1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1999-2008 Apple Inc. 5 * Copyright (c) 2006-2008, 2016, 2018 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Portions of this software were developed by BAE Systems, the University of 9 * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL 10 * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent 11 * Computing (TC) research program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 22 * its contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 34 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include <sys/param.h> 40 #include <sys/condvar.h> 41 #include <sys/conf.h> 42 #include <sys/file.h> 43 #include <sys/filedesc.h> 44 #include <sys/fcntl.h> 45 #include <sys/ipc.h> 46 #include <sys/kernel.h> 47 #include <sys/kthread.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/namei.h> 51 #include <sys/proc.h> 52 #include <sys/queue.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 #include <sys/domain.h> 57 #include <sys/sx.h> 58 #include <sys/sysproto.h> 59 #include <sys/sysent.h> 60 #include <sys/systm.h> 61 #include <sys/ucred.h> 62 #include <sys/uio.h> 63 #include <sys/un.h> 64 #include <sys/unistd.h> 65 #include <sys/vnode.h> 66 67 #include <bsm/audit.h> 68 #include <bsm/audit_internal.h> 69 #include <bsm/audit_kevents.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_pcb.h> 73 74 #include <security/audit/audit.h> 75 #include <security/audit/audit_private.h> 76 77 #include <vm/uma.h> 78 79 #include <machine/stdarg.h> 80 81 /* 82 * Worker thread that will schedule disk I/O, etc. 83 */ 84 static struct proc *audit_thread; 85 86 /* 87 * audit_cred and audit_vp are the stored credential and vnode to use for 88 * active audit trail. They are protected by the audit worker lock, which 89 * will be held across all I/O and all rotation to prevent them from being 90 * replaced (rotated) while in use. The audit_file_rotate_wait flag is set 91 * when the kernel has delivered a trigger to auditd to rotate the trail, and 92 * is cleared when the next rotation takes place. It is also protected by 93 * the audit worker lock. 94 */ 95 static int audit_file_rotate_wait; 96 static struct ucred *audit_cred; 97 static struct vnode *audit_vp; 98 static off_t audit_size; 99 static struct sx audit_worker_lock; 100 101 #define AUDIT_WORKER_LOCK_INIT() sx_init(&audit_worker_lock, \ 102 "audit_worker_lock"); 103 #define AUDIT_WORKER_LOCK_ASSERT() sx_assert(&audit_worker_lock, \ 104 SA_XLOCKED) 105 #define AUDIT_WORKER_LOCK() sx_xlock(&audit_worker_lock) 106 #define AUDIT_WORKER_UNLOCK() sx_xunlock(&audit_worker_lock) 107 108 static void 109 audit_worker_sync_vp(struct vnode *vp, struct mount *mp, const char *fmt, ...) 110 { 111 struct mount *mp1; 112 int error; 113 va_list va; 114 115 va_start(va, fmt); 116 error = vn_start_write(vp, &mp1, 0); 117 if (error == 0) { 118 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 119 (void)VOP_FSYNC(vp, MNT_WAIT, curthread); 120 VOP_UNLOCK(vp); 121 vn_finished_write(mp1); 122 } 123 vfs_unbusy(mp); 124 vpanic(fmt, va); 125 va_end(va); 126 } 127 128 /* 129 * Write an audit record to a file, performed as the last stage after both 130 * preselection and BSM conversion. Both space management and write failures 131 * are handled in this function. 132 * 133 * No attempt is made to deal with possible failure to deliver a trigger to 134 * the audit daemon, since the message is asynchronous anyway. 135 */ 136 static void 137 audit_record_write(struct vnode *vp, struct ucred *cred, void *data, 138 size_t len) 139 { 140 static struct timeval last_lowspace_trigger; 141 static struct timeval last_fail; 142 static int cur_lowspace_trigger; 143 struct statfs *mnt_stat; 144 struct mount *mp; 145 int error; 146 static int cur_fail; 147 long temp; 148 149 AUDIT_WORKER_LOCK_ASSERT(); 150 151 if (vp == NULL) 152 return; 153 154 mp = vp->v_mount; 155 if (mp == NULL) { 156 error = EINVAL; 157 goto fail; 158 } 159 error = vfs_busy(mp, 0); 160 if (error != 0) { 161 mp = NULL; 162 goto fail; 163 } 164 mnt_stat = &mp->mnt_stat; 165 166 /* 167 * First, gather statistics on the audit log file and file system so 168 * that we know how we're doing on space. Consider failure of these 169 * operations to indicate a future inability to write to the file. 170 */ 171 error = VFS_STATFS(mp, mnt_stat); 172 if (error != 0) 173 goto fail; 174 175 /* 176 * We handle four different space-related limits: 177 * 178 * - A fixed (hard) limit on the minimum free blocks we require on 179 * the file system, and results in record loss, a trigger, and 180 * possible fail stop due to violating invariants. 181 * 182 * - An administrative (soft) limit, which when fallen below, results 183 * in the kernel notifying the audit daemon of low space. 184 * 185 * - An audit trail size limit, which when gone above, results in the 186 * kernel notifying the audit daemon that rotation is desired. 187 * 188 * - The total depth of the kernel audit record exceeding free space, 189 * which can lead to possible fail stop (with drain), in order to 190 * prevent violating invariants. Failure here doesn't halt 191 * immediately, but prevents new records from being generated. 192 * 193 * Possibly, the last of these should be handled differently, always 194 * allowing a full queue to be lost, rather than trying to prevent 195 * loss. 196 * 197 * First, handle the hard limit, which generates a trigger and may 198 * fail stop. This is handled in the same manner as ENOSPC from 199 * VOP_WRITE, and results in record loss. 200 */ 201 if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) { 202 error = ENOSPC; 203 goto fail_enospc; 204 } 205 206 /* 207 * Second, handle falling below the soft limit, if defined; we send 208 * the daemon a trigger and continue processing the record. Triggers 209 * are limited to 1/sec. 210 */ 211 if (audit_qctrl.aq_minfree != 0) { 212 temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree); 213 if (mnt_stat->f_bfree < temp) { 214 if (ppsratecheck(&last_lowspace_trigger, 215 &cur_lowspace_trigger, 1)) { 216 (void)audit_send_trigger( 217 AUDIT_TRIGGER_LOW_SPACE); 218 printf("Warning: disk space low (< %d%% free) " 219 "on audit log file-system\n", 220 audit_qctrl.aq_minfree); 221 } 222 } 223 } 224 225 /* 226 * If the current file is getting full, generate a rotation trigger 227 * to the daemon. This is only approximate, which is fine as more 228 * records may be generated before the daemon rotates the file. 229 */ 230 if (audit_fstat.af_filesz != 0 && 231 audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) { 232 AUDIT_WORKER_LOCK_ASSERT(); 233 234 audit_file_rotate_wait++; 235 (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL); 236 } 237 238 /* 239 * If the estimated amount of audit data in the audit event queue 240 * (plus records allocated but not yet queued) has reached the amount 241 * of free space on the disk, then we need to go into an audit fail 242 * stop state, in which we do not permit the allocation/committing of 243 * any new audit records. We continue to process records but don't 244 * allow any activities that might generate new records. In the 245 * future, we might want to detect when space is available again and 246 * allow operation to continue, but this behavior is sufficient to 247 * meet fail stop requirements in CAPP. 248 */ 249 if (audit_fail_stop) { 250 if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) * 251 MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >= 252 (unsigned long)(mnt_stat->f_bfree)) { 253 if (ppsratecheck(&last_fail, &cur_fail, 1)) 254 printf("audit_record_write: free space " 255 "below size of audit queue, failing " 256 "stop\n"); 257 audit_in_failure = 1; 258 } else if (audit_in_failure) { 259 /* 260 * Note: if we want to handle recovery, this is the 261 * spot to do it: unset audit_in_failure, and issue a 262 * wakeup on the cv. 263 */ 264 } 265 } 266 267 error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE, 268 IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread); 269 if (error == ENOSPC) 270 goto fail_enospc; 271 else if (error) 272 goto fail; 273 AUDIT_WORKER_LOCK_ASSERT(); 274 audit_size += len; 275 276 /* 277 * Catch completion of a queue drain here; if we're draining and the 278 * queue is now empty, fail stop. That audit_fail_stop is implicitly 279 * true, since audit_in_failure can only be set of audit_fail_stop is 280 * set. 281 * 282 * Note: if we handle recovery from audit_in_failure, then we need to 283 * make panic here conditional. 284 */ 285 if (audit_in_failure) { 286 if (audit_q_len == 0 && audit_pre_q_len == 0) { 287 audit_worker_sync_vp(vp, mp, 288 "Audit store overflow; record queue drained."); 289 } 290 } 291 292 vfs_unbusy(mp); 293 return; 294 295 fail_enospc: 296 /* 297 * ENOSPC is considered a special case with respect to failures, as 298 * this can reflect either our preemptive detection of insufficient 299 * space, or ENOSPC returned by the vnode write call. 300 */ 301 if (audit_fail_stop) { 302 audit_worker_sync_vp(vp, mp, 303 "Audit log space exhausted and fail-stop set."); 304 } 305 (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE); 306 audit_trail_suspended = 1; 307 audit_syscalls_enabled_update(); 308 309 /* FALLTHROUGH */ 310 fail: 311 /* 312 * We have failed to write to the file, so the current record is 313 * lost, which may require an immediate system halt. 314 */ 315 if (audit_panic_on_write_fail) { 316 audit_worker_sync_vp(vp, mp, 317 "audit_worker: write error %d\n", error); 318 } else if (ppsratecheck(&last_fail, &cur_fail, 1)) 319 printf("audit_worker: write error %d\n", error); 320 if (mp != NULL) 321 vfs_unbusy(mp); 322 } 323 324 /* 325 * Given a kernel audit record, process as required. Kernel audit records 326 * are converted to one, or possibly two, BSM records, depending on whether 327 * there is a user audit record present also. Kernel records need be 328 * converted to BSM before they can be written out. Both types will be 329 * written to disk, and audit pipes. 330 */ 331 static void 332 audit_worker_process_record(struct kaudit_record *ar) 333 { 334 struct au_record *bsm; 335 au_class_t class; 336 au_event_t event; 337 au_id_t auid; 338 int error, sorf; 339 int locked; 340 341 /* 342 * We hold the audit worker lock over both writes, if there are two, 343 * so that the two records won't be split across a rotation and end 344 * up in two different trail files. 345 */ 346 if (((ar->k_ar_commit & AR_COMMIT_USER) && 347 (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) || 348 (ar->k_ar_commit & AR_PRESELECT_TRAIL)) { 349 AUDIT_WORKER_LOCK(); 350 locked = 1; 351 } else 352 locked = 0; 353 354 /* 355 * First, handle the user record, if any: commit to the system trail 356 * and audit pipes as selected. 357 */ 358 if ((ar->k_ar_commit & AR_COMMIT_USER) && 359 (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) { 360 AUDIT_WORKER_LOCK_ASSERT(); 361 audit_record_write(audit_vp, audit_cred, ar->k_udata, 362 ar->k_ulen); 363 } 364 365 if ((ar->k_ar_commit & AR_COMMIT_USER) && 366 (ar->k_ar_commit & AR_PRESELECT_USER_PIPE)) 367 audit_pipe_submit_user(ar->k_udata, ar->k_ulen); 368 369 if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) || 370 ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 && 371 (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0 && 372 (ar->k_ar_commit & AR_PRESELECT_DTRACE) == 0)) 373 goto out; 374 375 auid = ar->k_ar.ar_subj_auid; 376 event = ar->k_ar.ar_event; 377 class = au_event_class(event); 378 if (ar->k_ar.ar_errno == 0) 379 sorf = AU_PRS_SUCCESS; 380 else 381 sorf = AU_PRS_FAILURE; 382 383 error = kaudit_to_bsm(ar, &bsm); 384 switch (error) { 385 case BSM_NOAUDIT: 386 goto out; 387 388 case BSM_FAILURE: 389 printf("audit_worker_process_record: BSM_FAILURE\n"); 390 goto out; 391 392 case BSM_SUCCESS: 393 break; 394 395 default: 396 panic("kaudit_to_bsm returned %d", error); 397 } 398 399 if (ar->k_ar_commit & AR_PRESELECT_TRAIL) { 400 AUDIT_WORKER_LOCK_ASSERT(); 401 audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len); 402 } 403 404 if (ar->k_ar_commit & AR_PRESELECT_PIPE) 405 audit_pipe_submit(auid, event, class, sorf, 406 ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data, 407 bsm->len); 408 409 #ifdef KDTRACE_HOOKS 410 /* 411 * Version of the dtaudit commit hook that accepts BSM. 412 */ 413 if (ar->k_ar_commit & AR_PRESELECT_DTRACE) { 414 if (dtaudit_hook_bsm != NULL) 415 dtaudit_hook_bsm(ar, auid, event, class, sorf, 416 bsm->data, bsm->len); 417 } 418 #endif 419 420 kau_free(bsm); 421 out: 422 if (locked) 423 AUDIT_WORKER_UNLOCK(); 424 } 425 426 /* 427 * The audit_worker thread is responsible for watching the event queue, 428 * dequeueing records, converting them to BSM format, and committing them to 429 * disk. In order to minimize lock thrashing, records are dequeued in sets 430 * to a thread-local work queue. 431 * 432 * Note: this means that the effect bound on the size of the pending record 433 * queue is 2x the length of the global queue. 434 */ 435 static void 436 audit_worker(void *arg) 437 { 438 struct kaudit_queue ar_worklist; 439 struct kaudit_record *ar; 440 int lowater_signal; 441 442 TAILQ_INIT(&ar_worklist); 443 mtx_lock(&audit_mtx); 444 while (1) { 445 mtx_assert(&audit_mtx, MA_OWNED); 446 447 /* 448 * Wait for a record. 449 */ 450 while (TAILQ_EMPTY(&audit_q)) 451 cv_wait(&audit_worker_cv, &audit_mtx); 452 453 /* 454 * If there are records in the global audit record queue, 455 * transfer them to a thread-local queue and process them 456 * one by one. If we cross the low watermark threshold, 457 * signal any waiting processes that they may wake up and 458 * continue generating records. 459 */ 460 lowater_signal = 0; 461 while ((ar = TAILQ_FIRST(&audit_q))) { 462 TAILQ_REMOVE(&audit_q, ar, k_q); 463 audit_q_len--; 464 if (audit_q_len == audit_qctrl.aq_lowater) 465 lowater_signal++; 466 TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); 467 } 468 if (lowater_signal) 469 cv_broadcast(&audit_watermark_cv); 470 471 mtx_unlock(&audit_mtx); 472 while ((ar = TAILQ_FIRST(&ar_worklist))) { 473 TAILQ_REMOVE(&ar_worklist, ar, k_q); 474 audit_worker_process_record(ar); 475 audit_free(ar); 476 } 477 mtx_lock(&audit_mtx); 478 } 479 } 480 481 /* 482 * audit_rotate_vnode() is called by a user or kernel thread to configure or 483 * de-configure auditing on a vnode. The arguments are the replacement 484 * credential (referenced) and vnode (referenced and opened) to substitute 485 * for the current credential and vnode, if any. If either is set to NULL, 486 * both should be NULL, and this is used to indicate that audit is being 487 * disabled. Any previous cred/vnode will be closed and freed. We re-enable 488 * generating rotation requests to auditd. 489 */ 490 void 491 audit_rotate_vnode(struct ucred *cred, struct vnode *vp) 492 { 493 struct ucred *old_audit_cred; 494 struct vnode *old_audit_vp; 495 struct vattr vattr; 496 497 KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL), 498 ("audit_rotate_vnode: cred %p vp %p", cred, vp)); 499 500 if (vp != NULL) { 501 vn_lock(vp, LK_SHARED | LK_RETRY); 502 if (VOP_GETATTR(vp, &vattr, cred) != 0) 503 vattr.va_size = 0; 504 VOP_UNLOCK(vp); 505 } else { 506 vattr.va_size = 0; 507 } 508 509 /* 510 * Rotate the vnode/cred, and clear the rotate flag so that we will 511 * send a rotate trigger if the new file fills. 512 */ 513 AUDIT_WORKER_LOCK(); 514 old_audit_cred = audit_cred; 515 old_audit_vp = audit_vp; 516 audit_cred = cred; 517 audit_vp = vp; 518 audit_size = vattr.va_size; 519 audit_file_rotate_wait = 0; 520 audit_trail_enabled = (audit_vp != NULL); 521 audit_syscalls_enabled_update(); 522 AUDIT_WORKER_UNLOCK(); 523 524 /* 525 * If there was an old vnode/credential, close and free. 526 */ 527 if (old_audit_vp != NULL) { 528 vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred, 529 curthread); 530 crfree(old_audit_cred); 531 } 532 } 533 534 void 535 audit_worker_init(void) 536 { 537 int error; 538 539 AUDIT_WORKER_LOCK_INIT(); 540 error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID, 541 0, "audit"); 542 if (error) 543 panic("audit_worker_init: kproc_create returned %d", error); 544 } 545