xref: /freebsd/sys/security/audit/audit_worker.c (revision 6ff6d951ade3f3379932df7f878ef3ea272cfc59)
1 /*
2  * Copyright (c) 1999-2005 Apple Computer, Inc.
3  * Copyright (c) 2006-2008 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/condvar.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/filedesc.h>
39 #include <sys/fcntl.h>
40 #include <sys/ipc.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/proc.h>
47 #include <sys/queue.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/domain.h>
52 #include <sys/sx.h>
53 #include <sys/sysproto.h>
54 #include <sys/sysent.h>
55 #include <sys/systm.h>
56 #include <sys/ucred.h>
57 #include <sys/uio.h>
58 #include <sys/un.h>
59 #include <sys/unistd.h>
60 #include <sys/vnode.h>
61 
62 #include <bsm/audit.h>
63 #include <bsm/audit_internal.h>
64 #include <bsm/audit_kevents.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/audit/audit_private.h>
71 
72 #include <vm/uma.h>
73 
74 /*
75  * Worker thread that will schedule disk I/O, etc.
76  */
77 static struct proc		*audit_thread;
78 
79 /*
80  * audit_cred and audit_vp are the stored credential and vnode to use for
81  * active audit trail.  They are protected by audit_worker_sx, which will be
82  * held across all I/O and all rotation to prevent them from being replaced
83  * (rotated) while in use.  The audit_file_rotate_wait flag is set when the
84  * kernel has delivered a trigger to auditd to rotate the trail, and is
85  * cleared when the next rotation takes place.  It is also protected by
86  * audit_worker_sx.
87  */
88 static int		 audit_file_rotate_wait;
89 static struct sx	 audit_worker_sx;
90 static struct ucred	*audit_cred;
91 static struct vnode	*audit_vp;
92 
93 /*
94  * Write an audit record to a file, performed as the last stage after both
95  * preselection and BSM conversion.  Both space management and write failures
96  * are handled in this function.
97  *
98  * No attempt is made to deal with possible failure to deliver a trigger to
99  * the audit daemon, since the message is asynchronous anyway.
100  */
101 static void
102 audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
103     size_t len)
104 {
105 	static struct timeval last_lowspace_trigger;
106 	static struct timeval last_fail;
107 	static int cur_lowspace_trigger;
108 	struct statfs *mnt_stat;
109 	int error, vfslocked;
110 	static int cur_fail;
111 	struct vattr vattr;
112 	long temp;
113 
114 	sx_assert(&audit_worker_sx, SA_LOCKED);	/* audit_file_rotate_wait. */
115 
116 	if (vp == NULL)
117 		return;
118 
119  	mnt_stat = &vp->v_mount->mnt_stat;
120 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
121 
122 	/*
123 	 * First, gather statistics on the audit log file and file system so
124 	 * that we know how we're doing on space.  Consider failure of these
125 	 * operations to indicate a future inability to write to the file.
126 	 */
127 	error = VFS_STATFS(vp->v_mount, mnt_stat, curthread);
128 	if (error)
129 		goto fail;
130 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
131 	error = VOP_GETATTR(vp, &vattr, cred, curthread);
132 	VOP_UNLOCK(vp, 0);
133 	if (error)
134 		goto fail;
135 	audit_fstat.af_currsz = vattr.va_size;
136 
137 	/*
138 	 * We handle four different space-related limits:
139 	 *
140 	 * - A fixed (hard) limit on the minimum free blocks we require on
141 	 *   the file system, and results in record loss, a trigger, and
142 	 *   possible fail stop due to violating invariants.
143 	 *
144 	 * - An administrative (soft) limit, which when fallen below, results
145 	 *   in the kernel notifying the audit daemon of low space.
146 	 *
147 	 * - An audit trail size limit, which when gone above, results in the
148 	 *   kernel notifying the audit daemon that rotation is desired.
149 	 *
150 	 * - The total depth of the kernel audit record exceeding free space,
151 	 *   which can lead to possible fail stop (with drain), in order to
152 	 *   prevent violating invariants.  Failure here doesn't halt
153 	 *   immediately, but prevents new records from being generated.
154 	 *
155 	 * Possibly, the last of these should be handled differently, always
156 	 * allowing a full queue to be lost, rather than trying to prevent
157 	 * loss.
158 	 *
159 	 * First, handle the hard limit, which generates a trigger and may
160 	 * fail stop.  This is handled in the same manner as ENOSPC from
161 	 * VOP_WRITE, and results in record loss.
162 	 */
163 	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
164 		error = ENOSPC;
165 		goto fail_enospc;
166 	}
167 
168 	/*
169 	 * Second, handle falling below the soft limit, if defined; we send
170 	 * the daemon a trigger and continue processing the record.  Triggers
171 	 * are limited to 1/sec.
172 	 */
173 	if (audit_qctrl.aq_minfree != 0) {
174 		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
175 		if (mnt_stat->f_bfree < temp) {
176 			if (ppsratecheck(&last_lowspace_trigger,
177 			    &cur_lowspace_trigger, 1)) {
178 				(void)audit_send_trigger(
179 				    AUDIT_TRIGGER_LOW_SPACE);
180 				printf("Warning: audit space low\n");
181 			}
182 		}
183 	}
184 
185 	/*
186 	 * If the current file is getting full, generate a rotation trigger
187 	 * to the daemon.  This is only approximate, which is fine as more
188 	 * records may be generated before the daemon rotates the file.
189 	 */
190 	if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
191 	    (vattr.va_size >= audit_fstat.af_filesz)) {
192 		sx_assert(&audit_worker_sx, SA_XLOCKED);
193 
194 		audit_file_rotate_wait = 1;
195 		(void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
196 	}
197 
198 	/*
199 	 * If the estimated amount of audit data in the audit event queue
200 	 * (plus records allocated but not yet queued) has reached the amount
201 	 * of free space on the disk, then we need to go into an audit fail
202 	 * stop state, in which we do not permit the allocation/committing of
203 	 * any new audit records.  We continue to process records but don't
204 	 * allow any activities that might generate new records.  In the
205 	 * future, we might want to detect when space is available again and
206 	 * allow operation to continue, but this behavior is sufficient to
207 	 * meet fail stop requirements in CAPP.
208 	 */
209 	if (audit_fail_stop) {
210 		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
211 		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
212 		    (unsigned long)(mnt_stat->f_bfree)) {
213 			if (ppsratecheck(&last_fail, &cur_fail, 1))
214 				printf("audit_record_write: free space "
215 				    "below size of audit queue, failing "
216 				    "stop\n");
217 			audit_in_failure = 1;
218 		} else if (audit_in_failure) {
219 			/*
220 			 * Note: if we want to handle recovery, this is the
221 			 * spot to do it: unset audit_in_failure, and issue a
222 			 * wakeup on the cv.
223 			 */
224 		}
225 	}
226 
227 	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
228 	    IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
229 	if (error == ENOSPC)
230 		goto fail_enospc;
231 	else if (error)
232 		goto fail;
233 
234 	/*
235 	 * Catch completion of a queue drain here; if we're draining and the
236 	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
237 	 * true, since audit_in_failure can only be set of audit_fail_stop is
238 	 * set.
239 	 *
240 	 * Note: if we handle recovery from audit_in_failure, then we need to
241 	 * make panic here conditional.
242 	 */
243 	if (audit_in_failure) {
244 		if (audit_q_len == 0 && audit_pre_q_len == 0) {
245 			VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK);
246 			(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
247 			VOP_UNLOCK(vp, 0);
248 			panic("Audit store overflow; record queue drained.");
249 		}
250 	}
251 
252 	VFS_UNLOCK_GIANT(vfslocked);
253 	return;
254 
255 fail_enospc:
256 	/*
257 	 * ENOSPC is considered a special case with respect to failures, as
258 	 * this can reflect either our preemptive detection of insufficient
259 	 * space, or ENOSPC returned by the vnode write call.
260 	 */
261 	if (audit_fail_stop) {
262 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK);
263 		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
264 		VOP_UNLOCK(vp, 0);
265 		panic("Audit log space exhausted and fail-stop set.");
266 	}
267 	(void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
268 	audit_suspended = 1;
269 
270 	/* FALLTHROUGH */
271 fail:
272 	/*
273 	 * We have failed to write to the file, so the current record is
274 	 * lost, which may require an immediate system halt.
275 	 */
276 	if (audit_panic_on_write_fail) {
277 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK);
278 		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
279 		VOP_UNLOCK(vp, 0);
280 		panic("audit_worker: write error %d\n", error);
281 	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
282 		printf("audit_worker: write error %d\n", error);
283 	VFS_UNLOCK_GIANT(vfslocked);
284 }
285 
286 /*
287  * Given a kernel audit record, process as required.  Kernel audit records
288  * are converted to one, or possibly two, BSM records, depending on whether
289  * there is a user audit record present also.  Kernel records need be
290  * converted to BSM before they can be written out.  Both types will be
291  * written to disk, and audit pipes.
292  */
293 static void
294 audit_worker_process_record(struct kaudit_record *ar)
295 {
296 	struct au_record *bsm;
297 	au_class_t class;
298 	au_event_t event;
299 	au_id_t auid;
300 	int error, sorf;
301 	int trail_locked;
302 
303 	/*
304 	 * We hold the audit_worker_sx lock over both writes, if there are
305 	 * two, so that the two records won't be split across a rotation and
306 	 * end up in two different trail files.
307 	 */
308 	if (((ar->k_ar_commit & AR_COMMIT_USER) &&
309 	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
310 	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
311 		sx_xlock(&audit_worker_sx);
312 		trail_locked = 1;
313 	} else
314 		trail_locked = 0;
315 
316 	/*
317 	 * First, handle the user record, if any: commit to the system trail
318 	 * and audit pipes as selected.
319 	 */
320 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
321 	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
322 		sx_assert(&audit_worker_sx, SA_XLOCKED);
323 		audit_record_write(audit_vp, audit_cred, ar->k_udata,
324 		    ar->k_ulen);
325 	}
326 
327 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
328 	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
329 		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
330 
331 	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
332 	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
333 	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
334 		goto out;
335 
336 	auid = ar->k_ar.ar_subj_auid;
337 	event = ar->k_ar.ar_event;
338 	class = au_event_class(event);
339 	if (ar->k_ar.ar_errno == 0)
340 		sorf = AU_PRS_SUCCESS;
341 	else
342 		sorf = AU_PRS_FAILURE;
343 
344 	error = kaudit_to_bsm(ar, &bsm);
345 	switch (error) {
346 	case BSM_NOAUDIT:
347 		goto out;
348 
349 	case BSM_FAILURE:
350 		printf("audit_worker_process_record: BSM_FAILURE\n");
351 		goto out;
352 
353 	case BSM_SUCCESS:
354 		break;
355 
356 	default:
357 		panic("kaudit_to_bsm returned %d", error);
358 	}
359 
360 	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
361 		sx_assert(&audit_worker_sx, SA_XLOCKED);
362 		audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
363 	}
364 
365 	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
366 		audit_pipe_submit(auid, event, class, sorf,
367 		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
368 		    bsm->len);
369 
370 	kau_free(bsm);
371 out:
372 	if (trail_locked)
373 		sx_xunlock(&audit_worker_sx);
374 }
375 
376 /*
377  * The audit_worker thread is responsible for watching the event queue,
378  * dequeueing records, converting them to BSM format, and committing them to
379  * disk.  In order to minimize lock thrashing, records are dequeued in sets
380  * to a thread-local work queue.
381  *
382  * Note: this means that the effect bound on the size of the pending record
383  * queue is 2x the length of the global queue.
384  */
385 static void
386 audit_worker(void *arg)
387 {
388 	struct kaudit_queue ar_worklist;
389 	struct kaudit_record *ar;
390 	int lowater_signal;
391 
392 	TAILQ_INIT(&ar_worklist);
393 	mtx_lock(&audit_mtx);
394 	while (1) {
395 		mtx_assert(&audit_mtx, MA_OWNED);
396 
397 		/*
398 		 * Wait for a record.
399 		 */
400 		while (TAILQ_EMPTY(&audit_q))
401 			cv_wait(&audit_worker_cv, &audit_mtx);
402 
403 		/*
404 		 * If there are records in the global audit record queue,
405 		 * transfer them to a thread-local queue and process them
406 		 * one by one.  If we cross the low watermark threshold,
407 		 * signal any waiting processes that they may wake up and
408 		 * continue generating records.
409 		 */
410 		lowater_signal = 0;
411 		while ((ar = TAILQ_FIRST(&audit_q))) {
412 			TAILQ_REMOVE(&audit_q, ar, k_q);
413 			audit_q_len--;
414 			if (audit_q_len == audit_qctrl.aq_lowater)
415 				lowater_signal++;
416 			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
417 		}
418 		if (lowater_signal)
419 			cv_broadcast(&audit_watermark_cv);
420 
421 		mtx_unlock(&audit_mtx);
422 		while ((ar = TAILQ_FIRST(&ar_worklist))) {
423 			TAILQ_REMOVE(&ar_worklist, ar, k_q);
424 			audit_worker_process_record(ar);
425 			audit_free(ar);
426 		}
427 		mtx_lock(&audit_mtx);
428 	}
429 }
430 
431 /*
432  * audit_rotate_vnode() is called by a user or kernel thread to configure or
433  * de-configure auditing on a vnode.  The arguments are the replacement
434  * credential (referenced) and vnode (referenced and opened) to substitute
435  * for the current credential and vnode, if any.  If either is set to NULL,
436  * both should be NULL, and this is used to indicate that audit is being
437  * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
438  * generating rotation requests to auditd.
439  */
440 void
441 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
442 {
443 	struct ucred *old_audit_cred;
444 	struct vnode *old_audit_vp;
445 	int vfslocked;
446 
447 	KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
448 	    ("audit_rotate_vnode: cred %p vp %p", cred, vp));
449 
450 	/*
451 	 * Rotate the vnode/cred, and clear the rotate flag so that we will
452 	 * send a rotate trigger if the new file fills.
453 	 */
454 	sx_xlock(&audit_worker_sx);
455 	old_audit_cred = audit_cred;
456 	old_audit_vp = audit_vp;
457 	audit_cred = cred;
458 	audit_vp = vp;
459 	audit_file_rotate_wait = 0;
460 	audit_enabled = (audit_vp != NULL);
461 	sx_xunlock(&audit_worker_sx);
462 
463 	/*
464 	 * If there was an old vnode/credential, close and free.
465 	 */
466 	if (old_audit_vp != NULL) {
467 		vfslocked = VFS_LOCK_GIANT(old_audit_vp->v_mount);
468 		vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
469 		    curthread);
470 		VFS_UNLOCK_GIANT(vfslocked);
471 		crfree(old_audit_cred);
472 	}
473 }
474 
475 void
476 audit_worker_init(void)
477 {
478 	int error;
479 
480 	sx_init(&audit_worker_sx, "audit_worker_sx");
481 	error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
482 	    0, "audit");
483 	if (error)
484 		panic("audit_worker_init: kproc_create returned %d", error);
485 }
486