1 /*- 2 * Copyright (c) 2006 Robert N. M. Watson 3 * Copyright (c) 2008 Apple, Inc. 4 * All rights reserved. 5 * 6 * This software was developed by Robert Watson for the TrustedBSD Project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/condvar.h> 35 #include <sys/conf.h> 36 #include <sys/eventhandler.h> 37 #include <sys/filio.h> 38 #include <sys/kernel.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/queue.h> 45 #include <sys/rwlock.h> 46 #include <sys/selinfo.h> 47 #include <sys/sigio.h> 48 #include <sys/signal.h> 49 #include <sys/signalvar.h> 50 #include <sys/sx.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 54 #include <security/audit/audit.h> 55 #include <security/audit/audit_ioctl.h> 56 #include <security/audit/audit_private.h> 57 58 /* 59 * Implementation of a clonable special device providing a live stream of BSM 60 * audit data. Consumers receive a "tee" of the system audit trail by 61 * default, but may also define alternative event selections using ioctls. 62 * This interface provides unreliable but timely access to audit events. 63 * Consumers should be very careful to avoid introducing event cycles. 64 */ 65 66 /* 67 * Memory types. 68 */ 69 static MALLOC_DEFINE(M_AUDIT_PIPE, "audit_pipe", "Audit pipes"); 70 static MALLOC_DEFINE(M_AUDIT_PIPE_ENTRY, "audit_pipeent", 71 "Audit pipe entries and buffers"); 72 static MALLOC_DEFINE(M_AUDIT_PIPE_PRESELECT, "audit_pipe_presel", 73 "Audit pipe preselection structure"); 74 75 /* 76 * Audit pipe buffer parameters. 77 */ 78 #define AUDIT_PIPE_QLIMIT_DEFAULT (128) 79 #define AUDIT_PIPE_QLIMIT_MIN (0) 80 #define AUDIT_PIPE_QLIMIT_MAX (1024) 81 82 /* 83 * Description of an entry in an audit_pipe. 84 */ 85 struct audit_pipe_entry { 86 void *ape_record; 87 u_int ape_record_len; 88 TAILQ_ENTRY(audit_pipe_entry) ape_queue; 89 }; 90 91 /* 92 * Audit pipes allow processes to express "interest" in the set of records 93 * that are delivered via the pipe. They do this in a similar manner to the 94 * mechanism for audit trail configuration, by expressing two global masks, 95 * and optionally expressing per-auid masks. The following data structure is 96 * the per-auid mask description. The global state is stored in the audit 97 * pipe data structure. 98 * 99 * We may want to consider a more space/time-efficient data structure once 100 * usage patterns for per-auid specifications are clear. 101 */ 102 struct audit_pipe_preselect { 103 au_id_t app_auid; 104 au_mask_t app_mask; 105 TAILQ_ENTRY(audit_pipe_preselect) app_list; 106 }; 107 108 /* 109 * Description of an individual audit_pipe. Consists largely of a bounded 110 * length queue. 111 */ 112 #define AUDIT_PIPE_ASYNC 0x00000001 113 #define AUDIT_PIPE_NBIO 0x00000002 114 struct audit_pipe { 115 int ap_open; /* Device open? */ 116 u_int ap_flags; 117 118 struct selinfo ap_selinfo; 119 struct sigio *ap_sigio; 120 121 /* 122 * Per-pipe mutex protecting most fields in this data structure. 123 */ 124 struct mtx ap_mtx; 125 126 /* 127 * Per-pipe sleep lock serializing user-generated reads and flushes. 128 * uiomove() is called to copy out the current head record's data 129 * while the record remains in the queue, so we prevent other threads 130 * from removing it using this lock. 131 */ 132 struct sx ap_sx; 133 134 /* 135 * Condition variable to signal when data has been delivered to a 136 * pipe. 137 */ 138 struct cv ap_cv; 139 140 /* 141 * Various queue-reated variables: qlen and qlimit are a count of 142 * records in the queue; qbyteslen is the number of bytes of data 143 * across all records, and qoffset is the amount read so far of the 144 * first record in the queue. The number of bytes available for 145 * reading in the queue is qbyteslen - qoffset. 146 */ 147 u_int ap_qlen; 148 u_int ap_qlimit; 149 u_int ap_qbyteslen; 150 u_int ap_qoffset; 151 152 /* 153 * Per-pipe operation statistics. 154 */ 155 u_int64_t ap_inserts; /* Records added. */ 156 u_int64_t ap_reads; /* Records read. */ 157 u_int64_t ap_drops; /* Records dropped. */ 158 159 /* 160 * Fields relating to pipe interest: global masks for unmatched 161 * processes (attributable, non-attributable), and a list of specific 162 * interest specifications by auid. 163 */ 164 int ap_preselect_mode; 165 au_mask_t ap_preselect_flags; 166 au_mask_t ap_preselect_naflags; 167 TAILQ_HEAD(, audit_pipe_preselect) ap_preselect_list; 168 169 /* 170 * Current pending record list. Protected by a combination of ap_mtx 171 * and ap_sx. Note particularly that *both* locks are required to 172 * remove a record from the head of the queue, as an in-progress read * may sleep while copying and therefore cannot hold ap_mtx. 173 */ 174 TAILQ_HEAD(, audit_pipe_entry) ap_queue; 175 176 /* 177 * Global pipe list. 178 */ 179 TAILQ_ENTRY(audit_pipe) ap_list; 180 }; 181 182 #define AUDIT_PIPE_LOCK(ap) mtx_lock(&(ap)->ap_mtx) 183 #define AUDIT_PIPE_LOCK_ASSERT(ap) mtx_assert(&(ap)->ap_mtx, MA_OWNED) 184 #define AUDIT_PIPE_LOCK_DESTROY(ap) mtx_destroy(&(ap)->ap_mtx) 185 #define AUDIT_PIPE_LOCK_INIT(ap) mtx_init(&(ap)->ap_mtx, \ 186 "audit_pipe_mtx", NULL, MTX_DEF) 187 #define AUDIT_PIPE_UNLOCK(ap) mtx_unlock(&(ap)->ap_mtx) 188 #define AUDIT_PIPE_MTX(ap) (&(ap)->ap_mtx) 189 190 #define AUDIT_PIPE_SX_LOCK_DESTROY(ap) sx_destroy(&(ap)->ap_sx) 191 #define AUDIT_PIPE_SX_LOCK_INIT(ap) sx_init(&(ap)->ap_sx, "audit_pipe_sx") 192 #define AUDIT_PIPE_SX_XLOCK_ASSERT(ap) sx_assert(&(ap)->ap_sx, SA_XLOCKED) 193 #define AUDIT_PIPE_SX_XLOCK_SIG(ap) sx_xlock_sig(&(ap)->ap_sx) 194 #define AUDIT_PIPE_SX_XUNLOCK(ap) sx_xunlock(&(ap)->ap_sx) 195 196 /* 197 * Global list of audit pipes, rwlock to protect it. Individual record 198 * queues on pipes are protected by per-pipe locks; these locks synchronize 199 * between threads walking the list to deliver to individual pipes and add/ 200 * remove of pipes, and are mostly acquired for read. 201 */ 202 static TAILQ_HEAD(, audit_pipe) audit_pipe_list; 203 static struct rwlock audit_pipe_lock; 204 205 #define AUDIT_PIPE_LIST_LOCK_INIT() rw_init(&audit_pipe_lock, \ 206 "audit_pipe_list_lock") 207 #define AUDIT_PIPE_LIST_RLOCK() rw_rlock(&audit_pipe_lock) 208 #define AUDIT_PIPE_LIST_RUNLOCK() rw_runlock(&audit_pipe_lock) 209 #define AUDIT_PIPE_LIST_WLOCK() rw_wlock(&audit_pipe_lock) 210 #define AUDIT_PIPE_LIST_WLOCK_ASSERT() rw_assert(&audit_pipe_lock, \ 211 RA_WLOCKED) 212 #define AUDIT_PIPE_LIST_WUNLOCK() rw_wunlock(&audit_pipe_lock) 213 214 /* 215 * Cloning related variables and constants. 216 */ 217 #define AUDIT_PIPE_NAME "auditpipe" 218 static eventhandler_tag audit_pipe_eh_tag; 219 static struct clonedevs *audit_pipe_clones; 220 221 /* 222 * Special device methods and definition. 223 */ 224 static d_open_t audit_pipe_open; 225 static d_close_t audit_pipe_close; 226 static d_read_t audit_pipe_read; 227 static d_ioctl_t audit_pipe_ioctl; 228 static d_poll_t audit_pipe_poll; 229 static d_kqfilter_t audit_pipe_kqfilter; 230 231 static struct cdevsw audit_pipe_cdevsw = { 232 .d_version = D_VERSION, 233 .d_flags = D_PSEUDO | D_NEEDGIANT | D_NEEDMINOR, 234 .d_open = audit_pipe_open, 235 .d_close = audit_pipe_close, 236 .d_read = audit_pipe_read, 237 .d_ioctl = audit_pipe_ioctl, 238 .d_poll = audit_pipe_poll, 239 .d_kqfilter = audit_pipe_kqfilter, 240 .d_name = AUDIT_PIPE_NAME, 241 }; 242 243 static int audit_pipe_kqread(struct knote *note, long hint); 244 static void audit_pipe_kqdetach(struct knote *note); 245 246 static struct filterops audit_pipe_read_filterops = { 247 .f_isfd = 1, 248 .f_attach = NULL, 249 .f_detach = audit_pipe_kqdetach, 250 .f_event = audit_pipe_kqread, 251 }; 252 253 /* 254 * Some global statistics on audit pipes. 255 */ 256 static int audit_pipe_count; /* Current number of pipes. */ 257 static u_int64_t audit_pipe_ever; /* Pipes ever allocated. */ 258 static u_int64_t audit_pipe_records; /* Records seen. */ 259 static u_int64_t audit_pipe_drops; /* Global record drop count. */ 260 261 /* 262 * Free an audit pipe entry. 263 */ 264 static void 265 audit_pipe_entry_free(struct audit_pipe_entry *ape) 266 { 267 268 free(ape->ape_record, M_AUDIT_PIPE_ENTRY); 269 free(ape, M_AUDIT_PIPE_ENTRY); 270 } 271 272 /* 273 * Find an audit pipe preselection specification for an auid, if any. 274 */ 275 static struct audit_pipe_preselect * 276 audit_pipe_preselect_find(struct audit_pipe *ap, au_id_t auid) 277 { 278 struct audit_pipe_preselect *app; 279 280 AUDIT_PIPE_LOCK_ASSERT(ap); 281 282 TAILQ_FOREACH(app, &ap->ap_preselect_list, app_list) { 283 if (app->app_auid == auid) 284 return (app); 285 } 286 return (NULL); 287 } 288 289 /* 290 * Query the per-pipe mask for a specific auid. 291 */ 292 static int 293 audit_pipe_preselect_get(struct audit_pipe *ap, au_id_t auid, 294 au_mask_t *maskp) 295 { 296 struct audit_pipe_preselect *app; 297 int error; 298 299 AUDIT_PIPE_LOCK(ap); 300 app = audit_pipe_preselect_find(ap, auid); 301 if (app != NULL) { 302 *maskp = app->app_mask; 303 error = 0; 304 } else 305 error = ENOENT; 306 AUDIT_PIPE_UNLOCK(ap); 307 return (error); 308 } 309 310 /* 311 * Set the per-pipe mask for a specific auid. Add a new entry if needed; 312 * otherwise, update the current entry. 313 */ 314 static void 315 audit_pipe_preselect_set(struct audit_pipe *ap, au_id_t auid, au_mask_t mask) 316 { 317 struct audit_pipe_preselect *app, *app_new; 318 319 /* 320 * Pessimistically assume that the auid doesn't already have a mask 321 * set, and allocate. We will free it if it is unneeded. 322 */ 323 app_new = malloc(sizeof(*app_new), M_AUDIT_PIPE_PRESELECT, M_WAITOK); 324 AUDIT_PIPE_LOCK(ap); 325 app = audit_pipe_preselect_find(ap, auid); 326 if (app == NULL) { 327 app = app_new; 328 app_new = NULL; 329 app->app_auid = auid; 330 TAILQ_INSERT_TAIL(&ap->ap_preselect_list, app, app_list); 331 } 332 app->app_mask = mask; 333 AUDIT_PIPE_UNLOCK(ap); 334 if (app_new != NULL) 335 free(app_new, M_AUDIT_PIPE_PRESELECT); 336 } 337 338 /* 339 * Delete a per-auid mask on an audit pipe. 340 */ 341 static int 342 audit_pipe_preselect_delete(struct audit_pipe *ap, au_id_t auid) 343 { 344 struct audit_pipe_preselect *app; 345 int error; 346 347 AUDIT_PIPE_LOCK(ap); 348 app = audit_pipe_preselect_find(ap, auid); 349 if (app != NULL) { 350 TAILQ_REMOVE(&ap->ap_preselect_list, app, app_list); 351 error = 0; 352 } else 353 error = ENOENT; 354 AUDIT_PIPE_UNLOCK(ap); 355 if (app != NULL) 356 free(app, M_AUDIT_PIPE_PRESELECT); 357 return (error); 358 } 359 360 /* 361 * Delete all per-auid masks on an audit pipe. 362 */ 363 static void 364 audit_pipe_preselect_flush_locked(struct audit_pipe *ap) 365 { 366 struct audit_pipe_preselect *app; 367 368 AUDIT_PIPE_LOCK_ASSERT(ap); 369 370 while ((app = TAILQ_FIRST(&ap->ap_preselect_list)) != NULL) { 371 TAILQ_REMOVE(&ap->ap_preselect_list, app, app_list); 372 free(app, M_AUDIT_PIPE_PRESELECT); 373 } 374 } 375 376 static void 377 audit_pipe_preselect_flush(struct audit_pipe *ap) 378 { 379 380 AUDIT_PIPE_LOCK(ap); 381 audit_pipe_preselect_flush_locked(ap); 382 AUDIT_PIPE_UNLOCK(ap); 383 } 384 385 /*- 386 * Determine whether a specific audit pipe matches a record with these 387 * properties. Algorithm is as follows: 388 * 389 * - If the pipe is configured to track the default trail configuration, then 390 * use the results of global preselection matching. 391 * - If not, search for a specifically configured auid entry matching the 392 * event. If an entry is found, use that. 393 * - Otherwise, use the default flags or naflags configured for the pipe. 394 */ 395 static int 396 audit_pipe_preselect_check(struct audit_pipe *ap, au_id_t auid, 397 au_event_t event, au_class_t class, int sorf, int trail_preselect) 398 { 399 struct audit_pipe_preselect *app; 400 401 AUDIT_PIPE_LOCK_ASSERT(ap); 402 403 switch (ap->ap_preselect_mode) { 404 case AUDITPIPE_PRESELECT_MODE_TRAIL: 405 return (trail_preselect); 406 407 case AUDITPIPE_PRESELECT_MODE_LOCAL: 408 app = audit_pipe_preselect_find(ap, auid); 409 if (app == NULL) { 410 if (auid == AU_DEFAUDITID) 411 return (au_preselect(event, class, 412 &ap->ap_preselect_naflags, sorf)); 413 else 414 return (au_preselect(event, class, 415 &ap->ap_preselect_flags, sorf)); 416 } else 417 return (au_preselect(event, class, &app->app_mask, 418 sorf)); 419 420 default: 421 panic("audit_pipe_preselect_check: mode %d", 422 ap->ap_preselect_mode); 423 } 424 425 return (0); 426 } 427 428 /* 429 * Determine whether there exists a pipe interested in a record with specific 430 * properties. 431 */ 432 int 433 audit_pipe_preselect(au_id_t auid, au_event_t event, au_class_t class, 434 int sorf, int trail_preselect) 435 { 436 struct audit_pipe *ap; 437 438 AUDIT_PIPE_LIST_RLOCK(); 439 TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) { 440 AUDIT_PIPE_LOCK(ap); 441 if (audit_pipe_preselect_check(ap, auid, event, class, sorf, 442 trail_preselect)) { 443 AUDIT_PIPE_UNLOCK(ap); 444 AUDIT_PIPE_LIST_RUNLOCK(); 445 return (1); 446 } 447 AUDIT_PIPE_UNLOCK(ap); 448 } 449 AUDIT_PIPE_LIST_RUNLOCK(); 450 return (0); 451 } 452 453 /* 454 * Append individual record to a queue -- allocate queue-local buffer, and 455 * add to the queue. If the queue is full or we can't allocate memory, drop 456 * the newest record. 457 */ 458 static void 459 audit_pipe_append(struct audit_pipe *ap, void *record, u_int record_len) 460 { 461 struct audit_pipe_entry *ape; 462 463 AUDIT_PIPE_LOCK_ASSERT(ap); 464 465 if (ap->ap_qlen >= ap->ap_qlimit) { 466 ap->ap_drops++; 467 audit_pipe_drops++; 468 return; 469 } 470 471 ape = malloc(sizeof(*ape), M_AUDIT_PIPE_ENTRY, M_NOWAIT | M_ZERO); 472 if (ape == NULL) { 473 ap->ap_drops++; 474 audit_pipe_drops++; 475 return; 476 } 477 478 ape->ape_record = malloc(record_len, M_AUDIT_PIPE_ENTRY, M_NOWAIT); 479 if (ape->ape_record == NULL) { 480 free(ape, M_AUDIT_PIPE_ENTRY); 481 ap->ap_drops++; 482 audit_pipe_drops++; 483 return; 484 } 485 486 bcopy(record, ape->ape_record, record_len); 487 ape->ape_record_len = record_len; 488 489 TAILQ_INSERT_TAIL(&ap->ap_queue, ape, ape_queue); 490 ap->ap_inserts++; 491 ap->ap_qlen++; 492 ap->ap_qbyteslen += ape->ape_record_len; 493 selwakeuppri(&ap->ap_selinfo, PSOCK); 494 KNOTE_LOCKED(&ap->ap_selinfo.si_note, 0); 495 if (ap->ap_flags & AUDIT_PIPE_ASYNC) 496 pgsigio(&ap->ap_sigio, SIGIO, 0); 497 cv_broadcast(&ap->ap_cv); 498 } 499 500 /* 501 * audit_pipe_submit(): audit_worker submits audit records via this 502 * interface, which arranges for them to be delivered to pipe queues. 503 */ 504 void 505 audit_pipe_submit(au_id_t auid, au_event_t event, au_class_t class, int sorf, 506 int trail_select, void *record, u_int record_len) 507 { 508 struct audit_pipe *ap; 509 510 /* 511 * Lockless read to avoid lock overhead if pipes are not in use. 512 */ 513 if (TAILQ_FIRST(&audit_pipe_list) == NULL) 514 return; 515 516 AUDIT_PIPE_LIST_RLOCK(); 517 TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) { 518 AUDIT_PIPE_LOCK(ap); 519 if (audit_pipe_preselect_check(ap, auid, event, class, sorf, 520 trail_select)) 521 audit_pipe_append(ap, record, record_len); 522 AUDIT_PIPE_UNLOCK(ap); 523 } 524 AUDIT_PIPE_LIST_RUNLOCK(); 525 526 /* Unlocked increment. */ 527 audit_pipe_records++; 528 } 529 530 /* 531 * audit_pipe_submit_user(): the same as audit_pipe_submit(), except that 532 * since we don't currently have selection information available, it is 533 * delivered to the pipe unconditionally. 534 * 535 * XXXRW: This is a bug. The BSM check routine for submitting a user record 536 * should parse that information and return it. 537 */ 538 void 539 audit_pipe_submit_user(void *record, u_int record_len) 540 { 541 struct audit_pipe *ap; 542 543 /* 544 * Lockless read to avoid lock overhead if pipes are not in use. 545 */ 546 if (TAILQ_FIRST(&audit_pipe_list) == NULL) 547 return; 548 549 AUDIT_PIPE_LIST_RLOCK(); 550 TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) { 551 AUDIT_PIPE_LOCK(ap); 552 audit_pipe_append(ap, record, record_len); 553 AUDIT_PIPE_UNLOCK(ap); 554 } 555 AUDIT_PIPE_LIST_RUNLOCK(); 556 557 /* Unlocked increment. */ 558 audit_pipe_records++; 559 } 560 561 /* 562 * Allocate a new audit pipe. Connects the pipe, on success, to the global 563 * list and updates statistics. 564 */ 565 static struct audit_pipe * 566 audit_pipe_alloc(void) 567 { 568 struct audit_pipe *ap; 569 570 AUDIT_PIPE_LIST_WLOCK_ASSERT(); 571 572 ap = malloc(sizeof(*ap), M_AUDIT_PIPE, M_NOWAIT | M_ZERO); 573 if (ap == NULL) 574 return (NULL); 575 ap->ap_qlimit = AUDIT_PIPE_QLIMIT_DEFAULT; 576 TAILQ_INIT(&ap->ap_queue); 577 knlist_init(&ap->ap_selinfo.si_note, AUDIT_PIPE_MTX(ap), NULL, NULL, 578 NULL); 579 AUDIT_PIPE_LOCK_INIT(ap); 580 AUDIT_PIPE_SX_LOCK_INIT(ap); 581 cv_init(&ap->ap_cv, "audit_pipe"); 582 583 /* 584 * Default flags, naflags, and auid-specific preselection settings to 585 * 0. Initialize the mode to the global trail so that if praudit(1) 586 * is run on /dev/auditpipe, it sees events associated with the 587 * default trail. Pipe-aware application can clear the flag, set 588 * custom masks, and flush the pipe as needed. 589 */ 590 bzero(&ap->ap_preselect_flags, sizeof(ap->ap_preselect_flags)); 591 bzero(&ap->ap_preselect_naflags, sizeof(ap->ap_preselect_naflags)); 592 TAILQ_INIT(&ap->ap_preselect_list); 593 ap->ap_preselect_mode = AUDITPIPE_PRESELECT_MODE_TRAIL; 594 595 /* 596 * Add to global list and update global statistics. 597 */ 598 TAILQ_INSERT_HEAD(&audit_pipe_list, ap, ap_list); 599 audit_pipe_count++; 600 audit_pipe_ever++; 601 602 return (ap); 603 } 604 605 /* 606 * Flush all records currently present in an audit pipe; assume mutex is held. 607 */ 608 static void 609 audit_pipe_flush(struct audit_pipe *ap) 610 { 611 struct audit_pipe_entry *ape; 612 613 AUDIT_PIPE_LOCK_ASSERT(ap); 614 615 while ((ape = TAILQ_FIRST(&ap->ap_queue)) != NULL) { 616 TAILQ_REMOVE(&ap->ap_queue, ape, ape_queue); 617 ap->ap_qbyteslen -= ape->ape_record_len; 618 audit_pipe_entry_free(ape); 619 ap->ap_qlen--; 620 } 621 ap->ap_qoffset = 0; 622 623 KASSERT(ap->ap_qlen == 0, ("audit_pipe_free: ap_qbyteslen")); 624 KASSERT(ap->ap_qbyteslen == 0, ("audit_pipe_flush: ap_qbyteslen")); 625 } 626 627 /* 628 * Free an audit pipe; this means freeing all preselection state and all 629 * records in the pipe. Assumes global write lock and pipe mutex are held to 630 * prevent any new records from being inserted during the free, and that the 631 * audit pipe is still on the global list. 632 */ 633 static void 634 audit_pipe_free(struct audit_pipe *ap) 635 { 636 637 AUDIT_PIPE_LIST_WLOCK_ASSERT(); 638 AUDIT_PIPE_LOCK_ASSERT(ap); 639 640 audit_pipe_preselect_flush_locked(ap); 641 audit_pipe_flush(ap); 642 cv_destroy(&ap->ap_cv); 643 AUDIT_PIPE_SX_LOCK_DESTROY(ap); 644 AUDIT_PIPE_LOCK_DESTROY(ap); 645 knlist_destroy(&ap->ap_selinfo.si_note); 646 TAILQ_REMOVE(&audit_pipe_list, ap, ap_list); 647 free(ap, M_AUDIT_PIPE); 648 audit_pipe_count--; 649 } 650 651 /* 652 * Audit pipe clone routine -- provide specific requested audit pipe, or a 653 * fresh one if a specific one is not requested. 654 */ 655 static void 656 audit_pipe_clone(void *arg, struct ucred *cred, char *name, int namelen, 657 struct cdev **dev) 658 { 659 int i, u; 660 661 if (*dev != NULL) 662 return; 663 664 if (strcmp(name, AUDIT_PIPE_NAME) == 0) 665 u = -1; 666 else if (dev_stdclone(name, NULL, AUDIT_PIPE_NAME, &u) != 1) 667 return; 668 669 i = clone_create(&audit_pipe_clones, &audit_pipe_cdevsw, &u, dev, 0); 670 if (i) { 671 *dev = make_dev(&audit_pipe_cdevsw, u, UID_ROOT, 672 GID_WHEEL, 0600, "%s%d", AUDIT_PIPE_NAME, u); 673 if (*dev != NULL) { 674 dev_ref(*dev); 675 (*dev)->si_flags |= SI_CHEAPCLONE; 676 } 677 } 678 } 679 680 /* 681 * Audit pipe open method. Explicit privilege check isn't used as this 682 * allows file permissions on the special device to be used to grant audit 683 * review access. Those file permissions should be managed carefully. 684 */ 685 static int 686 audit_pipe_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 687 { 688 struct audit_pipe *ap; 689 690 AUDIT_PIPE_LIST_WLOCK(); 691 ap = dev->si_drv1; 692 if (ap == NULL) { 693 ap = audit_pipe_alloc(); 694 if (ap == NULL) { 695 AUDIT_PIPE_LIST_WUNLOCK(); 696 return (ENOMEM); 697 } 698 dev->si_drv1 = ap; 699 } else { 700 KASSERT(ap->ap_open, ("audit_pipe_open: ap && !ap_open")); 701 AUDIT_PIPE_LIST_WUNLOCK(); 702 return (EBUSY); 703 } 704 ap->ap_open = 1; /* No lock required yet. */ 705 AUDIT_PIPE_LIST_WUNLOCK(); 706 fsetown(td->td_proc->p_pid, &ap->ap_sigio); 707 return (0); 708 } 709 710 /* 711 * Close audit pipe, tear down all records, etc. 712 */ 713 static int 714 audit_pipe_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 715 { 716 struct audit_pipe *ap; 717 718 ap = dev->si_drv1; 719 KASSERT(ap != NULL, ("audit_pipe_close: ap == NULL")); 720 KASSERT(ap->ap_open, ("audit_pipe_close: !ap_open")); 721 722 funsetown(&ap->ap_sigio); 723 AUDIT_PIPE_LIST_WLOCK(); 724 AUDIT_PIPE_LOCK(ap); 725 ap->ap_open = 0; 726 audit_pipe_free(ap); 727 dev->si_drv1 = NULL; 728 AUDIT_PIPE_LIST_WUNLOCK(); 729 return (0); 730 } 731 732 /* 733 * Audit pipe ioctl() routine. Handle file descriptor and audit pipe layer 734 * commands. 735 */ 736 static int 737 audit_pipe_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, 738 struct thread *td) 739 { 740 struct auditpipe_ioctl_preselect *aip; 741 struct audit_pipe *ap; 742 au_mask_t *maskp; 743 int error, mode; 744 au_id_t auid; 745 746 ap = dev->si_drv1; 747 KASSERT(ap != NULL, ("audit_pipe_ioctl: ap == NULL")); 748 749 /* 750 * Audit pipe ioctls: first come standard device node ioctls, then 751 * manipulation of pipe settings, and finally, statistics query 752 * ioctls. 753 */ 754 switch (cmd) { 755 case FIONBIO: 756 AUDIT_PIPE_LOCK(ap); 757 if (*(int *)data) 758 ap->ap_flags |= AUDIT_PIPE_NBIO; 759 else 760 ap->ap_flags &= ~AUDIT_PIPE_NBIO; 761 AUDIT_PIPE_UNLOCK(ap); 762 error = 0; 763 break; 764 765 case FIONREAD: 766 AUDIT_PIPE_LOCK(ap); 767 *(int *)data = ap->ap_qbyteslen - ap->ap_qoffset; 768 AUDIT_PIPE_UNLOCK(ap); 769 error = 0; 770 break; 771 772 case FIOASYNC: 773 AUDIT_PIPE_LOCK(ap); 774 if (*(int *)data) 775 ap->ap_flags |= AUDIT_PIPE_ASYNC; 776 else 777 ap->ap_flags &= ~AUDIT_PIPE_ASYNC; 778 AUDIT_PIPE_UNLOCK(ap); 779 error = 0; 780 break; 781 782 case FIOSETOWN: 783 error = fsetown(*(int *)data, &ap->ap_sigio); 784 break; 785 786 case FIOGETOWN: 787 *(int *)data = fgetown(&ap->ap_sigio); 788 error = 0; 789 break; 790 791 case AUDITPIPE_GET_QLEN: 792 *(u_int *)data = ap->ap_qlen; 793 error = 0; 794 break; 795 796 case AUDITPIPE_GET_QLIMIT: 797 *(u_int *)data = ap->ap_qlimit; 798 error = 0; 799 break; 800 801 case AUDITPIPE_SET_QLIMIT: 802 /* Lockless integer write. */ 803 if (*(u_int *)data >= AUDIT_PIPE_QLIMIT_MIN || 804 *(u_int *)data <= AUDIT_PIPE_QLIMIT_MAX) { 805 ap->ap_qlimit = *(u_int *)data; 806 error = 0; 807 } else 808 error = EINVAL; 809 break; 810 811 case AUDITPIPE_GET_QLIMIT_MIN: 812 *(u_int *)data = AUDIT_PIPE_QLIMIT_MIN; 813 error = 0; 814 break; 815 816 case AUDITPIPE_GET_QLIMIT_MAX: 817 *(u_int *)data = AUDIT_PIPE_QLIMIT_MAX; 818 error = 0; 819 break; 820 821 case AUDITPIPE_GET_PRESELECT_FLAGS: 822 AUDIT_PIPE_LOCK(ap); 823 maskp = (au_mask_t *)data; 824 *maskp = ap->ap_preselect_flags; 825 AUDIT_PIPE_UNLOCK(ap); 826 error = 0; 827 break; 828 829 case AUDITPIPE_SET_PRESELECT_FLAGS: 830 AUDIT_PIPE_LOCK(ap); 831 maskp = (au_mask_t *)data; 832 ap->ap_preselect_flags = *maskp; 833 AUDIT_PIPE_UNLOCK(ap); 834 error = 0; 835 break; 836 837 case AUDITPIPE_GET_PRESELECT_NAFLAGS: 838 AUDIT_PIPE_LOCK(ap); 839 maskp = (au_mask_t *)data; 840 *maskp = ap->ap_preselect_naflags; 841 AUDIT_PIPE_UNLOCK(ap); 842 error = 0; 843 break; 844 845 case AUDITPIPE_SET_PRESELECT_NAFLAGS: 846 AUDIT_PIPE_LOCK(ap); 847 maskp = (au_mask_t *)data; 848 ap->ap_preselect_naflags = *maskp; 849 AUDIT_PIPE_UNLOCK(ap); 850 error = 0; 851 break; 852 853 case AUDITPIPE_GET_PRESELECT_AUID: 854 aip = (struct auditpipe_ioctl_preselect *)data; 855 error = audit_pipe_preselect_get(ap, aip->aip_auid, 856 &aip->aip_mask); 857 break; 858 859 case AUDITPIPE_SET_PRESELECT_AUID: 860 aip = (struct auditpipe_ioctl_preselect *)data; 861 audit_pipe_preselect_set(ap, aip->aip_auid, aip->aip_mask); 862 error = 0; 863 break; 864 865 case AUDITPIPE_DELETE_PRESELECT_AUID: 866 auid = *(au_id_t *)data; 867 error = audit_pipe_preselect_delete(ap, auid); 868 break; 869 870 case AUDITPIPE_FLUSH_PRESELECT_AUID: 871 audit_pipe_preselect_flush(ap); 872 error = 0; 873 break; 874 875 case AUDITPIPE_GET_PRESELECT_MODE: 876 AUDIT_PIPE_LOCK(ap); 877 *(int *)data = ap->ap_preselect_mode; 878 AUDIT_PIPE_UNLOCK(ap); 879 error = 0; 880 break; 881 882 case AUDITPIPE_SET_PRESELECT_MODE: 883 mode = *(int *)data; 884 switch (mode) { 885 case AUDITPIPE_PRESELECT_MODE_TRAIL: 886 case AUDITPIPE_PRESELECT_MODE_LOCAL: 887 AUDIT_PIPE_LOCK(ap); 888 ap->ap_preselect_mode = mode; 889 AUDIT_PIPE_UNLOCK(ap); 890 error = 0; 891 break; 892 893 default: 894 error = EINVAL; 895 } 896 break; 897 898 case AUDITPIPE_FLUSH: 899 if (AUDIT_PIPE_SX_XLOCK_SIG(ap) != 0) 900 return (EINTR); 901 AUDIT_PIPE_LOCK(ap); 902 audit_pipe_flush(ap); 903 AUDIT_PIPE_UNLOCK(ap); 904 AUDIT_PIPE_SX_XUNLOCK(ap); 905 error = 0; 906 break; 907 908 case AUDITPIPE_GET_MAXAUDITDATA: 909 *(u_int *)data = MAXAUDITDATA; 910 error = 0; 911 break; 912 913 case AUDITPIPE_GET_INSERTS: 914 *(u_int *)data = ap->ap_inserts; 915 error = 0; 916 break; 917 918 case AUDITPIPE_GET_READS: 919 *(u_int *)data = ap->ap_reads; 920 error = 0; 921 break; 922 923 case AUDITPIPE_GET_DROPS: 924 *(u_int *)data = ap->ap_drops; 925 error = 0; 926 break; 927 928 case AUDITPIPE_GET_TRUNCATES: 929 *(u_int *)data = 0; 930 error = 0; 931 break; 932 933 default: 934 error = ENOTTY; 935 } 936 return (error); 937 } 938 939 /* 940 * Audit pipe read. Read one or more partial or complete records to user 941 * memory. 942 */ 943 static int 944 audit_pipe_read(struct cdev *dev, struct uio *uio, int flag) 945 { 946 struct audit_pipe_entry *ape; 947 struct audit_pipe *ap; 948 u_int toread; 949 int error; 950 951 ap = dev->si_drv1; 952 KASSERT(ap != NULL, ("audit_pipe_read: ap == NULL")); 953 954 /* 955 * We hold an sx(9) lock over read and flush because we rely on the 956 * stability of a record in the queue during uiomove(9). 957 */ 958 if (AUDIT_PIPE_SX_XLOCK_SIG(ap) != 0) 959 return (EINTR); 960 AUDIT_PIPE_LOCK(ap); 961 while (TAILQ_EMPTY(&ap->ap_queue)) { 962 if (ap->ap_flags & AUDIT_PIPE_NBIO) { 963 AUDIT_PIPE_UNLOCK(ap); 964 AUDIT_PIPE_SX_XUNLOCK(ap); 965 return (EAGAIN); 966 } 967 error = cv_wait_sig(&ap->ap_cv, AUDIT_PIPE_MTX(ap)); 968 if (error) { 969 AUDIT_PIPE_UNLOCK(ap); 970 AUDIT_PIPE_SX_XUNLOCK(ap); 971 return (error); 972 } 973 } 974 975 /* 976 * Copy as many remaining bytes from the current record to userspace 977 * as we can. Keep processing records until we run out of records in 978 * the queue, or until the user buffer runs out of space. 979 * 980 * Note: we rely on the SX lock to maintain ape's stability here. 981 */ 982 ap->ap_reads++; 983 while ((ape = TAILQ_FIRST(&ap->ap_queue)) != NULL && 984 uio->uio_resid > 0) { 985 AUDIT_PIPE_LOCK_ASSERT(ap); 986 987 KASSERT(ape->ape_record_len > ap->ap_qoffset, 988 ("audit_pipe_read: record_len > qoffset (1)")); 989 toread = MIN(ape->ape_record_len - ap->ap_qoffset, 990 uio->uio_resid); 991 AUDIT_PIPE_UNLOCK(ap); 992 error = uiomove((char *)ape->ape_record + ap->ap_qoffset, 993 toread, uio); 994 if (error) { 995 AUDIT_PIPE_SX_XUNLOCK(ap); 996 return (error); 997 } 998 999 /* 1000 * If the copy succeeded, update book-keeping, and if no 1001 * bytes remain in the current record, free it. 1002 */ 1003 AUDIT_PIPE_LOCK(ap); 1004 KASSERT(TAILQ_FIRST(&ap->ap_queue) == ape, 1005 ("audit_pipe_read: queue out of sync after uiomove")); 1006 ap->ap_qoffset += toread; 1007 KASSERT(ape->ape_record_len >= ap->ap_qoffset, 1008 ("audit_pipe_read: record_len >= qoffset (2)")); 1009 if (ap->ap_qoffset == ape->ape_record_len) { 1010 TAILQ_REMOVE(&ap->ap_queue, ape, ape_queue); 1011 ap->ap_qbyteslen -= ape->ape_record_len; 1012 audit_pipe_entry_free(ape); 1013 ap->ap_qlen--; 1014 ap->ap_qoffset = 0; 1015 } 1016 } 1017 AUDIT_PIPE_UNLOCK(ap); 1018 AUDIT_PIPE_SX_XUNLOCK(ap); 1019 return (0); 1020 } 1021 1022 /* 1023 * Audit pipe poll. 1024 */ 1025 static int 1026 audit_pipe_poll(struct cdev *dev, int events, struct thread *td) 1027 { 1028 struct audit_pipe *ap; 1029 int revents; 1030 1031 revents = 0; 1032 ap = dev->si_drv1; 1033 KASSERT(ap != NULL, ("audit_pipe_poll: ap == NULL")); 1034 1035 if (events & (POLLIN | POLLRDNORM)) { 1036 AUDIT_PIPE_LOCK(ap); 1037 if (TAILQ_FIRST(&ap->ap_queue) != NULL) 1038 revents |= events & (POLLIN | POLLRDNORM); 1039 else 1040 selrecord(td, &ap->ap_selinfo); 1041 AUDIT_PIPE_UNLOCK(ap); 1042 } 1043 return (revents); 1044 } 1045 1046 /* 1047 * Audit pipe kqfilter. 1048 */ 1049 static int 1050 audit_pipe_kqfilter(struct cdev *dev, struct knote *kn) 1051 { 1052 struct audit_pipe *ap; 1053 1054 ap = dev->si_drv1; 1055 KASSERT(ap != NULL, ("audit_pipe_kqfilter: ap == NULL")); 1056 1057 if (kn->kn_filter != EVFILT_READ) 1058 return (EINVAL); 1059 1060 kn->kn_fop = &audit_pipe_read_filterops; 1061 kn->kn_hook = ap; 1062 1063 AUDIT_PIPE_LOCK(ap); 1064 knlist_add(&ap->ap_selinfo.si_note, kn, 1); 1065 AUDIT_PIPE_UNLOCK(ap); 1066 return (0); 1067 } 1068 1069 /* 1070 * Return true if there are records available for reading on the pipe. 1071 */ 1072 static int 1073 audit_pipe_kqread(struct knote *kn, long hint) 1074 { 1075 struct audit_pipe_entry *ape; 1076 struct audit_pipe *ap; 1077 1078 ap = (struct audit_pipe *)kn->kn_hook; 1079 KASSERT(ap != NULL, ("audit_pipe_kqread: ap == NULL")); 1080 1081 AUDIT_PIPE_LOCK_ASSERT(ap); 1082 1083 if (ap->ap_qlen != 0) { 1084 ape = TAILQ_FIRST(&ap->ap_queue); 1085 KASSERT(ape != NULL, ("audit_pipe_kqread: ape == NULL")); 1086 1087 kn->kn_data = ap->ap_qbyteslen - ap->ap_qoffset; 1088 return (1); 1089 } else { 1090 kn->kn_data = 0; 1091 return (0); 1092 } 1093 } 1094 1095 /* 1096 * Detach kqueue state from audit pipe. 1097 */ 1098 static void 1099 audit_pipe_kqdetach(struct knote *kn) 1100 { 1101 struct audit_pipe *ap; 1102 1103 ap = (struct audit_pipe *)kn->kn_hook; 1104 KASSERT(ap != NULL, ("audit_pipe_kqdetach: ap == NULL")); 1105 1106 AUDIT_PIPE_LOCK(ap); 1107 knlist_remove(&ap->ap_selinfo.si_note, kn, 1); 1108 AUDIT_PIPE_UNLOCK(ap); 1109 } 1110 1111 /* 1112 * Initialize the audit pipe system. 1113 */ 1114 static void 1115 audit_pipe_init(void *unused) 1116 { 1117 1118 TAILQ_INIT(&audit_pipe_list); 1119 AUDIT_PIPE_LIST_LOCK_INIT(); 1120 1121 clone_setup(&audit_pipe_clones); 1122 audit_pipe_eh_tag = EVENTHANDLER_REGISTER(dev_clone, 1123 audit_pipe_clone, 0, 1000); 1124 if (audit_pipe_eh_tag == NULL) 1125 panic("audit_pipe_init: EVENTHANDLER_REGISTER"); 1126 } 1127 1128 SYSINIT(audit_pipe_init, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, audit_pipe_init, 1129 NULL); 1130