update the global stats struct */
145 	audit_fstat.af_currsz = vattr.va_size;
146 
147 	/*
148 	 * XXX Need to decide what to do if the trigger to the audit daemon
149 	 * fails.
150 	 */
151 
152 	/*
153 	 * If we fall below minimum free blocks (hard limit), tell the audit
154 	 * daemon to force a rotation off of the file system. We also stop
155 	 * writing, which means this audit record is probably lost.  If we
156 	 * fall below the minimum percent free blocks (soft limit), then
157 	 * kindly suggest to the audit daemon to do something.
158 	 */
159 	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
160 		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
161 		/*
162 		 * Hopefully userspace did something about all the previous
163 		 * triggers that were sent prior to this critical condition.
164 		 * If fail-stop is set, then we're done; goodnight Gracie.
165 		 */
166 		if (audit_fail_stop)
167 			panic("Audit log space exhausted and fail-stop set.");
168 		else {
169 			audit_suspended = 1;
170 			ret = ENOSPC;
171 			goto out;
172 		}
173 	} else
174 		/*
175 		 * Send a message to the audit daemon that disk space is
176 		 * getting low.
177 		 *
178 		 * XXXAUDIT: Check math and block size calculation here.
179 		 */
180 		if (audit_qctrl.aq_minfree != 0) {
181 			temp = mnt_stat->f_blocks / (100 /
182 			    audit_qctrl.aq_minfree);
183 			if (mnt_stat->f_bfree < temp)
184 				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
185 		}
186 
187 	/*
188 	 * Check if the current log file is full; if so, call for a log
189 	 * rotate. This is not an exact comparison; we may write some records
190 	 * over the limit. If that's not acceptable, then add a fudge factor
191 	 * here.
192 	 */
193 	if ((audit_fstat.af_filesz != 0) &&
194 	    (audit_file_rotate_wait == 0) &&
195 	    (vattr.va_size >= audit_fstat.af_filesz)) {
196 		audit_file_rotate_wait = 1;
197 		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
198 	}
199 
200 	/*
201 	 * If the estimated amount of audit data in the audit event queue
202 	 * (plus records allocated but not yet queued) has reached the amount
203 	 * of free space on the disk, then we need to go into an audit fail
204 	 * stop state, in which we do not permit the allocation/committing of
205 	 * any new audit records.  We continue to process packets but don't
206 	 * allow any activities that might generate new records.  In the
207 	 * future, we might want to detect when space is available again and
208 	 * allow operation to continue, but this behavior is sufficient to
209 	 * meet fail stop requirements in CAPP.
210 	 */
211 	if (audit_fail_stop &&
212 	    (unsigned long)
213 	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
214 	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
215 		printf("audit_record_write: free space below size of audit "
216 		    "queue, failing stop\n");
217 		audit_in_failure = 1;
218 	}
219 
220 	ret = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
221 	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
222 
223 out:
224 	/*
225 	 * When we're done processing the current record, we have to check to
226 	 * see if we're in a failure mode, and if so, whether this was the
227 	 * last record left to be drained.  If we're done draining, then we
228 	 * fsync the vnode and panic.
229 	 */
230 	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
231 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
232 		(void)VOP_FSYNC(vp, MNT_WAIT, td);
233 		VOP_UNLOCK(vp, 0, td);
234 		panic("Audit store overflow; record queue drained.");
235 	}
236 
237 	VFS_UNLOCK_GIANT(vfslocked);
238 
239 	return (ret);
240 }
241 
242 /*
243  * If an appropriate signal has been received rotate the audit log based on
244  * the global replacement variables.  Signal consumers as needed that the
245  * rotation has taken place.
246  *
247  * XXXRW: The global variables and CVs used to signal the audit_worker to
248  * perform a rotation are essentially a message queue of depth 1.  It would
249  * be much nicer to actually use a message queue.
250  */
251 static void
252 audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
253     struct thread *audit_td)
254 {
255 	int do_replacement_signal, vfslocked;
256 	struct ucred *old_cred;
257 	struct vnode *old_vp;
258 
259 	mtx_assert(&audit_mtx, MA_OWNED);
260 
261 	do_replacement_signal = 0;
262 	while (audit_replacement_flag != 0) {
263 		old_cred = *audit_credp;
264 		old_vp = *audit_vpp;
265 		*audit_credp = audit_replacement_cred;
266 		*audit_vpp = audit_replacement_vp;
267 		audit_replacement_cred = NULL;
268 		audit_replacement_vp = NULL;
269 		audit_replacement_flag = 0;
270 
271 		audit_enabled = (*audit_vpp != NULL);
272 
273 		/*
274 		 * XXX: What to do about write failures here?
275 		 */
276 		if (old_vp != NULL) {
277 			AUDIT_PRINTF(("Closing old audit file\n"));
278 			mtx_unlock(&audit_mtx);
279 			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
280 			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
281 			    audit_td);
282 			VFS_UNLOCK_GIANT(vfslocked);
283 			crfree(old_cred);
284 			mtx_lock(&audit_mtx);
285 			old_cred = NULL;
286 			old_vp = NULL;
287 			AUDIT_PRINTF(("Audit file closed\n"));
288 		}
289 		if (*audit_vpp != NULL) {
290 			AUDIT_PRINTF(("Opening new audit file\n"));
291 		}
292 		do_replacement_signal = 1;
293 	}
294 
295 	/*
296 	 * Signal that replacement have occurred to wake up and
297 	 * start any other replacements started in parallel.  We can
298 	 * continue about our business in the mean time.  We
299 	 * broadcast so that both new replacements can be inserted,
300 	 * but also so that the source(s) of replacement can return
301 	 * successfully.
302 	 */
303 	if (do_replacement_signal)
304 		cv_broadcast(&audit_replacement_cv);
305 }
306 
307 /*
308  * Given a kernel audit record, process as required.  Kernel audit records
309  * are converted to one, or possibly two, BSM records, depending on whether
310  * there is a user audit record present also.  Kernel records need be
311  * converted to BSM before they can be written out.  Both types will be
312  * written to disk, and audit pipes.
313  */
314 static void
315 audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
316     struct thread *audit_td, struct kaudit_record *ar)
317 {
318 	struct au_record *bsm;
319 	au_class_t class;
320 	au_event_t event;
321 	int error, ret;
322 	au_id_t auid;
323 	int sorf;
324 
325 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
326 	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
327 		error = audit_record_write(audit_vp, audit_cred, audit_td,
328 		    ar->k_udata, ar->k_ulen);
329 		if (error && audit_panic_on_write_fail)
330 			panic("audit_worker: write error %d\n", error);
331 		else if (error)
332 			printf("audit_worker: write error %d\n", error);
333 	}
334 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
335 	    (ar->k_ar_commit & AR_PRESELECT_PIPE))
336 		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
337 
338 	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL))
339 		return;
340 
341 	auid = ar->k_ar.ar_subj_auid;
342 	event = ar->k_ar.ar_event;
343 	class = au_event_class(event);
344 	if (ar->k_ar.ar_errno == 0)
345 		sorf = AU_PRS_SUCCESS;
346 	else
347 		sorf = AU_PRS_FAILURE;
348 
349 	ret = kaudit_to_bsm(ar, &bsm);
350 	switch (ret) {
351 	case BSM_NOAUDIT:
352 		return;
353 
354 	case BSM_FAILURE:
355 		printf("audit_worker_process_record: BSM_FAILURE\n");
356 		return;
357 
358 	case BSM_SUCCESS:
359 		break;
360 
361 	default:
362 		panic("kaudit_to_bsm returned %d", ret);
363 	}
364 
365 	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
366 		error = audit_record_write(audit_vp, audit_cred,
367 		    audit_td, bsm->data, bsm->len);
368 		if (error && audit_panic_on_write_fail)
369 			panic("audit_worker: write error %d\n",
370 			    error);
371 		else if (error)
372 			printf("audit_worker: write error %d\n",
373 			    error);
374 	}
375 	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
376 		audit_pipe_submit(auid, event, class, sorf,
377 		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
378 		    bsm->len);
379 	kau_free(bsm);
380 }
381 
382 /*
383  * The audit_worker thread is responsible for watching the event queue,
384  * dequeueing records, converting them to BSM format, and committing them to
385  * disk.  In order to minimize lock thrashing, records are dequeued in sets
386  * to a thread-local work queue.  In addition, the audit_work performs the
387  * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
388  * variable.
389  */
390 static void
391 audit_worker(void *arg)
392 {
393 	struct kaudit_queue ar_worklist;
394 	struct kaudit_record *ar;
395 	struct ucred *audit_cred;
396 	struct thread *audit_td;
397 	struct vnode *audit_vp;
398 	int lowater_signal;
399 
400 	AUDIT_PRINTF(("audit_worker starting\n"));
401 
402 	/*
403 	 * These are thread-local variables requiring no synchronization.
404 	 */
405 	TAILQ_INIT(&ar_worklist);
406 	audit_cred = NULL;
407 	audit_td = curthread;
408 	audit_vp = NULL;
409 
410 	mtx_lock(&audit_mtx);
411 	while (1) {
412 		mtx_assert(&audit_mtx, MA_OWNED);
413 
414 		/*
415 		 * Wait for record or rotation events.
416 		 */
417 		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
418 			AUDIT_PRINTF(("audit_worker waiting\n"));
419 			cv_wait(&audit_worker_cv, &audit_mtx);
420 			AUDIT_PRINTF(("audit_worker woken up\n"));
421 			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
422 			    "flag %d\n", audit_replacement_vp,
423 			    audit_replacement_flag));
424 		}
425 
426 		/*
427 		 * First priority: replace the audit log target if requested.
428 		 */
429 		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
430 
431 		/*
432 		 * If there are records in the global audit record queue,
433 		 * transfer them to a thread-local queue and process them
434 		 * one by one.  If we cross the low watermark threshold,
435 		 * signal any waiting processes that they may wake up and
436 		 * continue generating records.
437 		 */
438 		lowater_signal = 0;
439 		while ((ar = TAILQ_FIRST(&audit_q))) {
440 			TAILQ_REMOVE(&audit_q, ar, k_q);
441 			audit_q_len--;
442 			if (audit_q_len == audit_qctrl.aq_lowater)
443 				lowater_signal++;
444 			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
445 		}
446 		if (lowater_signal)
447 			cv_broadcast(&audit_watermark_cv);
448 
449 		mtx_unlock(&audit_mtx);
450 		while ((ar = TAILQ_FIRST(&ar_worklist))) {
451 			TAILQ_REMOVE(&ar_worklist, ar, k_q);
452 			audit_worker_process_record(audit_vp, audit_cred,
453 			    audit_td, ar);
454 			audit_free(ar);
455 		}
456 		mtx_lock(&audit_mtx);
457 	}
458 }
459 
460 /*
461  * audit_rotate_vnode() is called by a user or kernel thread to configure or
462  * de-configure auditing on a vnode.  The arguments are the replacement
463  * credential and vnode to substitute for the current credential and vnode,
464  * if any.  If either is set to NULL, both should be NULL, and this is used
465  * to indicate that audit is being disabled.  The real work is done in the
466  * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
467  * to complete.
468  *
469  * The vnode should be referenced and opened by the caller.  The credential
470  * should be referenced.  audit_rotate_vnode() will own both references as of
471  * this call, so the caller should not release either.
472  *
473  * XXXAUDIT: Review synchronize communication logic.  Really, this is a
474  * message queue of depth 1.
475  *
476  * XXXAUDIT: Enhance the comments below to indicate that we are basically
477  * acquiring ownership of the communications queue, inserting our message,
478  * and waiting for an acknowledgement.
479  */
480 void
481 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
482 {
483 
484 	/*
485 	 * If other parallel log replacements have been requested, we wait
486 	 * until they've finished before continuing.
487 	 */
488 	mtx_lock(&audit_mtx);
489 	while (audit_replacement_flag != 0) {
490 		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
491 		    "flag\n"));
492 		cv_wait(&audit_replacement_cv, &audit_mtx);
493 		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
494 		    audit_replacement_flag));
495 	}
496 	audit_replacement_cred = cred;
497 	audit_replacement_flag = 1;
498 	audit_replacement_vp = vp;
499 
500 	/*
501 	 * Wake up the audit worker to perform the exchange once we
502 	 * release the mutex.
503 	 */
504 	cv_signal(&audit_worker_cv);
505 
506 	/*
507 	 * Wait for the audit_worker to broadcast that a replacement has
508 	 * taken place; we know that once this has happened, our vnode
509 	 * has been replaced in, so we can return successfully.
510 	 */
511 	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
512 	    "replacement\n"));
513 	cv_wait(&audit_replacement_cv, &audit_mtx);
514 	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
515 	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
516 	mtx_unlock(&audit_mtx);
517 
518 	audit_file_rotate_wait = 0; /* We can now request another rotation */
519 }
520 
521 void
522 audit_worker_init(void)
523 {
524 	int error;
525 
526 	cv_init(&audit_replacement_cv, "audit_replacement_cv");
527 	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
528 	    0, "audit_worker");
529 	if (error)
530 		panic("audit_worker_init: kthread_create returned %d", error);
531 }
532