1 /* 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1999-2009 Apple Inc. 5 * Copyright (c) 2016-2017 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Portions of this software were developed by BAE Systems, the University of 9 * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL 10 * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent 11 * Computing (TC) research program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 22 * its contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 34 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/vnode.h> 43 #include <sys/ipc.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/extattr.h> 49 #include <sys/fcntl.h> 50 #include <sys/user.h> 51 #include <sys/systm.h> 52 53 #include <bsm/audit.h> 54 #include <bsm/audit_internal.h> 55 #include <bsm/audit_record.h> 56 #include <bsm/audit_kevents.h> 57 58 #include <security/audit/audit.h> 59 #include <security/audit/audit_private.h> 60 61 #include <netinet/in_systm.h> 62 #include <netinet/in.h> 63 #include <netinet/ip.h> 64 65 MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data"); 66 67 static void audit_sys_auditon(struct audit_record *ar, 68 struct au_record *rec); 69 70 /* 71 * Initialize the BSM auditing subsystem. 72 */ 73 void 74 kau_init(void) 75 { 76 77 au_evclassmap_init(); 78 au_evnamemap_init(); 79 } 80 81 /* 82 * This call reserves memory for the audit record. Memory must be guaranteed 83 * before any auditable event can be generated. The au_record structure 84 * maintains a reference to the memory allocated above and also the list of 85 * tokens associated with this record. 86 */ 87 static struct au_record * 88 kau_open(void) 89 { 90 struct au_record *rec; 91 92 rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK); 93 rec->data = NULL; 94 TAILQ_INIT(&rec->token_q); 95 rec->len = 0; 96 rec->used = 1; 97 98 return (rec); 99 } 100 101 /* 102 * Store the token with the record descriptor. 103 */ 104 static void 105 kau_write(struct au_record *rec, struct au_token *tok) 106 { 107 108 KASSERT(tok != NULL, ("kau_write: tok == NULL")); 109 110 TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens); 111 rec->len += tok->len; 112 } 113 114 /* 115 * Close out the audit record by adding the header token, identifying any 116 * missing tokens. Write out the tokens to the record memory. 117 */ 118 static void 119 kau_close(struct au_record *rec, struct timespec *ctime, short event) 120 { 121 u_char *dptr; 122 size_t tot_rec_size; 123 token_t *cur, *hdr, *trail; 124 struct timeval tm; 125 size_t hdrsize; 126 struct auditinfo_addr ak; 127 struct in6_addr *ap; 128 129 audit_get_kinfo(&ak); 130 hdrsize = 0; 131 switch (ak.ai_termid.at_type) { 132 case AU_IPv4: 133 hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ? 134 AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak); 135 break; 136 case AU_IPv6: 137 ap = (struct in6_addr *)&ak.ai_termid.at_addr[0]; 138 hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE : 139 AUDIT_HEADER_EX_SIZE(&ak); 140 break; 141 default: 142 panic("kau_close: invalid address family"); 143 } 144 tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE; 145 rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO); 146 147 tm.tv_usec = ctime->tv_nsec / 1000; 148 tm.tv_sec = ctime->tv_sec; 149 if (hdrsize != AUDIT_HEADER_SIZE) 150 hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak); 151 else 152 hdr = au_to_header32_tm(tot_rec_size, event, 0, tm); 153 TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens); 154 155 trail = au_to_trailer(tot_rec_size); 156 TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens); 157 158 rec->len = tot_rec_size; 159 dptr = rec->data; 160 TAILQ_FOREACH(cur, &rec->token_q, tokens) { 161 memcpy(dptr, cur->t_data, cur->len); 162 dptr += cur->len; 163 } 164 } 165 166 /* 167 * Free a BSM audit record by releasing all the tokens and clearing the audit 168 * record information. 169 */ 170 void 171 kau_free(struct au_record *rec) 172 { 173 struct au_token *tok; 174 175 /* Free the token list. */ 176 while ((tok = TAILQ_FIRST(&rec->token_q))) { 177 TAILQ_REMOVE(&rec->token_q, tok, tokens); 178 free(tok->t_data, M_AUDITBSM); 179 free(tok, M_AUDITBSM); 180 } 181 182 rec->used = 0; 183 rec->len = 0; 184 free(rec->data, M_AUDITBSM); 185 free(rec, M_AUDITBSM); 186 } 187 188 /* 189 * XXX: May want turn some (or all) of these macros into functions in order 190 * to reduce the generated code size. 191 * 192 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the 193 * caller are OK with this. 194 */ 195 #define ATFD1_TOKENS(argnum) do { \ 196 if (ARG_IS_VALID(kar, ARG_ATFD1)) { \ 197 tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1); \ 198 kau_write(rec, tok); \ 199 } \ 200 } while (0) 201 202 #define ATFD2_TOKENS(argnum) do { \ 203 if (ARG_IS_VALID(kar, ARG_ATFD2)) { \ 204 tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2); \ 205 kau_write(rec, tok); \ 206 } \ 207 } while (0) 208 209 #define UPATH1_TOKENS do { \ 210 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 211 tok = au_to_path(ar->ar_arg_upath1); \ 212 kau_write(rec, tok); \ 213 } \ 214 } while (0) 215 216 #define UPATH2_TOKENS do { \ 217 if (ARG_IS_VALID(kar, ARG_UPATH2)) { \ 218 tok = au_to_path(ar->ar_arg_upath2); \ 219 kau_write(rec, tok); \ 220 } \ 221 } while (0) 222 223 #define VNODE1_TOKENS do { \ 224 if (ARG_IS_VALID(kar, ARG_ATFD)) { \ 225 tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd); \ 226 kau_write(rec, tok); \ 227 } \ 228 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 229 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 230 kau_write(rec, tok); \ 231 } \ 232 } while (0) 233 234 #define UPATH1_VNODE1_TOKENS do { \ 235 UPATH1_TOKENS; \ 236 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 237 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 238 kau_write(rec, tok); \ 239 } \ 240 } while (0) 241 242 #define VNODE2_TOKENS do { \ 243 if (ARG_IS_VALID(kar, ARG_VNODE2)) { \ 244 tok = au_to_attr32(&ar->ar_arg_vnode2); \ 245 kau_write(rec, tok); \ 246 } \ 247 } while (0) 248 249 #define FD_VNODE1_TOKENS do { \ 250 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 251 if (ARG_IS_VALID(kar, ARG_FD)) { \ 252 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \ 253 kau_write(rec, tok); \ 254 } \ 255 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 256 kau_write(rec, tok); \ 257 } else { \ 258 if (ARG_IS_VALID(kar, ARG_FD)) { \ 259 tok = au_to_arg32(1, "non-file: fd", \ 260 ar->ar_arg_fd); \ 261 kau_write(rec, tok); \ 262 } \ 263 } \ 264 } while (0) 265 266 #define PROCESS_PID_TOKENS(argn) do { \ 267 if ((ar->ar_arg_pid > 0) /* Reference a single process */ \ 268 && (ARG_IS_VALID(kar, ARG_PROCESS))) { \ 269 tok = au_to_process32_ex(ar->ar_arg_auid, \ 270 ar->ar_arg_euid, ar->ar_arg_egid, \ 271 ar->ar_arg_ruid, ar->ar_arg_rgid, \ 272 ar->ar_arg_pid, ar->ar_arg_asid, \ 273 &ar->ar_arg_termid_addr); \ 274 kau_write(rec, tok); \ 275 } else if (ARG_IS_VALID(kar, ARG_PID)) { \ 276 tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \ 277 kau_write(rec, tok); \ 278 } \ 279 } while (0) 280 281 #define EXTATTR_TOKENS(namespace_argnum) do { \ 282 if (ARG_IS_VALID(kar, ARG_VALUE)) { \ 283 switch (ar->ar_arg_value) { \ 284 case EXTATTR_NAMESPACE_USER: \ 285 tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\ 286 break; \ 287 case EXTATTR_NAMESPACE_SYSTEM: \ 288 tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\ 289 break; \ 290 default: \ 291 tok = au_to_arg32((namespace_argnum), \ 292 "attrnamespace", ar->ar_arg_value); \ 293 break; \ 294 } \ 295 kau_write(rec, tok); \ 296 } \ 297 /* attrname is in the text field */ \ 298 if (ARG_IS_VALID(kar, ARG_TEXT)) { \ 299 tok = au_to_text(ar->ar_arg_text); \ 300 kau_write(rec, tok); \ 301 } \ 302 } while (0) 303 304 /* 305 * Not all pointer arguments to system calls are of interest, but in some 306 * cases they reflect delegation of rights, such as mmap(2) followed by 307 * minherit(2) before execve(2), so do the best we can. 308 */ 309 #define ADDR_TOKEN(argnum, argname) do { \ 310 if (ARG_IS_VALID(kar, ARG_ADDR)) { \ 311 if (sizeof(void *) == sizeof(uint32_t)) \ 312 tok = au_to_arg32((argnum), (argname), \ 313 (uint32_t)(uintptr_t)ar->ar_arg_addr); \ 314 else \ 315 tok = au_to_arg64((argnum), (argname), \ 316 (uint64_t)(uintptr_t)ar->ar_arg_addr); \ 317 kau_write(rec, tok); \ 318 } \ 319 } while (0) 320 321 322 /* 323 * Implement auditing for the auditon() system call. The audit tokens that 324 * are generated depend on the command that was sent into the auditon() 325 * system call. 326 */ 327 static void 328 audit_sys_auditon(struct audit_record *ar, struct au_record *rec) 329 { 330 struct au_token *tok; 331 332 tok = au_to_arg32(3, "length", ar->ar_arg_len); 333 kau_write(rec, tok); 334 switch (ar->ar_arg_cmd) { 335 case A_OLDSETPOLICY: 336 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 337 tok = au_to_arg64(2, "policy", 338 ar->ar_arg_auditon.au_policy64); 339 kau_write(rec, tok); 340 break; 341 } 342 /* FALLTHROUGH */ 343 344 case A_SETPOLICY: 345 tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy); 346 kau_write(rec, tok); 347 break; 348 349 case A_SETKMASK: 350 tok = au_to_arg32(2, "setkmask:as_success", 351 ar->ar_arg_auditon.au_mask.am_success); 352 kau_write(rec, tok); 353 tok = au_to_arg32(2, "setkmask:as_failure", 354 ar->ar_arg_auditon.au_mask.am_failure); 355 kau_write(rec, tok); 356 break; 357 358 case A_OLDSETQCTRL: 359 if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) { 360 tok = au_to_arg64(2, "setqctrl:aq_hiwater", 361 ar->ar_arg_auditon.au_qctrl64.aq64_hiwater); 362 kau_write(rec, tok); 363 tok = au_to_arg64(2, "setqctrl:aq_lowater", 364 ar->ar_arg_auditon.au_qctrl64.aq64_lowater); 365 kau_write(rec, tok); 366 tok = au_to_arg64(2, "setqctrl:aq_bufsz", 367 ar->ar_arg_auditon.au_qctrl64.aq64_bufsz); 368 kau_write(rec, tok); 369 tok = au_to_arg64(2, "setqctrl:aq_delay", 370 ar->ar_arg_auditon.au_qctrl64.aq64_delay); 371 kau_write(rec, tok); 372 tok = au_to_arg64(2, "setqctrl:aq_minfree", 373 ar->ar_arg_auditon.au_qctrl64.aq64_minfree); 374 kau_write(rec, tok); 375 break; 376 } 377 /* FALLTHROUGH */ 378 379 case A_SETQCTRL: 380 tok = au_to_arg32(2, "setqctrl:aq_hiwater", 381 ar->ar_arg_auditon.au_qctrl.aq_hiwater); 382 kau_write(rec, tok); 383 tok = au_to_arg32(2, "setqctrl:aq_lowater", 384 ar->ar_arg_auditon.au_qctrl.aq_lowater); 385 kau_write(rec, tok); 386 tok = au_to_arg32(2, "setqctrl:aq_bufsz", 387 ar->ar_arg_auditon.au_qctrl.aq_bufsz); 388 kau_write(rec, tok); 389 tok = au_to_arg32(2, "setqctrl:aq_delay", 390 ar->ar_arg_auditon.au_qctrl.aq_delay); 391 kau_write(rec, tok); 392 tok = au_to_arg32(2, "setqctrl:aq_minfree", 393 ar->ar_arg_auditon.au_qctrl.aq_minfree); 394 kau_write(rec, tok); 395 break; 396 397 case A_SETUMASK: 398 tok = au_to_arg32(2, "setumask:as_success", 399 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 400 kau_write(rec, tok); 401 tok = au_to_arg32(2, "setumask:as_failure", 402 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 403 kau_write(rec, tok); 404 break; 405 406 case A_SETSMASK: 407 tok = au_to_arg32(2, "setsmask:as_success", 408 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 409 kau_write(rec, tok); 410 tok = au_to_arg32(2, "setsmask:as_failure", 411 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 412 kau_write(rec, tok); 413 break; 414 415 case A_OLDSETCOND: 416 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 417 tok = au_to_arg64(2, "setcond", 418 ar->ar_arg_auditon.au_cond64); 419 kau_write(rec, tok); 420 break; 421 } 422 /* FALLTHROUGH */ 423 424 case A_SETCOND: 425 tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond); 426 kau_write(rec, tok); 427 break; 428 429 case A_SETCLASS: 430 tok = au_to_arg32(2, "setclass:ec_event", 431 ar->ar_arg_auditon.au_evclass.ec_number); 432 kau_write(rec, tok); 433 tok = au_to_arg32(2, "setclass:ec_class", 434 ar->ar_arg_auditon.au_evclass.ec_class); 435 kau_write(rec, tok); 436 break; 437 438 case A_SETPMASK: 439 tok = au_to_arg32(2, "setpmask:as_success", 440 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success); 441 kau_write(rec, tok); 442 tok = au_to_arg32(2, "setpmask:as_failure", 443 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure); 444 kau_write(rec, tok); 445 break; 446 447 case A_SETFSIZE: 448 tok = au_to_arg32(2, "setfsize:filesize", 449 ar->ar_arg_auditon.au_fstat.af_filesz); 450 kau_write(rec, tok); 451 break; 452 453 default: 454 break; 455 } 456 } 457 458 /* 459 * Convert an internal kernel audit record to a BSM record and return a 460 * success/failure indicator. The BSM record is passed as an out parameter to 461 * this function. 462 * 463 * Return conditions: 464 * BSM_SUCCESS: The BSM record is valid 465 * BSM_FAILURE: Failure; the BSM record is NULL. 466 * BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL. 467 */ 468 int 469 kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau) 470 { 471 struct au_token *tok, *subj_tok, *jail_tok; 472 struct au_record *rec; 473 au_tid_t tid; 474 struct audit_record *ar; 475 int ctr; 476 477 KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL")); 478 479 *pau = NULL; 480 ar = &kar->k_ar; 481 rec = kau_open(); 482 483 /* 484 * Create the subject token. If this credential was jailed be sure to 485 * generate a zonename token. 486 */ 487 if (ar->ar_jailname[0] != '\0') 488 jail_tok = au_to_zonename(ar->ar_jailname); 489 else 490 jail_tok = NULL; 491 switch (ar->ar_subj_term_addr.at_type) { 492 case AU_IPv4: 493 tid.port = ar->ar_subj_term_addr.at_port; 494 tid.machine = ar->ar_subj_term_addr.at_addr[0]; 495 subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */ 496 ar->ar_subj_cred.cr_uid, /* eff uid */ 497 ar->ar_subj_egid, /* eff group id */ 498 ar->ar_subj_ruid, /* real uid */ 499 ar->ar_subj_rgid, /* real group id */ 500 ar->ar_subj_pid, /* process id */ 501 ar->ar_subj_asid, /* session ID */ 502 &tid); 503 break; 504 case AU_IPv6: 505 subj_tok = au_to_subject32_ex(ar->ar_subj_auid, 506 ar->ar_subj_cred.cr_uid, 507 ar->ar_subj_egid, 508 ar->ar_subj_ruid, 509 ar->ar_subj_rgid, 510 ar->ar_subj_pid, 511 ar->ar_subj_asid, 512 &ar->ar_subj_term_addr); 513 break; 514 default: 515 bzero(&tid, sizeof(tid)); 516 subj_tok = au_to_subject32(ar->ar_subj_auid, 517 ar->ar_subj_cred.cr_uid, 518 ar->ar_subj_egid, 519 ar->ar_subj_ruid, 520 ar->ar_subj_rgid, 521 ar->ar_subj_pid, 522 ar->ar_subj_asid, 523 &tid); 524 } 525 526 /* 527 * The logic inside each case fills in the tokens required for the 528 * event, except for the header, trailer, and return tokens. The 529 * header and trailer tokens are added by the kau_close() function. 530 * The return token is added outside of the switch statement. 531 */ 532 switch(ar->ar_event) { 533 case AUE_ACCEPT: 534 if (ARG_IS_VALID(kar, ARG_FD)) { 535 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 536 kau_write(rec, tok); 537 } 538 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 539 tok = au_to_sock_inet((struct sockaddr_in *) 540 &ar->ar_arg_sockaddr); 541 kau_write(rec, tok); 542 } 543 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 544 tok = au_to_sock_unix((struct sockaddr_un *) 545 &ar->ar_arg_sockaddr); 546 kau_write(rec, tok); 547 UPATH1_TOKENS; 548 } 549 break; 550 551 case AUE_BIND: 552 case AUE_LISTEN: 553 case AUE_CONNECT: 554 case AUE_RECV: 555 case AUE_RECVFROM: 556 case AUE_RECVMSG: 557 case AUE_SEND: 558 case AUE_SENDMSG: 559 case AUE_SENDTO: 560 /* 561 * Socket-related events. 562 */ 563 if (ARG_IS_VALID(kar, ARG_FD)) { 564 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 565 kau_write(rec, tok); 566 } 567 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 568 tok = au_to_sock_inet((struct sockaddr_in *) 569 &ar->ar_arg_sockaddr); 570 kau_write(rec, tok); 571 } 572 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 573 tok = au_to_sock_unix((struct sockaddr_un *) 574 &ar->ar_arg_sockaddr); 575 kau_write(rec, tok); 576 UPATH1_TOKENS; 577 } 578 /* XXX Need to handle ARG_SADDRINET6 */ 579 break; 580 581 case AUE_BINDAT: 582 case AUE_CONNECTAT: 583 ATFD1_TOKENS(1); 584 if (ARG_IS_VALID(kar, ARG_FD)) { 585 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 586 kau_write(rec, tok); 587 } 588 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 589 tok = au_to_sock_unix((struct sockaddr_un *) 590 &ar->ar_arg_sockaddr); 591 kau_write(rec, tok); 592 UPATH1_TOKENS; 593 } 594 break; 595 596 case AUE_SENDFILE: 597 FD_VNODE1_TOKENS; 598 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 599 tok = au_to_sock_inet((struct sockaddr_in *) 600 &ar->ar_arg_sockaddr); 601 kau_write(rec, tok); 602 } 603 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 604 tok = au_to_sock_unix((struct sockaddr_un *) 605 &ar->ar_arg_sockaddr); 606 kau_write(rec, tok); 607 UPATH1_TOKENS; 608 } 609 /* XXX Need to handle ARG_SADDRINET6 */ 610 break; 611 612 case AUE_SOCKET: 613 case AUE_SOCKETPAIR: 614 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 615 tok = au_to_arg32(1, "domain", 616 ar->ar_arg_sockinfo.so_domain); 617 kau_write(rec, tok); 618 tok = au_to_arg32(2, "type", 619 ar->ar_arg_sockinfo.so_type); 620 kau_write(rec, tok); 621 tok = au_to_arg32(3, "protocol", 622 ar->ar_arg_sockinfo.so_protocol); 623 kau_write(rec, tok); 624 } 625 break; 626 627 case AUE_SETSOCKOPT: 628 case AUE_SHUTDOWN: 629 if (ARG_IS_VALID(kar, ARG_FD)) { 630 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 631 kau_write(rec, tok); 632 } 633 break; 634 635 case AUE_ACCT: 636 if (ARG_IS_VALID(kar, ARG_UPATH1)) { 637 UPATH1_VNODE1_TOKENS; 638 } else { 639 tok = au_to_arg32(1, "accounting off", 0); 640 kau_write(rec, tok); 641 } 642 break; 643 644 case AUE_SETAUID: 645 if (ARG_IS_VALID(kar, ARG_AUID)) { 646 tok = au_to_arg32(2, "setauid", ar->ar_arg_auid); 647 kau_write(rec, tok); 648 } 649 break; 650 651 case AUE_SETAUDIT: 652 if (ARG_IS_VALID(kar, ARG_AUID) && 653 ARG_IS_VALID(kar, ARG_ASID) && 654 ARG_IS_VALID(kar, ARG_AMASK) && 655 ARG_IS_VALID(kar, ARG_TERMID)) { 656 tok = au_to_arg32(1, "setaudit:auid", 657 ar->ar_arg_auid); 658 kau_write(rec, tok); 659 tok = au_to_arg32(1, "setaudit:port", 660 ar->ar_arg_termid.port); 661 kau_write(rec, tok); 662 tok = au_to_arg32(1, "setaudit:machine", 663 ar->ar_arg_termid.machine); 664 kau_write(rec, tok); 665 tok = au_to_arg32(1, "setaudit:as_success", 666 ar->ar_arg_amask.am_success); 667 kau_write(rec, tok); 668 tok = au_to_arg32(1, "setaudit:as_failure", 669 ar->ar_arg_amask.am_failure); 670 kau_write(rec, tok); 671 tok = au_to_arg32(1, "setaudit:asid", 672 ar->ar_arg_asid); 673 kau_write(rec, tok); 674 } 675 break; 676 677 case AUE_SETAUDIT_ADDR: 678 if (ARG_IS_VALID(kar, ARG_AUID) && 679 ARG_IS_VALID(kar, ARG_ASID) && 680 ARG_IS_VALID(kar, ARG_AMASK) && 681 ARG_IS_VALID(kar, ARG_TERMID_ADDR)) { 682 tok = au_to_arg32(1, "setaudit_addr:auid", 683 ar->ar_arg_auid); 684 kau_write(rec, tok); 685 tok = au_to_arg32(1, "setaudit_addr:as_success", 686 ar->ar_arg_amask.am_success); 687 kau_write(rec, tok); 688 tok = au_to_arg32(1, "setaudit_addr:as_failure", 689 ar->ar_arg_amask.am_failure); 690 kau_write(rec, tok); 691 tok = au_to_arg32(1, "setaudit_addr:asid", 692 ar->ar_arg_asid); 693 kau_write(rec, tok); 694 tok = au_to_arg32(1, "setaudit_addr:type", 695 ar->ar_arg_termid_addr.at_type); 696 kau_write(rec, tok); 697 tok = au_to_arg32(1, "setaudit_addr:port", 698 ar->ar_arg_termid_addr.at_port); 699 kau_write(rec, tok); 700 if (ar->ar_arg_termid_addr.at_type == AU_IPv6) 701 tok = au_to_in_addr_ex((struct in6_addr *) 702 &ar->ar_arg_termid_addr.at_addr[0]); 703 if (ar->ar_arg_termid_addr.at_type == AU_IPv4) 704 tok = au_to_in_addr((struct in_addr *) 705 &ar->ar_arg_termid_addr.at_addr[0]); 706 kau_write(rec, tok); 707 } 708 break; 709 710 case AUE_AUDITON: 711 /* 712 * For AUDITON commands without own event, audit the cmd. 713 */ 714 if (ARG_IS_VALID(kar, ARG_CMD)) { 715 tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd); 716 kau_write(rec, tok); 717 } 718 /* FALLTHROUGH */ 719 720 case AUE_AUDITON_GETCAR: 721 case AUE_AUDITON_GETCLASS: 722 case AUE_AUDITON_GETCOND: 723 case AUE_AUDITON_GETCWD: 724 case AUE_AUDITON_GETKMASK: 725 case AUE_AUDITON_GETSTAT: 726 case AUE_AUDITON_GPOLICY: 727 case AUE_AUDITON_GQCTRL: 728 case AUE_AUDITON_SETCLASS: 729 case AUE_AUDITON_SETCOND: 730 case AUE_AUDITON_SETKMASK: 731 case AUE_AUDITON_SETSMASK: 732 case AUE_AUDITON_SETSTAT: 733 case AUE_AUDITON_SETUMASK: 734 case AUE_AUDITON_SPOLICY: 735 case AUE_AUDITON_SQCTRL: 736 if (ARG_IS_VALID(kar, ARG_AUDITON)) 737 audit_sys_auditon(ar, rec); 738 break; 739 740 case AUE_AUDITCTL: 741 UPATH1_VNODE1_TOKENS; 742 break; 743 744 case AUE_EXIT: 745 if (ARG_IS_VALID(kar, ARG_EXIT)) { 746 tok = au_to_exit(ar->ar_arg_exitretval, 747 ar->ar_arg_exitstatus); 748 kau_write(rec, tok); 749 } 750 break; 751 752 case AUE_ADJTIME: 753 case AUE_CLOCK_SETTIME: 754 case AUE_AUDIT: 755 case AUE_DUP2: 756 case AUE_GETAUDIT: 757 case AUE_GETAUDIT_ADDR: 758 case AUE_GETAUID: 759 case AUE_GETCWD: 760 case AUE_GETFSSTAT: 761 case AUE_GETRESUID: 762 case AUE_GETRESGID: 763 case AUE_KQUEUE: 764 case AUE_MODLOAD: 765 case AUE_MODUNLOAD: 766 case AUE_MSGSYS: 767 case AUE_NTP_ADJTIME: 768 case AUE_PIPE: 769 case AUE_POSIX_OPENPT: 770 case AUE_PROFILE: 771 case AUE_RTPRIO: 772 case AUE_SEMSYS: 773 case AUE_SHMSYS: 774 case AUE_SETPGRP: 775 case AUE_SETRLIMIT: 776 case AUE_SETSID: 777 case AUE_SETTIMEOFDAY: 778 case AUE_SYSARCH: 779 780 /* 781 * Header, subject, and return tokens added at end. 782 */ 783 break; 784 785 case AUE_ACL_DELETE_FD: 786 case AUE_ACL_DELETE_FILE: 787 case AUE_ACL_CHECK_FD: 788 case AUE_ACL_CHECK_FILE: 789 case AUE_ACL_CHECK_LINK: 790 case AUE_ACL_DELETE_LINK: 791 case AUE_ACL_GET_FD: 792 case AUE_ACL_GET_FILE: 793 case AUE_ACL_GET_LINK: 794 case AUE_ACL_SET_FD: 795 case AUE_ACL_SET_FILE: 796 case AUE_ACL_SET_LINK: 797 if (ARG_IS_VALID(kar, ARG_VALUE)) { 798 tok = au_to_arg32(1, "type", ar->ar_arg_value); 799 kau_write(rec, tok); 800 } 801 ATFD1_TOKENS(1); 802 UPATH1_VNODE1_TOKENS; 803 break; 804 805 case AUE_CHDIR: 806 case AUE_CHROOT: 807 case AUE_FSTATAT: 808 case AUE_FUTIMESAT: 809 case AUE_GETATTRLIST: 810 case AUE_JAIL: 811 case AUE_LUTIMES: 812 case AUE_NFS_GETFH: 813 case AUE_LSTAT: 814 case AUE_LPATHCONF: 815 case AUE_PATHCONF: 816 case AUE_READLINK: 817 case AUE_READLINKAT: 818 case AUE_REVOKE: 819 case AUE_RMDIR: 820 case AUE_SEARCHFS: 821 case AUE_SETATTRLIST: 822 case AUE_STAT: 823 case AUE_STATFS: 824 case AUE_SWAPON: 825 case AUE_SWAPOFF: 826 case AUE_TRUNCATE: 827 case AUE_UNDELETE: 828 case AUE_UNLINK: 829 case AUE_UNLINKAT: 830 case AUE_UTIMES: 831 ATFD1_TOKENS(1); 832 UPATH1_VNODE1_TOKENS; 833 break; 834 835 case AUE_ACCESS: 836 case AUE_EACCESS: 837 case AUE_FACCESSAT: 838 ATFD1_TOKENS(1); 839 UPATH1_VNODE1_TOKENS; 840 if (ARG_IS_VALID(kar, ARG_VALUE)) { 841 tok = au_to_arg32(2, "mode", ar->ar_arg_value); 842 kau_write(rec, tok); 843 } 844 break; 845 846 case AUE_FHSTATFS: 847 case AUE_FHOPEN: 848 case AUE_FHSTAT: 849 /* XXXRW: Need to audit vnode argument. */ 850 break; 851 852 case AUE_CHFLAGS: 853 case AUE_LCHFLAGS: 854 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 855 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 856 kau_write(rec, tok); 857 } 858 UPATH1_VNODE1_TOKENS; 859 break; 860 861 case AUE_CHMOD: 862 case AUE_LCHMOD: 863 if (ARG_IS_VALID(kar, ARG_MODE)) { 864 tok = au_to_arg32(2, "new file mode", 865 ar->ar_arg_mode); 866 kau_write(rec, tok); 867 } 868 UPATH1_VNODE1_TOKENS; 869 break; 870 871 case AUE_FCHMODAT: 872 ATFD1_TOKENS(1); 873 if (ARG_IS_VALID(kar, ARG_MODE)) { 874 tok = au_to_arg32(3, "new file mode", 875 ar->ar_arg_mode); 876 kau_write(rec, tok); 877 } 878 UPATH1_VNODE1_TOKENS; 879 break; 880 881 case AUE_CHOWN: 882 case AUE_LCHOWN: 883 if (ARG_IS_VALID(kar, ARG_UID)) { 884 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 885 kau_write(rec, tok); 886 } 887 if (ARG_IS_VALID(kar, ARG_GID)) { 888 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 889 kau_write(rec, tok); 890 } 891 UPATH1_VNODE1_TOKENS; 892 break; 893 894 case AUE_FCHOWNAT: 895 ATFD1_TOKENS(1); 896 if (ARG_IS_VALID(kar, ARG_UID)) { 897 tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid); 898 kau_write(rec, tok); 899 } 900 if (ARG_IS_VALID(kar, ARG_GID)) { 901 tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid); 902 kau_write(rec, tok); 903 } 904 UPATH1_VNODE1_TOKENS; 905 break; 906 907 case AUE_EXCHANGEDATA: 908 UPATH1_VNODE1_TOKENS; 909 UPATH2_TOKENS; 910 break; 911 912 case AUE_CLOSE: 913 if (ARG_IS_VALID(kar, ARG_FD)) { 914 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 915 kau_write(rec, tok); 916 } 917 UPATH1_VNODE1_TOKENS; 918 break; 919 920 case AUE_CLOSEFROM: 921 if (ARG_IS_VALID(kar, ARG_FD)) { 922 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 923 kau_write(rec, tok); 924 } 925 break; 926 927 case AUE_CORE: 928 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 929 tok = au_to_arg32(1, "signal", ar->ar_arg_signum); 930 kau_write(rec, tok); 931 } 932 UPATH1_VNODE1_TOKENS; 933 break; 934 935 case AUE_EXTATTRCTL: 936 UPATH1_VNODE1_TOKENS; 937 if (ARG_IS_VALID(kar, ARG_CMD)) { 938 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 939 kau_write(rec, tok); 940 } 941 /* extattrctl(2) filename parameter is in upath2/vnode2 */ 942 UPATH2_TOKENS; 943 VNODE2_TOKENS; 944 EXTATTR_TOKENS(4); 945 break; 946 947 case AUE_EXTATTR_GET_FILE: 948 case AUE_EXTATTR_SET_FILE: 949 case AUE_EXTATTR_LIST_FILE: 950 case AUE_EXTATTR_DELETE_FILE: 951 case AUE_EXTATTR_GET_LINK: 952 case AUE_EXTATTR_SET_LINK: 953 case AUE_EXTATTR_LIST_LINK: 954 case AUE_EXTATTR_DELETE_LINK: 955 UPATH1_VNODE1_TOKENS; 956 EXTATTR_TOKENS(2); 957 break; 958 959 case AUE_EXTATTR_GET_FD: 960 case AUE_EXTATTR_SET_FD: 961 case AUE_EXTATTR_LIST_FD: 962 case AUE_EXTATTR_DELETE_FD: 963 if (ARG_IS_VALID(kar, ARG_FD)) { 964 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 965 kau_write(rec, tok); 966 } 967 EXTATTR_TOKENS(2); 968 break; 969 970 case AUE_FEXECVE: 971 if (ARG_IS_VALID(kar, ARG_FD)) { 972 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 973 kau_write(rec, tok); 974 } 975 /* FALLTHROUGH */ 976 977 case AUE_EXECVE: 978 case AUE_MAC_EXECVE: 979 if (ARG_IS_VALID(kar, ARG_ARGV)) { 980 tok = au_to_exec_args(ar->ar_arg_argv, 981 ar->ar_arg_argc); 982 kau_write(rec, tok); 983 } 984 if (ARG_IS_VALID(kar, ARG_ENVV)) { 985 tok = au_to_exec_env(ar->ar_arg_envv, 986 ar->ar_arg_envc); 987 kau_write(rec, tok); 988 } 989 UPATH1_VNODE1_TOKENS; 990 break; 991 992 case AUE_FCHMOD: 993 if (ARG_IS_VALID(kar, ARG_MODE)) { 994 tok = au_to_arg32(2, "new file mode", 995 ar->ar_arg_mode); 996 kau_write(rec, tok); 997 } 998 FD_VNODE1_TOKENS; 999 break; 1000 1001 /* 1002 * XXXRW: Some of these need to handle non-vnode cases as well. 1003 */ 1004 case AUE_FCHDIR: 1005 case AUE_FPATHCONF: 1006 case AUE_FSTAT: 1007 case AUE_FSTATFS: 1008 case AUE_FSYNC: 1009 case AUE_FTRUNCATE: 1010 case AUE_FUTIMES: 1011 case AUE_GETDIRENTRIES: 1012 case AUE_GETDIRENTRIESATTR: 1013 case AUE_LSEEK: 1014 case AUE_POLL: 1015 case AUE_POSIX_FALLOCATE: 1016 case AUE_PREAD: 1017 case AUE_PWRITE: 1018 case AUE_READ: 1019 case AUE_READV: 1020 case AUE_WRITE: 1021 case AUE_WRITEV: 1022 FD_VNODE1_TOKENS; 1023 break; 1024 1025 case AUE_FCHOWN: 1026 if (ARG_IS_VALID(kar, ARG_UID)) { 1027 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 1028 kau_write(rec, tok); 1029 } 1030 if (ARG_IS_VALID(kar, ARG_GID)) { 1031 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 1032 kau_write(rec, tok); 1033 } 1034 FD_VNODE1_TOKENS; 1035 break; 1036 1037 case AUE_FCNTL: 1038 if (ARG_IS_VALID(kar, ARG_CMD)) { 1039 tok = au_to_arg32(2, "cmd", 1040 au_fcntl_cmd_to_bsm(ar->ar_arg_cmd)); 1041 kau_write(rec, tok); 1042 } 1043 FD_VNODE1_TOKENS; 1044 break; 1045 1046 case AUE_FCHFLAGS: 1047 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1048 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1049 kau_write(rec, tok); 1050 } 1051 FD_VNODE1_TOKENS; 1052 break; 1053 1054 case AUE_FLOCK: 1055 if (ARG_IS_VALID(kar, ARG_CMD)) { 1056 tok = au_to_arg32(2, "operation", ar->ar_arg_cmd); 1057 kau_write(rec, tok); 1058 } 1059 FD_VNODE1_TOKENS; 1060 break; 1061 1062 case AUE_RFORK: 1063 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1064 tok = au_to_arg32(1, "flags", ar->ar_arg_fflags); 1065 kau_write(rec, tok); 1066 } 1067 /* FALLTHROUGH */ 1068 1069 case AUE_FORK: 1070 case AUE_VFORK: 1071 if (ARG_IS_VALID(kar, ARG_PID)) { 1072 tok = au_to_arg32(0, "child PID", ar->ar_arg_pid); 1073 kau_write(rec, tok); 1074 } 1075 break; 1076 1077 case AUE_IOCTL: 1078 if (ARG_IS_VALID(kar, ARG_CMD)) { 1079 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 1080 kau_write(rec, tok); 1081 } 1082 if (ARG_IS_VALID(kar, ARG_VNODE1)) 1083 FD_VNODE1_TOKENS; 1084 else { 1085 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 1086 tok = kau_to_socket(&ar->ar_arg_sockinfo); 1087 kau_write(rec, tok); 1088 } else { 1089 if (ARG_IS_VALID(kar, ARG_FD)) { 1090 tok = au_to_arg32(1, "fd", 1091 ar->ar_arg_fd); 1092 kau_write(rec, tok); 1093 } 1094 } 1095 } 1096 break; 1097 1098 case AUE_KILL: 1099 case AUE_KILLPG: 1100 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 1101 tok = au_to_arg32(2, "signal", ar->ar_arg_signum); 1102 kau_write(rec, tok); 1103 } 1104 PROCESS_PID_TOKENS(1); 1105 break; 1106 1107 case AUE_KTRACE: 1108 if (ARG_IS_VALID(kar, ARG_CMD)) { 1109 tok = au_to_arg32(2, "ops", ar->ar_arg_cmd); 1110 kau_write(rec, tok); 1111 } 1112 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1113 tok = au_to_arg32(3, "trpoints", ar->ar_arg_value); 1114 kau_write(rec, tok); 1115 } 1116 PROCESS_PID_TOKENS(4); 1117 UPATH1_VNODE1_TOKENS; 1118 break; 1119 1120 case AUE_LINK: 1121 case AUE_LINKAT: 1122 case AUE_RENAME: 1123 case AUE_RENAMEAT: 1124 ATFD1_TOKENS(1); 1125 UPATH1_VNODE1_TOKENS; 1126 ATFD2_TOKENS(3); 1127 UPATH2_TOKENS; 1128 break; 1129 1130 case AUE_LOADSHFILE: 1131 ADDR_TOKEN(4, "base addr"); 1132 UPATH1_VNODE1_TOKENS; 1133 break; 1134 1135 case AUE_MKDIR: 1136 case AUE_MKDIRAT: 1137 case AUE_MKFIFO: 1138 case AUE_MKFIFOAT: 1139 ATFD1_TOKENS(1); 1140 if (ARG_IS_VALID(kar, ARG_MODE)) { 1141 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1142 kau_write(rec, tok); 1143 } 1144 UPATH1_VNODE1_TOKENS; 1145 break; 1146 1147 case AUE_MKNOD: 1148 case AUE_MKNODAT: 1149 ATFD1_TOKENS(1); 1150 if (ARG_IS_VALID(kar, ARG_MODE)) { 1151 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1152 kau_write(rec, tok); 1153 } 1154 if (ARG_IS_VALID(kar, ARG_DEV)) { 1155 tok = au_to_arg32(3, "dev", ar->ar_arg_dev); 1156 kau_write(rec, tok); 1157 } 1158 UPATH1_VNODE1_TOKENS; 1159 break; 1160 1161 case AUE_MMAP: 1162 case AUE_MUNMAP: 1163 case AUE_MPROTECT: 1164 case AUE_MLOCK: 1165 case AUE_MUNLOCK: 1166 case AUE_MINHERIT: 1167 ADDR_TOKEN(1, "addr"); 1168 if (ARG_IS_VALID(kar, ARG_LEN)) { 1169 tok = au_to_arg32(2, "len", ar->ar_arg_len); 1170 kau_write(rec, tok); 1171 } 1172 if (ar->ar_event == AUE_MMAP) 1173 FD_VNODE1_TOKENS; 1174 if (ar->ar_event == AUE_MPROTECT) { 1175 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1176 tok = au_to_arg32(3, "protection", 1177 ar->ar_arg_value); 1178 kau_write(rec, tok); 1179 } 1180 } 1181 if (ar->ar_event == AUE_MINHERIT) { 1182 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1183 tok = au_to_arg32(3, "inherit", 1184 ar->ar_arg_value); 1185 kau_write(rec, tok); 1186 } 1187 } 1188 break; 1189 1190 case AUE_MOUNT: 1191 case AUE_NMOUNT: 1192 /* XXX Need to handle NFS mounts */ 1193 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1194 tok = au_to_arg32(3, "flags", ar->ar_arg_fflags); 1195 kau_write(rec, tok); 1196 } 1197 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1198 tok = au_to_text(ar->ar_arg_text); 1199 kau_write(rec, tok); 1200 } 1201 /* FALLTHROUGH */ 1202 1203 case AUE_NFS_SVC: 1204 if (ARG_IS_VALID(kar, ARG_CMD)) { 1205 tok = au_to_arg32(1, "flags", ar->ar_arg_cmd); 1206 kau_write(rec, tok); 1207 } 1208 break; 1209 1210 case AUE_UMOUNT: 1211 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1212 tok = au_to_arg32(2, "flags", ar->ar_arg_value); 1213 kau_write(rec, tok); 1214 } 1215 UPATH1_VNODE1_TOKENS; 1216 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1217 tok = au_to_text(ar->ar_arg_text); 1218 kau_write(rec, tok); 1219 } 1220 break; 1221 1222 case AUE_MSGCTL: 1223 ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd); 1224 /* Fall through */ 1225 1226 case AUE_MSGRCV: 1227 case AUE_MSGSND: 1228 tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id); 1229 kau_write(rec, tok); 1230 if (ar->ar_errno != EINVAL) { 1231 tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id); 1232 kau_write(rec, tok); 1233 } 1234 break; 1235 1236 case AUE_MSGGET: 1237 if (ar->ar_errno == 0) { 1238 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1239 tok = au_to_ipc(AT_IPC_MSG, 1240 ar->ar_arg_svipc_id); 1241 kau_write(rec, tok); 1242 } 1243 } 1244 break; 1245 1246 case AUE_RESETSHFILE: 1247 ADDR_TOKEN(1, "base addr"); 1248 break; 1249 1250 case AUE_OPEN_RC: 1251 case AUE_OPEN_RTC: 1252 case AUE_OPEN_RWC: 1253 case AUE_OPEN_RWTC: 1254 case AUE_OPEN_WC: 1255 case AUE_OPEN_WTC: 1256 case AUE_CREAT: 1257 if (ARG_IS_VALID(kar, ARG_MODE)) { 1258 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1259 kau_write(rec, tok); 1260 } 1261 /* FALLTHROUGH */ 1262 1263 case AUE_OPEN_R: 1264 case AUE_OPEN_RT: 1265 case AUE_OPEN_RW: 1266 case AUE_OPEN_RWT: 1267 case AUE_OPEN_W: 1268 case AUE_OPEN_WT: 1269 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1270 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1271 kau_write(rec, tok); 1272 } 1273 UPATH1_VNODE1_TOKENS; 1274 break; 1275 1276 case AUE_OPENAT_RC: 1277 case AUE_OPENAT_RTC: 1278 case AUE_OPENAT_RWC: 1279 case AUE_OPENAT_RWTC: 1280 case AUE_OPENAT_WC: 1281 case AUE_OPENAT_WTC: 1282 if (ARG_IS_VALID(kar, ARG_MODE)) { 1283 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1284 kau_write(rec, tok); 1285 } 1286 /* FALLTHROUGH */ 1287 1288 case AUE_OPENAT_R: 1289 case AUE_OPENAT_RT: 1290 case AUE_OPENAT_RW: 1291 case AUE_OPENAT_RWT: 1292 case AUE_OPENAT_W: 1293 case AUE_OPENAT_WT: 1294 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1295 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1296 kau_write(rec, tok); 1297 } 1298 ATFD1_TOKENS(1); 1299 UPATH1_VNODE1_TOKENS; 1300 break; 1301 1302 case AUE_PROCCTL: 1303 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1304 tok = au_to_arg32(1, "idtype", ar->ar_arg_value); 1305 kau_write(rec, tok); 1306 } 1307 if (ARG_IS_VALID(kar, ARG_CMD)) { 1308 tok = au_to_arg32(2, "com", ar->ar_arg_cmd); 1309 kau_write(rec, tok); 1310 } 1311 PROCESS_PID_TOKENS(3); 1312 break; 1313 1314 case AUE_PTRACE: 1315 if (ARG_IS_VALID(kar, ARG_CMD)) { 1316 tok = au_to_arg32(1, "request", ar->ar_arg_cmd); 1317 kau_write(rec, tok); 1318 } 1319 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1320 tok = au_to_arg32(4, "data", ar->ar_arg_value); 1321 kau_write(rec, tok); 1322 } 1323 PROCESS_PID_TOKENS(2); 1324 break; 1325 1326 case AUE_QUOTACTL: 1327 if (ARG_IS_VALID(kar, ARG_CMD)) { 1328 tok = au_to_arg32(2, "command", ar->ar_arg_cmd); 1329 kau_write(rec, tok); 1330 } 1331 if (ARG_IS_VALID(kar, ARG_UID)) { 1332 tok = au_to_arg32(3, "uid", ar->ar_arg_uid); 1333 kau_write(rec, tok); 1334 } 1335 if (ARG_IS_VALID(kar, ARG_GID)) { 1336 tok = au_to_arg32(3, "gid", ar->ar_arg_gid); 1337 kau_write(rec, tok); 1338 } 1339 UPATH1_VNODE1_TOKENS; 1340 break; 1341 1342 case AUE_REBOOT: 1343 if (ARG_IS_VALID(kar, ARG_CMD)) { 1344 tok = au_to_arg32(1, "howto", ar->ar_arg_cmd); 1345 kau_write(rec, tok); 1346 } 1347 break; 1348 1349 case AUE_SEMCTL: 1350 ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd); 1351 /* Fall through */ 1352 1353 case AUE_SEMOP: 1354 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1355 tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id); 1356 kau_write(rec, tok); 1357 if (ar->ar_errno != EINVAL) { 1358 tok = au_to_ipc(AT_IPC_SEM, 1359 ar->ar_arg_svipc_id); 1360 kau_write(rec, tok); 1361 } 1362 } 1363 break; 1364 1365 case AUE_SEMGET: 1366 if (ar->ar_errno == 0) { 1367 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1368 tok = au_to_ipc(AT_IPC_SEM, 1369 ar->ar_arg_svipc_id); 1370 kau_write(rec, tok); 1371 } 1372 } 1373 break; 1374 1375 case AUE_SETEGID: 1376 if (ARG_IS_VALID(kar, ARG_EGID)) { 1377 tok = au_to_arg32(1, "egid", ar->ar_arg_egid); 1378 kau_write(rec, tok); 1379 } 1380 break; 1381 1382 case AUE_SETEUID: 1383 if (ARG_IS_VALID(kar, ARG_EUID)) { 1384 tok = au_to_arg32(1, "euid", ar->ar_arg_euid); 1385 kau_write(rec, tok); 1386 } 1387 break; 1388 1389 case AUE_SETREGID: 1390 if (ARG_IS_VALID(kar, ARG_RGID)) { 1391 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1392 kau_write(rec, tok); 1393 } 1394 if (ARG_IS_VALID(kar, ARG_EGID)) { 1395 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1396 kau_write(rec, tok); 1397 } 1398 break; 1399 1400 case AUE_SETREUID: 1401 if (ARG_IS_VALID(kar, ARG_RUID)) { 1402 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1403 kau_write(rec, tok); 1404 } 1405 if (ARG_IS_VALID(kar, ARG_EUID)) { 1406 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1407 kau_write(rec, tok); 1408 } 1409 break; 1410 1411 case AUE_SETRESGID: 1412 if (ARG_IS_VALID(kar, ARG_RGID)) { 1413 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1414 kau_write(rec, tok); 1415 } 1416 if (ARG_IS_VALID(kar, ARG_EGID)) { 1417 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1418 kau_write(rec, tok); 1419 } 1420 if (ARG_IS_VALID(kar, ARG_SGID)) { 1421 tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid); 1422 kau_write(rec, tok); 1423 } 1424 break; 1425 1426 case AUE_SETRESUID: 1427 if (ARG_IS_VALID(kar, ARG_RUID)) { 1428 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1429 kau_write(rec, tok); 1430 } 1431 if (ARG_IS_VALID(kar, ARG_EUID)) { 1432 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1433 kau_write(rec, tok); 1434 } 1435 if (ARG_IS_VALID(kar, ARG_SUID)) { 1436 tok = au_to_arg32(3, "suid", ar->ar_arg_suid); 1437 kau_write(rec, tok); 1438 } 1439 break; 1440 1441 case AUE_SETGID: 1442 if (ARG_IS_VALID(kar, ARG_GID)) { 1443 tok = au_to_arg32(1, "gid", ar->ar_arg_gid); 1444 kau_write(rec, tok); 1445 } 1446 break; 1447 1448 case AUE_SETUID: 1449 if (ARG_IS_VALID(kar, ARG_UID)) { 1450 tok = au_to_arg32(1, "uid", ar->ar_arg_uid); 1451 kau_write(rec, tok); 1452 } 1453 break; 1454 1455 case AUE_SETGROUPS: 1456 if (ARG_IS_VALID(kar, ARG_GROUPSET)) { 1457 for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++) 1458 { 1459 tok = au_to_arg32(1, "setgroups", 1460 ar->ar_arg_groups.gidset[ctr]); 1461 kau_write(rec, tok); 1462 } 1463 } 1464 break; 1465 1466 case AUE_SETLOGIN: 1467 if (ARG_IS_VALID(kar, ARG_LOGIN)) { 1468 tok = au_to_text(ar->ar_arg_login); 1469 kau_write(rec, tok); 1470 } 1471 break; 1472 1473 case AUE_SETPRIORITY: 1474 if (ARG_IS_VALID(kar, ARG_CMD)) { 1475 tok = au_to_arg32(1, "which", ar->ar_arg_cmd); 1476 kau_write(rec, tok); 1477 } 1478 if (ARG_IS_VALID(kar, ARG_UID)) { 1479 tok = au_to_arg32(2, "who", ar->ar_arg_uid); 1480 kau_write(rec, tok); 1481 } 1482 PROCESS_PID_TOKENS(2); 1483 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1484 tok = au_to_arg32(3, "priority", ar->ar_arg_value); 1485 kau_write(rec, tok); 1486 } 1487 break; 1488 1489 case AUE_SETPRIVEXEC: 1490 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1491 tok = au_to_arg32(1, "flag", ar->ar_arg_value); 1492 kau_write(rec, tok); 1493 } 1494 break; 1495 1496 /* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */ 1497 case AUE_SHMAT: 1498 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1499 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1500 kau_write(rec, tok); 1501 /* XXXAUDIT: Does having the ipc token make sense? */ 1502 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1503 kau_write(rec, tok); 1504 } 1505 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1506 tok = au_to_arg32(2, "shmaddr", 1507 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1508 kau_write(rec, tok); 1509 } 1510 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1511 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1512 kau_write(rec, tok); 1513 } 1514 break; 1515 1516 case AUE_SHMCTL: 1517 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1518 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1519 kau_write(rec, tok); 1520 /* XXXAUDIT: Does having the ipc token make sense? */ 1521 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1522 kau_write(rec, tok); 1523 } 1524 switch (ar->ar_arg_svipc_cmd) { 1525 case IPC_STAT: 1526 ar->ar_event = AUE_SHMCTL_STAT; 1527 break; 1528 case IPC_RMID: 1529 ar->ar_event = AUE_SHMCTL_RMID; 1530 break; 1531 case IPC_SET: 1532 ar->ar_event = AUE_SHMCTL_SET; 1533 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1534 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1535 kau_write(rec, tok); 1536 } 1537 break; 1538 default: 1539 break; /* We will audit a bad command */ 1540 } 1541 break; 1542 1543 case AUE_SHMDT: 1544 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1545 tok = au_to_arg32(1, "shmaddr", 1546 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1547 kau_write(rec, tok); 1548 } 1549 break; 1550 1551 case AUE_SHMGET: 1552 /* This is unusual; the return value is in an argument token */ 1553 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1554 tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id); 1555 kau_write(rec, tok); 1556 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1557 kau_write(rec, tok); 1558 } 1559 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1560 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1561 kau_write(rec, tok); 1562 } 1563 break; 1564 1565 /* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE 1566 * and AUE_SEMUNLINK are Posix IPC */ 1567 case AUE_SHMOPEN: 1568 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1569 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1570 kau_write(rec, tok); 1571 } 1572 if (ARG_IS_VALID(kar, ARG_MODE)) { 1573 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1574 kau_write(rec, tok); 1575 } 1576 /* FALLTHROUGH */ 1577 1578 case AUE_SHMUNLINK: 1579 UPATH1_TOKENS; 1580 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1581 struct ipc_perm perm; 1582 1583 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1584 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1585 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1586 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1587 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1588 perm.seq = 0; 1589 perm.key = 0; 1590 tok = au_to_ipc_perm(&perm); 1591 kau_write(rec, tok); 1592 } 1593 break; 1594 1595 case AUE_SEMOPEN: 1596 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1597 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1598 kau_write(rec, tok); 1599 } 1600 if (ARG_IS_VALID(kar, ARG_MODE)) { 1601 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1602 kau_write(rec, tok); 1603 } 1604 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1605 tok = au_to_arg32(4, "value", ar->ar_arg_value); 1606 kau_write(rec, tok); 1607 } 1608 /* FALLTHROUGH */ 1609 1610 case AUE_SEMUNLINK: 1611 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1612 tok = au_to_text(ar->ar_arg_text); 1613 kau_write(rec, tok); 1614 } 1615 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1616 struct ipc_perm perm; 1617 1618 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1619 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1620 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1621 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1622 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1623 perm.seq = 0; 1624 perm.key = 0; 1625 tok = au_to_ipc_perm(&perm); 1626 kau_write(rec, tok); 1627 } 1628 break; 1629 1630 case AUE_SEMCLOSE: 1631 if (ARG_IS_VALID(kar, ARG_FD)) { 1632 tok = au_to_arg32(1, "sem", ar->ar_arg_fd); 1633 kau_write(rec, tok); 1634 } 1635 break; 1636 1637 case AUE_SYMLINK: 1638 case AUE_SYMLINKAT: 1639 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1640 tok = au_to_text(ar->ar_arg_text); 1641 kau_write(rec, tok); 1642 } 1643 ATFD1_TOKENS(1); 1644 UPATH1_VNODE1_TOKENS; 1645 break; 1646 1647 case AUE_SYSCTL: 1648 case AUE_SYSCTL_NONADMIN: 1649 if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) { 1650 for (ctr = 0; ctr < ar->ar_arg_len; ctr++) { 1651 tok = au_to_arg32(1, "name", 1652 ar->ar_arg_ctlname[ctr]); 1653 kau_write(rec, tok); 1654 } 1655 } 1656 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1657 tok = au_to_arg32(5, "newval", ar->ar_arg_value); 1658 kau_write(rec, tok); 1659 } 1660 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1661 tok = au_to_text(ar->ar_arg_text); 1662 kau_write(rec, tok); 1663 } 1664 break; 1665 1666 case AUE_UMASK: 1667 if (ARG_IS_VALID(kar, ARG_MASK)) { 1668 tok = au_to_arg32(1, "new mask", ar->ar_arg_mask); 1669 kau_write(rec, tok); 1670 } 1671 tok = au_to_arg32(0, "prev mask", ar->ar_retval); 1672 kau_write(rec, tok); 1673 break; 1674 1675 case AUE_WAIT4: 1676 case AUE_WAIT6: 1677 PROCESS_PID_TOKENS(1); 1678 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1679 tok = au_to_arg32(3, "options", ar->ar_arg_value); 1680 kau_write(rec, tok); 1681 } 1682 break; 1683 1684 case AUE_CAP_RIGHTS_LIMIT: 1685 /* 1686 * XXXRW/XXXJA: Would be nice to audit socket/etc information. 1687 */ 1688 FD_VNODE1_TOKENS; 1689 if (ARG_IS_VALID(kar, ARG_RIGHTS)) { 1690 tok = au_to_rights(&ar->ar_arg_rights); 1691 kau_write(rec, tok); 1692 } 1693 break; 1694 1695 case AUE_CAP_FCNTLS_GET: 1696 case AUE_CAP_IOCTLS_GET: 1697 case AUE_CAP_IOCTLS_LIMIT: 1698 case AUE_CAP_RIGHTS_GET: 1699 if (ARG_IS_VALID(kar, ARG_FD)) { 1700 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 1701 kau_write(rec, tok); 1702 } 1703 break; 1704 1705 case AUE_CAP_FCNTLS_LIMIT: 1706 FD_VNODE1_TOKENS; 1707 if (ARG_IS_VALID(kar, ARG_FCNTL_RIGHTS)) { 1708 tok = au_to_arg32(2, "fcntlrights", 1709 ar->ar_arg_fcntl_rights); 1710 kau_write(rec, tok); 1711 } 1712 break; 1713 1714 case AUE_CAP_ENTER: 1715 case AUE_CAP_GETMODE: 1716 break; 1717 1718 case AUE_NULL: 1719 default: 1720 printf("BSM conversion requested for unknown event %d\n", 1721 ar->ar_event); 1722 1723 /* 1724 * Write the subject token so it is properly freed here. 1725 */ 1726 if (jail_tok != NULL) 1727 kau_write(rec, jail_tok); 1728 kau_write(rec, subj_tok); 1729 kau_free(rec); 1730 return (BSM_NOAUDIT); 1731 } 1732 1733 if (jail_tok != NULL) 1734 kau_write(rec, jail_tok); 1735 kau_write(rec, subj_tok); 1736 tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval); 1737 kau_write(rec, tok); /* Every record gets a return token */ 1738 1739 kau_close(rec, &ar->ar_endtime, ar->ar_event); 1740 1741 *pau = rec; 1742 return (BSM_SUCCESS); 1743 } 1744 1745 /* 1746 * Verify that a record is a valid BSM record. This verification is simple 1747 * now, but may be expanded on sometime in the future. Return 1 if the 1748 * record is good, 0 otherwise. 1749 */ 1750 int 1751 bsm_rec_verify(void *rec) 1752 { 1753 char c = *(char *)rec; 1754 1755 /* 1756 * Check the token ID of the first token; it has to be a header 1757 * token. 1758 * 1759 * XXXAUDIT There needs to be a token structure to map a token. 1760 * XXXAUDIT 'Shouldn't be simply looking at the first char. 1761 */ 1762 if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) && 1763 (c != AUT_HEADER64) && (c != AUT_HEADER64_EX)) 1764 return (0); 1765 return (1); 1766 } 1767