1 /* 2 * Copyright (c) 1999-2009 Apple Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 14 * its contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/vnode.h> 35 #include <sys/ipc.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mutex.h> 39 #include <sys/socket.h> 40 #include <sys/extattr.h> 41 #include <sys/fcntl.h> 42 #include <sys/user.h> 43 #include <sys/systm.h> 44 45 #include <bsm/audit.h> 46 #include <bsm/audit_internal.h> 47 #include <bsm/audit_record.h> 48 #include <bsm/audit_kevents.h> 49 50 #include <security/audit/audit.h> 51 #include <security/audit/audit_private.h> 52 53 #include <netinet/in_systm.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 57 MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data"); 58 59 static void audit_sys_auditon(struct audit_record *ar, 60 struct au_record *rec); 61 62 /* 63 * Initialize the BSM auditing subsystem. 64 */ 65 void 66 kau_init(void) 67 { 68 69 au_evclassmap_init(); 70 } 71 72 /* 73 * This call reserves memory for the audit record. Memory must be guaranteed 74 * before any auditable event can be generated. The au_record structure 75 * maintains a reference to the memory allocated above and also the list of 76 * tokens associated with this record. 77 */ 78 static struct au_record * 79 kau_open(void) 80 { 81 struct au_record *rec; 82 83 rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK); 84 rec->data = NULL; 85 TAILQ_INIT(&rec->token_q); 86 rec->len = 0; 87 rec->used = 1; 88 89 return (rec); 90 } 91 92 /* 93 * Store the token with the record descriptor. 94 */ 95 static void 96 kau_write(struct au_record *rec, struct au_token *tok) 97 { 98 99 KASSERT(tok != NULL, ("kau_write: tok == NULL")); 100 101 TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens); 102 rec->len += tok->len; 103 } 104 105 /* 106 * Close out the audit record by adding the header token, identifying any 107 * missing tokens. Write out the tokens to the record memory. 108 */ 109 static void 110 kau_close(struct au_record *rec, struct timespec *ctime, short event) 111 { 112 u_char *dptr; 113 size_t tot_rec_size; 114 token_t *cur, *hdr, *trail; 115 struct timeval tm; 116 size_t hdrsize; 117 struct auditinfo_addr ak; 118 struct in6_addr *ap; 119 120 audit_get_kinfo(&ak); 121 hdrsize = 0; 122 switch (ak.ai_termid.at_type) { 123 case AU_IPv4: 124 hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ? 125 AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak); 126 break; 127 case AU_IPv6: 128 ap = (struct in6_addr *)&ak.ai_termid.at_addr[0]; 129 hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE : 130 AUDIT_HEADER_EX_SIZE(&ak); 131 break; 132 default: 133 panic("kau_close: invalid address family"); 134 } 135 tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE; 136 rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO); 137 138 tm.tv_usec = ctime->tv_nsec / 1000; 139 tm.tv_sec = ctime->tv_sec; 140 if (hdrsize != AUDIT_HEADER_SIZE) 141 hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak); 142 else 143 hdr = au_to_header32_tm(tot_rec_size, event, 0, tm); 144 TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens); 145 146 trail = au_to_trailer(tot_rec_size); 147 TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens); 148 149 rec->len = tot_rec_size; 150 dptr = rec->data; 151 TAILQ_FOREACH(cur, &rec->token_q, tokens) { 152 memcpy(dptr, cur->t_data, cur->len); 153 dptr += cur->len; 154 } 155 } 156 157 /* 158 * Free a BSM audit record by releasing all the tokens and clearing the audit 159 * record information. 160 */ 161 void 162 kau_free(struct au_record *rec) 163 { 164 struct au_token *tok; 165 166 /* Free the token list. */ 167 while ((tok = TAILQ_FIRST(&rec->token_q))) { 168 TAILQ_REMOVE(&rec->token_q, tok, tokens); 169 free(tok->t_data, M_AUDITBSM); 170 free(tok, M_AUDITBSM); 171 } 172 173 rec->used = 0; 174 rec->len = 0; 175 free(rec->data, M_AUDITBSM); 176 free(rec, M_AUDITBSM); 177 } 178 179 /* 180 * XXX: May want turn some (or all) of these macros into functions in order 181 * to reduce the generated code size. 182 * 183 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the 184 * caller are OK with this. 185 */ 186 #define ATFD1_TOKENS(argnum) do { \ 187 if (ARG_IS_VALID(kar, ARG_ATFD1)) { \ 188 tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1); \ 189 kau_write(rec, tok); \ 190 } \ 191 } while (0) 192 193 #define ATFD2_TOKENS(argnum) do { \ 194 if (ARG_IS_VALID(kar, ARG_ATFD2)) { \ 195 tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2); \ 196 kau_write(rec, tok); \ 197 } \ 198 } while (0) 199 200 #define UPATH1_TOKENS do { \ 201 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 202 tok = au_to_path(ar->ar_arg_upath1); \ 203 kau_write(rec, tok); \ 204 } \ 205 } while (0) 206 207 #define UPATH2_TOKENS do { \ 208 if (ARG_IS_VALID(kar, ARG_UPATH2)) { \ 209 tok = au_to_path(ar->ar_arg_upath2); \ 210 kau_write(rec, tok); \ 211 } \ 212 } while (0) 213 214 #define VNODE1_TOKENS do { \ 215 if (ARG_IS_VALID(kar, ARG_ATFD)) { \ 216 tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd); \ 217 kau_write(rec, tok); \ 218 } \ 219 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 220 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 221 kau_write(rec, tok); \ 222 } \ 223 } while (0) 224 225 #define UPATH1_VNODE1_TOKENS do { \ 226 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 227 UPATH1_TOKENS; \ 228 } \ 229 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 230 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 231 kau_write(rec, tok); \ 232 } \ 233 } while (0) 234 235 #define VNODE2_TOKENS do { \ 236 if (ARG_IS_VALID(kar, ARG_VNODE2)) { \ 237 tok = au_to_attr32(&ar->ar_arg_vnode2); \ 238 kau_write(rec, tok); \ 239 } \ 240 } while (0) 241 242 #define FD_VNODE1_TOKENS do { \ 243 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 244 if (ARG_IS_VALID(kar, ARG_FD)) { \ 245 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \ 246 kau_write(rec, tok); \ 247 } \ 248 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 249 kau_write(rec, tok); \ 250 } else { \ 251 if (ARG_IS_VALID(kar, ARG_FD)) { \ 252 tok = au_to_arg32(1, "non-file: fd", \ 253 ar->ar_arg_fd); \ 254 kau_write(rec, tok); \ 255 } \ 256 } \ 257 } while (0) 258 259 #define PROCESS_PID_TOKENS(argn) do { \ 260 if ((ar->ar_arg_pid > 0) /* Reference a single process */ \ 261 && (ARG_IS_VALID(kar, ARG_PROCESS))) { \ 262 tok = au_to_process32_ex(ar->ar_arg_auid, \ 263 ar->ar_arg_euid, ar->ar_arg_egid, \ 264 ar->ar_arg_ruid, ar->ar_arg_rgid, \ 265 ar->ar_arg_pid, ar->ar_arg_asid, \ 266 &ar->ar_arg_termid_addr); \ 267 kau_write(rec, tok); \ 268 } else if (ARG_IS_VALID(kar, ARG_PID)) { \ 269 tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \ 270 kau_write(rec, tok); \ 271 } \ 272 } while (0) 273 274 #define EXTATTR_TOKENS(namespace_argnum) do { \ 275 if (ARG_IS_VALID(kar, ARG_VALUE)) { \ 276 switch (ar->ar_arg_value) { \ 277 case EXTATTR_NAMESPACE_USER: \ 278 tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\ 279 break; \ 280 case EXTATTR_NAMESPACE_SYSTEM: \ 281 tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\ 282 break; \ 283 default: \ 284 tok = au_to_arg32((namespace_argnum), \ 285 "attrnamespace", ar->ar_arg_value); \ 286 break; \ 287 } \ 288 kau_write(rec, tok); \ 289 } \ 290 /* attrname is in the text field */ \ 291 if (ARG_IS_VALID(kar, ARG_TEXT)) { \ 292 tok = au_to_text(ar->ar_arg_text); \ 293 kau_write(rec, tok); \ 294 } \ 295 } while (0) 296 297 /* 298 * Not all pointer arguments to system calls are of interest, but in some 299 * cases they reflect delegation of rights, such as mmap(2) followed by 300 * minherit(2) before execve(2), so do the best we can. 301 */ 302 #define ADDR_TOKEN(argnum, argname) do { \ 303 if (ARG_IS_VALID(kar, ARG_ADDR)) { \ 304 if (sizeof(void *) == sizeof(uint32_t)) \ 305 tok = au_to_arg32((argnum), (argname), \ 306 (uint32_t)(uintptr_t)ar->ar_arg_addr); \ 307 else \ 308 tok = au_to_arg64((argnum), (argname), \ 309 (uint64_t)(uintptr_t)ar->ar_arg_addr); \ 310 kau_write(rec, tok); \ 311 } \ 312 } while (0) 313 314 315 /* 316 * Implement auditing for the auditon() system call. The audit tokens that 317 * are generated depend on the command that was sent into the auditon() 318 * system call. 319 */ 320 static void 321 audit_sys_auditon(struct audit_record *ar, struct au_record *rec) 322 { 323 struct au_token *tok; 324 325 tok = au_to_arg32(3, "length", ar->ar_arg_len); 326 kau_write(rec, tok); 327 switch (ar->ar_arg_cmd) { 328 case A_OLDSETPOLICY: 329 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 330 tok = au_to_arg64(2, "policy", 331 ar->ar_arg_auditon.au_policy64); 332 kau_write(rec, tok); 333 break; 334 } 335 /* FALLTHROUGH */ 336 337 case A_SETPOLICY: 338 tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy); 339 kau_write(rec, tok); 340 break; 341 342 case A_SETKMASK: 343 tok = au_to_arg32(2, "setkmask:as_success", 344 ar->ar_arg_auditon.au_mask.am_success); 345 kau_write(rec, tok); 346 tok = au_to_arg32(2, "setkmask:as_failure", 347 ar->ar_arg_auditon.au_mask.am_failure); 348 kau_write(rec, tok); 349 break; 350 351 case A_OLDSETQCTRL: 352 if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) { 353 tok = au_to_arg64(2, "setqctrl:aq_hiwater", 354 ar->ar_arg_auditon.au_qctrl64.aq64_hiwater); 355 kau_write(rec, tok); 356 tok = au_to_arg64(2, "setqctrl:aq_lowater", 357 ar->ar_arg_auditon.au_qctrl64.aq64_lowater); 358 kau_write(rec, tok); 359 tok = au_to_arg64(2, "setqctrl:aq_bufsz", 360 ar->ar_arg_auditon.au_qctrl64.aq64_bufsz); 361 kau_write(rec, tok); 362 tok = au_to_arg64(2, "setqctrl:aq_delay", 363 ar->ar_arg_auditon.au_qctrl64.aq64_delay); 364 kau_write(rec, tok); 365 tok = au_to_arg64(2, "setqctrl:aq_minfree", 366 ar->ar_arg_auditon.au_qctrl64.aq64_minfree); 367 kau_write(rec, tok); 368 break; 369 } 370 /* FALLTHROUGH */ 371 372 case A_SETQCTRL: 373 tok = au_to_arg32(2, "setqctrl:aq_hiwater", 374 ar->ar_arg_auditon.au_qctrl.aq_hiwater); 375 kau_write(rec, tok); 376 tok = au_to_arg32(2, "setqctrl:aq_lowater", 377 ar->ar_arg_auditon.au_qctrl.aq_lowater); 378 kau_write(rec, tok); 379 tok = au_to_arg32(2, "setqctrl:aq_bufsz", 380 ar->ar_arg_auditon.au_qctrl.aq_bufsz); 381 kau_write(rec, tok); 382 tok = au_to_arg32(2, "setqctrl:aq_delay", 383 ar->ar_arg_auditon.au_qctrl.aq_delay); 384 kau_write(rec, tok); 385 tok = au_to_arg32(2, "setqctrl:aq_minfree", 386 ar->ar_arg_auditon.au_qctrl.aq_minfree); 387 kau_write(rec, tok); 388 break; 389 390 case A_SETUMASK: 391 tok = au_to_arg32(2, "setumask:as_success", 392 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 393 kau_write(rec, tok); 394 tok = au_to_arg32(2, "setumask:as_failure", 395 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 396 kau_write(rec, tok); 397 break; 398 399 case A_SETSMASK: 400 tok = au_to_arg32(2, "setsmask:as_success", 401 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 402 kau_write(rec, tok); 403 tok = au_to_arg32(2, "setsmask:as_failure", 404 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 405 kau_write(rec, tok); 406 break; 407 408 case A_OLDSETCOND: 409 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 410 tok = au_to_arg64(2, "setcond", 411 ar->ar_arg_auditon.au_cond64); 412 kau_write(rec, tok); 413 break; 414 } 415 /* FALLTHROUGH */ 416 417 case A_SETCOND: 418 tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond); 419 kau_write(rec, tok); 420 break; 421 422 case A_SETCLASS: 423 kau_write(rec, tok); 424 tok = au_to_arg32(2, "setclass:ec_event", 425 ar->ar_arg_auditon.au_evclass.ec_number); 426 kau_write(rec, tok); 427 tok = au_to_arg32(2, "setclass:ec_class", 428 ar->ar_arg_auditon.au_evclass.ec_class); 429 kau_write(rec, tok); 430 break; 431 432 case A_SETPMASK: 433 tok = au_to_arg32(2, "setpmask:as_success", 434 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success); 435 kau_write(rec, tok); 436 tok = au_to_arg32(2, "setpmask:as_failure", 437 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure); 438 kau_write(rec, tok); 439 break; 440 441 case A_SETFSIZE: 442 tok = au_to_arg32(2, "setfsize:filesize", 443 ar->ar_arg_auditon.au_fstat.af_filesz); 444 kau_write(rec, tok); 445 break; 446 447 default: 448 break; 449 } 450 } 451 452 /* 453 * Convert an internal kernel audit record to a BSM record and return a 454 * success/failure indicator. The BSM record is passed as an out parameter to 455 * this function. 456 * 457 * Return conditions: 458 * BSM_SUCCESS: The BSM record is valid 459 * BSM_FAILURE: Failure; the BSM record is NULL. 460 * BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL. 461 */ 462 int 463 kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau) 464 { 465 struct au_token *tok, *subj_tok; 466 struct au_record *rec; 467 au_tid_t tid; 468 struct audit_record *ar; 469 int ctr; 470 471 KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL")); 472 473 *pau = NULL; 474 ar = &kar->k_ar; 475 rec = kau_open(); 476 477 /* 478 * Create the subject token. 479 */ 480 switch (ar->ar_subj_term_addr.at_type) { 481 case AU_IPv4: 482 tid.port = ar->ar_subj_term_addr.at_port; 483 tid.machine = ar->ar_subj_term_addr.at_addr[0]; 484 subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */ 485 ar->ar_subj_cred.cr_uid, /* eff uid */ 486 ar->ar_subj_egid, /* eff group id */ 487 ar->ar_subj_ruid, /* real uid */ 488 ar->ar_subj_rgid, /* real group id */ 489 ar->ar_subj_pid, /* process id */ 490 ar->ar_subj_asid, /* session ID */ 491 &tid); 492 break; 493 case AU_IPv6: 494 subj_tok = au_to_subject32_ex(ar->ar_subj_auid, 495 ar->ar_subj_cred.cr_uid, 496 ar->ar_subj_egid, 497 ar->ar_subj_ruid, 498 ar->ar_subj_rgid, 499 ar->ar_subj_pid, 500 ar->ar_subj_asid, 501 &ar->ar_subj_term_addr); 502 break; 503 default: 504 bzero(&tid, sizeof(tid)); 505 subj_tok = au_to_subject32(ar->ar_subj_auid, 506 ar->ar_subj_cred.cr_uid, 507 ar->ar_subj_egid, 508 ar->ar_subj_ruid, 509 ar->ar_subj_rgid, 510 ar->ar_subj_pid, 511 ar->ar_subj_asid, 512 &tid); 513 } 514 515 /* 516 * The logic inside each case fills in the tokens required for the 517 * event, except for the header, trailer, and return tokens. The 518 * header and trailer tokens are added by the kau_close() function. 519 * The return token is added outside of the switch statement. 520 */ 521 switch(ar->ar_event) { 522 case AUE_ACCEPT: 523 case AUE_BIND: 524 case AUE_LISTEN: 525 case AUE_CONNECT: 526 case AUE_RECV: 527 case AUE_RECVFROM: 528 case AUE_RECVMSG: 529 case AUE_SEND: 530 case AUE_SENDFILE: 531 case AUE_SENDMSG: 532 case AUE_SENDTO: 533 /* 534 * Socket-related events. 535 */ 536 if (ARG_IS_VALID(kar, ARG_FD)) { 537 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 538 kau_write(rec, tok); 539 } 540 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 541 tok = au_to_sock_inet((struct sockaddr_in *) 542 &ar->ar_arg_sockaddr); 543 kau_write(rec, tok); 544 } 545 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 546 tok = au_to_sock_unix((struct sockaddr_un *) 547 &ar->ar_arg_sockaddr); 548 kau_write(rec, tok); 549 UPATH1_TOKENS; 550 } 551 /* XXX Need to handle ARG_SADDRINET6 */ 552 break; 553 554 case AUE_SOCKET: 555 case AUE_SOCKETPAIR: 556 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 557 tok = au_to_arg32(1, "domain", 558 ar->ar_arg_sockinfo.so_domain); 559 kau_write(rec, tok); 560 tok = au_to_arg32(2, "type", 561 ar->ar_arg_sockinfo.so_type); 562 kau_write(rec, tok); 563 tok = au_to_arg32(3, "protocol", 564 ar->ar_arg_sockinfo.so_protocol); 565 kau_write(rec, tok); 566 } 567 break; 568 569 case AUE_SETSOCKOPT: 570 case AUE_SHUTDOWN: 571 if (ARG_IS_VALID(kar, ARG_FD)) { 572 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 573 kau_write(rec, tok); 574 } 575 break; 576 577 case AUE_ACCT: 578 if (ARG_IS_VALID(kar, ARG_UPATH1)) { 579 UPATH1_VNODE1_TOKENS; 580 } else { 581 tok = au_to_arg32(1, "accounting off", 0); 582 kau_write(rec, tok); 583 } 584 break; 585 586 case AUE_SETAUID: 587 if (ARG_IS_VALID(kar, ARG_AUID)) { 588 tok = au_to_arg32(2, "setauid", ar->ar_arg_auid); 589 kau_write(rec, tok); 590 } 591 break; 592 593 case AUE_SETAUDIT: 594 if (ARG_IS_VALID(kar, ARG_AUID) && 595 ARG_IS_VALID(kar, ARG_ASID) && 596 ARG_IS_VALID(kar, ARG_AMASK) && 597 ARG_IS_VALID(kar, ARG_TERMID)) { 598 tok = au_to_arg32(1, "setaudit:auid", 599 ar->ar_arg_auid); 600 kau_write(rec, tok); 601 tok = au_to_arg32(1, "setaudit:port", 602 ar->ar_arg_termid.port); 603 kau_write(rec, tok); 604 tok = au_to_arg32(1, "setaudit:machine", 605 ar->ar_arg_termid.machine); 606 kau_write(rec, tok); 607 tok = au_to_arg32(1, "setaudit:as_success", 608 ar->ar_arg_amask.am_success); 609 kau_write(rec, tok); 610 tok = au_to_arg32(1, "setaudit:as_failure", 611 ar->ar_arg_amask.am_failure); 612 kau_write(rec, tok); 613 tok = au_to_arg32(1, "setaudit:asid", 614 ar->ar_arg_asid); 615 kau_write(rec, tok); 616 } 617 break; 618 619 case AUE_SETAUDIT_ADDR: 620 if (ARG_IS_VALID(kar, ARG_AUID) && 621 ARG_IS_VALID(kar, ARG_ASID) && 622 ARG_IS_VALID(kar, ARG_AMASK) && 623 ARG_IS_VALID(kar, ARG_TERMID_ADDR)) { 624 tok = au_to_arg32(1, "setaudit_addr:auid", 625 ar->ar_arg_auid); 626 kau_write(rec, tok); 627 tok = au_to_arg32(1, "setaudit_addr:as_success", 628 ar->ar_arg_amask.am_success); 629 kau_write(rec, tok); 630 tok = au_to_arg32(1, "setaudit_addr:as_failure", 631 ar->ar_arg_amask.am_failure); 632 kau_write(rec, tok); 633 tok = au_to_arg32(1, "setaudit_addr:asid", 634 ar->ar_arg_asid); 635 kau_write(rec, tok); 636 tok = au_to_arg32(1, "setaudit_addr:type", 637 ar->ar_arg_termid_addr.at_type); 638 kau_write(rec, tok); 639 tok = au_to_arg32(1, "setaudit_addr:port", 640 ar->ar_arg_termid_addr.at_port); 641 kau_write(rec, tok); 642 if (ar->ar_arg_termid_addr.at_type == AU_IPv6) 643 tok = au_to_in_addr_ex((struct in6_addr *) 644 &ar->ar_arg_termid_addr.at_addr[0]); 645 if (ar->ar_arg_termid_addr.at_type == AU_IPv4) 646 tok = au_to_in_addr((struct in_addr *) 647 &ar->ar_arg_termid_addr.at_addr[0]); 648 kau_write(rec, tok); 649 } 650 break; 651 652 case AUE_AUDITON: 653 /* 654 * For AUDITON commands without own event, audit the cmd. 655 */ 656 if (ARG_IS_VALID(kar, ARG_CMD)) { 657 tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd); 658 kau_write(rec, tok); 659 } 660 /* FALLTHROUGH */ 661 662 case AUE_AUDITON_GETCAR: 663 case AUE_AUDITON_GETCLASS: 664 case AUE_AUDITON_GETCOND: 665 case AUE_AUDITON_GETCWD: 666 case AUE_AUDITON_GETKMASK: 667 case AUE_AUDITON_GETSTAT: 668 case AUE_AUDITON_GPOLICY: 669 case AUE_AUDITON_GQCTRL: 670 case AUE_AUDITON_SETCLASS: 671 case AUE_AUDITON_SETCOND: 672 case AUE_AUDITON_SETKMASK: 673 case AUE_AUDITON_SETSMASK: 674 case AUE_AUDITON_SETSTAT: 675 case AUE_AUDITON_SETUMASK: 676 case AUE_AUDITON_SPOLICY: 677 case AUE_AUDITON_SQCTRL: 678 if (ARG_IS_VALID(kar, ARG_AUDITON)) 679 audit_sys_auditon(ar, rec); 680 break; 681 682 case AUE_AUDITCTL: 683 UPATH1_VNODE1_TOKENS; 684 break; 685 686 case AUE_EXIT: 687 if (ARG_IS_VALID(kar, ARG_EXIT)) { 688 tok = au_to_exit(ar->ar_arg_exitretval, 689 ar->ar_arg_exitstatus); 690 kau_write(rec, tok); 691 } 692 break; 693 694 case AUE_ADJTIME: 695 case AUE_CLOCK_SETTIME: 696 case AUE_AUDIT: 697 case AUE_DUP2: 698 case AUE_GETAUDIT: 699 case AUE_GETAUDIT_ADDR: 700 case AUE_GETAUID: 701 case AUE_GETCWD: 702 case AUE_GETFSSTAT: 703 case AUE_GETRESUID: 704 case AUE_GETRESGID: 705 case AUE_KQUEUE: 706 case AUE_MODLOAD: 707 case AUE_MODUNLOAD: 708 case AUE_MSGSYS: 709 case AUE_NTP_ADJTIME: 710 case AUE_PIPE: 711 case AUE_POSIX_OPENPT: 712 case AUE_PROFILE: 713 case AUE_RTPRIO: 714 case AUE_SEMSYS: 715 case AUE_SHMSYS: 716 case AUE_SETPGRP: 717 case AUE_SETRLIMIT: 718 case AUE_SETSID: 719 case AUE_SETTIMEOFDAY: 720 case AUE_SYSARCH: 721 722 /* 723 * Header, subject, and return tokens added at end. 724 */ 725 break; 726 727 case AUE_MKFIFO: 728 if (ARG_IS_VALID(kar, ARG_MODE)) { 729 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 730 kau_write(rec, tok); 731 } 732 /* FALLTHROUGH */ 733 734 case AUE_CHDIR: 735 case AUE_CHROOT: 736 case AUE_FSTATAT: 737 case AUE_FUTIMESAT: 738 case AUE_GETATTRLIST: 739 case AUE_JAIL: 740 case AUE_LUTIMES: 741 case AUE_NFS_GETFH: 742 case AUE_LSTAT: 743 case AUE_LPATHCONF: 744 case AUE_PATHCONF: 745 case AUE_READLINK: 746 case AUE_REVOKE: 747 case AUE_RMDIR: 748 case AUE_SEARCHFS: 749 case AUE_SETATTRLIST: 750 case AUE_STAT: 751 case AUE_STATFS: 752 case AUE_SWAPON: 753 case AUE_SWAPOFF: 754 case AUE_TRUNCATE: 755 case AUE_UNDELETE: 756 case AUE_UNLINK: 757 case AUE_UNLINKAT: 758 case AUE_UTIMES: 759 ATFD1_TOKENS(1); 760 UPATH1_VNODE1_TOKENS; 761 break; 762 763 case AUE_ACCESS: 764 case AUE_EACCESS: 765 UPATH1_VNODE1_TOKENS; 766 if (ARG_IS_VALID(kar, ARG_VALUE)) { 767 tok = au_to_arg32(2, "mode", ar->ar_arg_value); 768 kau_write(rec, tok); 769 } 770 break; 771 772 case AUE_FHSTATFS: 773 case AUE_FHOPEN: 774 case AUE_FHSTAT: 775 /* XXXRW: Need to audit vnode argument. */ 776 break; 777 778 case AUE_CHFLAGS: 779 case AUE_LCHFLAGS: 780 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 781 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 782 kau_write(rec, tok); 783 } 784 UPATH1_VNODE1_TOKENS; 785 break; 786 787 case AUE_CHMOD: 788 case AUE_LCHMOD: 789 if (ARG_IS_VALID(kar, ARG_MODE)) { 790 tok = au_to_arg32(2, "new file mode", 791 ar->ar_arg_mode); 792 kau_write(rec, tok); 793 } 794 UPATH1_VNODE1_TOKENS; 795 break; 796 797 case AUE_FCHMODAT: 798 ATFD1_TOKENS(1); 799 if (ARG_IS_VALID(kar, ARG_MODE)) { 800 tok = au_to_arg32(3, "new file mode", 801 ar->ar_arg_mode); 802 kau_write(rec, tok); 803 } 804 UPATH1_VNODE1_TOKENS; 805 break; 806 807 case AUE_CHOWN: 808 case AUE_LCHOWN: 809 if (ARG_IS_VALID(kar, ARG_UID)) { 810 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 811 kau_write(rec, tok); 812 } 813 if (ARG_IS_VALID(kar, ARG_GID)) { 814 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 815 kau_write(rec, tok); 816 } 817 UPATH1_VNODE1_TOKENS; 818 break; 819 820 case AUE_FCHOWNAT: 821 ATFD1_TOKENS(1); 822 if (ARG_IS_VALID(kar, ARG_UID)) { 823 tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid); 824 kau_write(rec, tok); 825 } 826 if (ARG_IS_VALID(kar, ARG_GID)) { 827 tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid); 828 kau_write(rec, tok); 829 } 830 UPATH1_VNODE1_TOKENS; 831 break; 832 833 case AUE_EXCHANGEDATA: 834 UPATH1_VNODE1_TOKENS; 835 UPATH2_TOKENS; 836 break; 837 838 case AUE_CLOSE: 839 if (ARG_IS_VALID(kar, ARG_FD)) { 840 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 841 kau_write(rec, tok); 842 } 843 UPATH1_VNODE1_TOKENS; 844 break; 845 846 case AUE_CLOSEFROM: 847 if (ARG_IS_VALID(kar, ARG_FD)) { 848 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 849 kau_write(rec, tok); 850 } 851 break; 852 853 case AUE_CORE: 854 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 855 tok = au_to_arg32(1, "signal", ar->ar_arg_signum); 856 kau_write(rec, tok); 857 } 858 UPATH1_VNODE1_TOKENS; 859 break; 860 861 case AUE_EXTATTRCTL: 862 UPATH1_VNODE1_TOKENS; 863 if (ARG_IS_VALID(kar, ARG_CMD)) { 864 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 865 kau_write(rec, tok); 866 } 867 /* extattrctl(2) filename parameter is in upath2/vnode2 */ 868 UPATH2_TOKENS; 869 VNODE2_TOKENS; 870 EXTATTR_TOKENS(4); 871 break; 872 873 case AUE_EXTATTR_GET_FILE: 874 case AUE_EXTATTR_SET_FILE: 875 case AUE_EXTATTR_LIST_FILE: 876 case AUE_EXTATTR_DELETE_FILE: 877 case AUE_EXTATTR_GET_LINK: 878 case AUE_EXTATTR_SET_LINK: 879 case AUE_EXTATTR_LIST_LINK: 880 case AUE_EXTATTR_DELETE_LINK: 881 UPATH1_VNODE1_TOKENS; 882 EXTATTR_TOKENS(2); 883 break; 884 885 case AUE_EXTATTR_GET_FD: 886 case AUE_EXTATTR_SET_FD: 887 case AUE_EXTATTR_LIST_FD: 888 case AUE_EXTATTR_DELETE_FD: 889 if (ARG_IS_VALID(kar, ARG_FD)) { 890 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 891 kau_write(rec, tok); 892 } 893 EXTATTR_TOKENS(2); 894 break; 895 896 case AUE_FEXECVE: 897 if (ARG_IS_VALID(kar, ARG_FD)) { 898 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 899 kau_write(rec, tok); 900 } 901 /* FALLTHROUGH */ 902 903 case AUE_EXECVE: 904 case AUE_MAC_EXECVE: 905 if (ARG_IS_VALID(kar, ARG_ARGV)) { 906 tok = au_to_exec_args(ar->ar_arg_argv, 907 ar->ar_arg_argc); 908 kau_write(rec, tok); 909 } 910 if (ARG_IS_VALID(kar, ARG_ENVV)) { 911 tok = au_to_exec_env(ar->ar_arg_envv, 912 ar->ar_arg_envc); 913 kau_write(rec, tok); 914 } 915 UPATH1_VNODE1_TOKENS; 916 break; 917 918 case AUE_FCHMOD: 919 if (ARG_IS_VALID(kar, ARG_MODE)) { 920 tok = au_to_arg32(2, "new file mode", 921 ar->ar_arg_mode); 922 kau_write(rec, tok); 923 } 924 FD_VNODE1_TOKENS; 925 break; 926 927 /* 928 * XXXRW: Some of these need to handle non-vnode cases as well. 929 */ 930 case AUE_FCHDIR: 931 case AUE_FPATHCONF: 932 case AUE_FSTAT: 933 case AUE_FSTATFS: 934 case AUE_FSYNC: 935 case AUE_FTRUNCATE: 936 case AUE_FUTIMES: 937 case AUE_GETDIRENTRIES: 938 case AUE_GETDIRENTRIESATTR: 939 case AUE_LSEEK: 940 case AUE_POLL: 941 case AUE_READ: 942 case AUE_READV: 943 case AUE_WRITE: 944 case AUE_WRITEV: 945 FD_VNODE1_TOKENS; 946 break; 947 948 case AUE_FCHOWN: 949 if (ARG_IS_VALID(kar, ARG_UID)) { 950 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 951 kau_write(rec, tok); 952 } 953 if (ARG_IS_VALID(kar, ARG_GID)) { 954 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 955 kau_write(rec, tok); 956 } 957 FD_VNODE1_TOKENS; 958 break; 959 960 case AUE_FCNTL: 961 if (ARG_IS_VALID(kar, ARG_CMD)) { 962 tok = au_to_arg32(2, "cmd", 963 au_fcntl_cmd_to_bsm(ar->ar_arg_cmd)); 964 kau_write(rec, tok); 965 } 966 if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK || 967 ar->ar_arg_cmd == F_SETLKW) { 968 FD_VNODE1_TOKENS; 969 } 970 break; 971 972 case AUE_FCHFLAGS: 973 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 974 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 975 kau_write(rec, tok); 976 } 977 FD_VNODE1_TOKENS; 978 break; 979 980 case AUE_FLOCK: 981 if (ARG_IS_VALID(kar, ARG_CMD)) { 982 tok = au_to_arg32(2, "operation", ar->ar_arg_cmd); 983 kau_write(rec, tok); 984 } 985 FD_VNODE1_TOKENS; 986 break; 987 988 case AUE_RFORK: 989 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 990 tok = au_to_arg32(1, "flags", ar->ar_arg_fflags); 991 kau_write(rec, tok); 992 } 993 /* FALLTHROUGH */ 994 995 case AUE_FORK: 996 case AUE_VFORK: 997 if (ARG_IS_VALID(kar, ARG_PID)) { 998 tok = au_to_arg32(0, "child PID", ar->ar_arg_pid); 999 kau_write(rec, tok); 1000 } 1001 break; 1002 1003 case AUE_IOCTL: 1004 if (ARG_IS_VALID(kar, ARG_CMD)) { 1005 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 1006 kau_write(rec, tok); 1007 } 1008 if (ARG_IS_VALID(kar, ARG_VNODE1)) 1009 FD_VNODE1_TOKENS; 1010 else { 1011 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 1012 tok = kau_to_socket(&ar->ar_arg_sockinfo); 1013 kau_write(rec, tok); 1014 } else { 1015 if (ARG_IS_VALID(kar, ARG_FD)) { 1016 tok = au_to_arg32(1, "fd", 1017 ar->ar_arg_fd); 1018 kau_write(rec, tok); 1019 } 1020 } 1021 } 1022 break; 1023 1024 case AUE_KILL: 1025 case AUE_KILLPG: 1026 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 1027 tok = au_to_arg32(2, "signal", ar->ar_arg_signum); 1028 kau_write(rec, tok); 1029 } 1030 PROCESS_PID_TOKENS(1); 1031 break; 1032 1033 case AUE_KTRACE: 1034 if (ARG_IS_VALID(kar, ARG_CMD)) { 1035 tok = au_to_arg32(2, "ops", ar->ar_arg_cmd); 1036 kau_write(rec, tok); 1037 } 1038 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1039 tok = au_to_arg32(3, "trpoints", ar->ar_arg_value); 1040 kau_write(rec, tok); 1041 } 1042 PROCESS_PID_TOKENS(4); 1043 UPATH1_VNODE1_TOKENS; 1044 break; 1045 1046 case AUE_LINK: 1047 case AUE_LINKAT: 1048 case AUE_RENAME: 1049 case AUE_RENAMEAT: 1050 ATFD1_TOKENS(1); 1051 UPATH1_VNODE1_TOKENS; 1052 ATFD2_TOKENS(3); 1053 UPATH2_TOKENS; 1054 break; 1055 1056 case AUE_LOADSHFILE: 1057 ADDR_TOKEN(4, "base addr"); 1058 UPATH1_VNODE1_TOKENS; 1059 break; 1060 1061 case AUE_MKDIR: 1062 if (ARG_IS_VALID(kar, ARG_MODE)) { 1063 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1064 kau_write(rec, tok); 1065 } 1066 UPATH1_VNODE1_TOKENS; 1067 break; 1068 1069 case AUE_MKNOD: 1070 if (ARG_IS_VALID(kar, ARG_MODE)) { 1071 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1072 kau_write(rec, tok); 1073 } 1074 if (ARG_IS_VALID(kar, ARG_DEV)) { 1075 tok = au_to_arg32(3, "dev", ar->ar_arg_dev); 1076 kau_write(rec, tok); 1077 } 1078 UPATH1_VNODE1_TOKENS; 1079 break; 1080 1081 case AUE_MMAP: 1082 case AUE_MUNMAP: 1083 case AUE_MPROTECT: 1084 case AUE_MLOCK: 1085 case AUE_MUNLOCK: 1086 case AUE_MINHERIT: 1087 ADDR_TOKEN(1, "addr"); 1088 if (ARG_IS_VALID(kar, ARG_LEN)) { 1089 tok = au_to_arg32(2, "len", ar->ar_arg_len); 1090 kau_write(rec, tok); 1091 } 1092 if (ar->ar_event == AUE_MMAP) 1093 FD_VNODE1_TOKENS; 1094 if (ar->ar_event == AUE_MPROTECT) { 1095 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1096 tok = au_to_arg32(3, "protection", 1097 ar->ar_arg_value); 1098 kau_write(rec, tok); 1099 } 1100 } 1101 if (ar->ar_event == AUE_MINHERIT) { 1102 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1103 tok = au_to_arg32(3, "inherit", 1104 ar->ar_arg_value); 1105 kau_write(rec, tok); 1106 } 1107 } 1108 break; 1109 1110 case AUE_MOUNT: 1111 case AUE_NMOUNT: 1112 /* XXX Need to handle NFS mounts */ 1113 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1114 tok = au_to_arg32(3, "flags", ar->ar_arg_fflags); 1115 kau_write(rec, tok); 1116 } 1117 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1118 tok = au_to_text(ar->ar_arg_text); 1119 kau_write(rec, tok); 1120 } 1121 /* FALLTHROUGH */ 1122 1123 case AUE_NFS_SVC: 1124 if (ARG_IS_VALID(kar, ARG_CMD)) { 1125 tok = au_to_arg32(1, "flags", ar->ar_arg_cmd); 1126 kau_write(rec, tok); 1127 } 1128 break; 1129 1130 case AUE_UMOUNT: 1131 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1132 tok = au_to_arg32(2, "flags", ar->ar_arg_value); 1133 kau_write(rec, tok); 1134 } 1135 UPATH1_VNODE1_TOKENS; 1136 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1137 tok = au_to_text(ar->ar_arg_text); 1138 kau_write(rec, tok); 1139 } 1140 break; 1141 1142 case AUE_MSGCTL: 1143 ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd); 1144 /* Fall through */ 1145 1146 case AUE_MSGRCV: 1147 case AUE_MSGSND: 1148 tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id); 1149 kau_write(rec, tok); 1150 if (ar->ar_errno != EINVAL) { 1151 tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id); 1152 kau_write(rec, tok); 1153 } 1154 break; 1155 1156 case AUE_MSGGET: 1157 if (ar->ar_errno == 0) { 1158 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1159 tok = au_to_ipc(AT_IPC_MSG, 1160 ar->ar_arg_svipc_id); 1161 kau_write(rec, tok); 1162 } 1163 } 1164 break; 1165 1166 case AUE_RESETSHFILE: 1167 ADDR_TOKEN(1, "base addr"); 1168 break; 1169 1170 case AUE_OPEN_RC: 1171 case AUE_OPEN_RTC: 1172 case AUE_OPEN_RWC: 1173 case AUE_OPEN_RWTC: 1174 case AUE_OPEN_WC: 1175 case AUE_OPEN_WTC: 1176 case AUE_CREAT: 1177 if (ARG_IS_VALID(kar, ARG_MODE)) { 1178 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1179 kau_write(rec, tok); 1180 } 1181 /* FALLTHROUGH */ 1182 1183 case AUE_OPEN_R: 1184 case AUE_OPEN_RT: 1185 case AUE_OPEN_RW: 1186 case AUE_OPEN_RWT: 1187 case AUE_OPEN_W: 1188 case AUE_OPEN_WT: 1189 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1190 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1191 kau_write(rec, tok); 1192 } 1193 UPATH1_VNODE1_TOKENS; 1194 break; 1195 1196 case AUE_OPENAT_RC: 1197 case AUE_OPENAT_RTC: 1198 case AUE_OPENAT_RWC: 1199 case AUE_OPENAT_RWTC: 1200 case AUE_OPENAT_WC: 1201 case AUE_OPENAT_WTC: 1202 if (ARG_IS_VALID(kar, ARG_MODE)) { 1203 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1204 kau_write(rec, tok); 1205 } 1206 /* FALLTHROUGH */ 1207 1208 case AUE_OPENAT_R: 1209 case AUE_OPENAT_RT: 1210 case AUE_OPENAT_RW: 1211 case AUE_OPENAT_RWT: 1212 case AUE_OPENAT_W: 1213 case AUE_OPENAT_WT: 1214 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1215 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1216 kau_write(rec, tok); 1217 } 1218 ATFD1_TOKENS(1); 1219 UPATH1_VNODE1_TOKENS; 1220 break; 1221 1222 case AUE_PTRACE: 1223 if (ARG_IS_VALID(kar, ARG_CMD)) { 1224 tok = au_to_arg32(1, "request", ar->ar_arg_cmd); 1225 kau_write(rec, tok); 1226 } 1227 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1228 tok = au_to_arg32(4, "data", ar->ar_arg_value); 1229 kau_write(rec, tok); 1230 } 1231 PROCESS_PID_TOKENS(2); 1232 break; 1233 1234 case AUE_QUOTACTL: 1235 if (ARG_IS_VALID(kar, ARG_CMD)) { 1236 tok = au_to_arg32(2, "command", ar->ar_arg_cmd); 1237 kau_write(rec, tok); 1238 } 1239 if (ARG_IS_VALID(kar, ARG_UID)) { 1240 tok = au_to_arg32(3, "uid", ar->ar_arg_uid); 1241 kau_write(rec, tok); 1242 } 1243 if (ARG_IS_VALID(kar, ARG_GID)) { 1244 tok = au_to_arg32(3, "gid", ar->ar_arg_gid); 1245 kau_write(rec, tok); 1246 } 1247 UPATH1_VNODE1_TOKENS; 1248 break; 1249 1250 case AUE_REBOOT: 1251 if (ARG_IS_VALID(kar, ARG_CMD)) { 1252 tok = au_to_arg32(1, "howto", ar->ar_arg_cmd); 1253 kau_write(rec, tok); 1254 } 1255 break; 1256 1257 case AUE_SEMCTL: 1258 ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd); 1259 /* Fall through */ 1260 1261 case AUE_SEMOP: 1262 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1263 tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id); 1264 kau_write(rec, tok); 1265 if (ar->ar_errno != EINVAL) { 1266 tok = au_to_ipc(AT_IPC_SEM, 1267 ar->ar_arg_svipc_id); 1268 kau_write(rec, tok); 1269 } 1270 } 1271 break; 1272 1273 case AUE_SEMGET: 1274 if (ar->ar_errno == 0) { 1275 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1276 tok = au_to_ipc(AT_IPC_SEM, 1277 ar->ar_arg_svipc_id); 1278 kau_write(rec, tok); 1279 } 1280 } 1281 break; 1282 1283 case AUE_SETEGID: 1284 if (ARG_IS_VALID(kar, ARG_EGID)) { 1285 tok = au_to_arg32(1, "egid", ar->ar_arg_egid); 1286 kau_write(rec, tok); 1287 } 1288 break; 1289 1290 case AUE_SETEUID: 1291 if (ARG_IS_VALID(kar, ARG_EUID)) { 1292 tok = au_to_arg32(1, "euid", ar->ar_arg_euid); 1293 kau_write(rec, tok); 1294 } 1295 break; 1296 1297 case AUE_SETREGID: 1298 if (ARG_IS_VALID(kar, ARG_RGID)) { 1299 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1300 kau_write(rec, tok); 1301 } 1302 if (ARG_IS_VALID(kar, ARG_EGID)) { 1303 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1304 kau_write(rec, tok); 1305 } 1306 break; 1307 1308 case AUE_SETREUID: 1309 if (ARG_IS_VALID(kar, ARG_RUID)) { 1310 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1311 kau_write(rec, tok); 1312 } 1313 if (ARG_IS_VALID(kar, ARG_EUID)) { 1314 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1315 kau_write(rec, tok); 1316 } 1317 break; 1318 1319 case AUE_SETRESGID: 1320 if (ARG_IS_VALID(kar, ARG_RGID)) { 1321 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1322 kau_write(rec, tok); 1323 } 1324 if (ARG_IS_VALID(kar, ARG_EGID)) { 1325 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1326 kau_write(rec, tok); 1327 } 1328 if (ARG_IS_VALID(kar, ARG_SGID)) { 1329 tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid); 1330 kau_write(rec, tok); 1331 } 1332 break; 1333 1334 case AUE_SETRESUID: 1335 if (ARG_IS_VALID(kar, ARG_RUID)) { 1336 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1337 kau_write(rec, tok); 1338 } 1339 if (ARG_IS_VALID(kar, ARG_EUID)) { 1340 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1341 kau_write(rec, tok); 1342 } 1343 if (ARG_IS_VALID(kar, ARG_SUID)) { 1344 tok = au_to_arg32(3, "suid", ar->ar_arg_suid); 1345 kau_write(rec, tok); 1346 } 1347 break; 1348 1349 case AUE_SETGID: 1350 if (ARG_IS_VALID(kar, ARG_GID)) { 1351 tok = au_to_arg32(1, "gid", ar->ar_arg_gid); 1352 kau_write(rec, tok); 1353 } 1354 break; 1355 1356 case AUE_SETUID: 1357 if (ARG_IS_VALID(kar, ARG_UID)) { 1358 tok = au_to_arg32(1, "uid", ar->ar_arg_uid); 1359 kau_write(rec, tok); 1360 } 1361 break; 1362 1363 case AUE_SETGROUPS: 1364 if (ARG_IS_VALID(kar, ARG_GROUPSET)) { 1365 for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++) 1366 { 1367 tok = au_to_arg32(1, "setgroups", 1368 ar->ar_arg_groups.gidset[ctr]); 1369 kau_write(rec, tok); 1370 } 1371 } 1372 break; 1373 1374 case AUE_SETLOGIN: 1375 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1376 tok = au_to_text(ar->ar_arg_text); 1377 kau_write(rec, tok); 1378 } 1379 break; 1380 1381 case AUE_SETPRIORITY: 1382 if (ARG_IS_VALID(kar, ARG_CMD)) { 1383 tok = au_to_arg32(1, "which", ar->ar_arg_cmd); 1384 kau_write(rec, tok); 1385 } 1386 if (ARG_IS_VALID(kar, ARG_UID)) { 1387 tok = au_to_arg32(2, "who", ar->ar_arg_uid); 1388 kau_write(rec, tok); 1389 } 1390 PROCESS_PID_TOKENS(2); 1391 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1392 tok = au_to_arg32(3, "priority", ar->ar_arg_value); 1393 kau_write(rec, tok); 1394 } 1395 break; 1396 1397 case AUE_SETPRIVEXEC: 1398 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1399 tok = au_to_arg32(1, "flag", ar->ar_arg_value); 1400 kau_write(rec, tok); 1401 } 1402 break; 1403 1404 /* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */ 1405 case AUE_SHMAT: 1406 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1407 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1408 kau_write(rec, tok); 1409 /* XXXAUDIT: Does having the ipc token make sense? */ 1410 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1411 kau_write(rec, tok); 1412 } 1413 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1414 tok = au_to_arg32(2, "shmaddr", 1415 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1416 kau_write(rec, tok); 1417 } 1418 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1419 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1420 kau_write(rec, tok); 1421 } 1422 break; 1423 1424 case AUE_SHMCTL: 1425 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1426 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1427 kau_write(rec, tok); 1428 /* XXXAUDIT: Does having the ipc token make sense? */ 1429 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1430 kau_write(rec, tok); 1431 } 1432 switch (ar->ar_arg_svipc_cmd) { 1433 case IPC_STAT: 1434 ar->ar_event = AUE_SHMCTL_STAT; 1435 break; 1436 case IPC_RMID: 1437 ar->ar_event = AUE_SHMCTL_RMID; 1438 break; 1439 case IPC_SET: 1440 ar->ar_event = AUE_SHMCTL_SET; 1441 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1442 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1443 kau_write(rec, tok); 1444 } 1445 break; 1446 default: 1447 break; /* We will audit a bad command */ 1448 } 1449 break; 1450 1451 case AUE_SHMDT: 1452 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1453 tok = au_to_arg32(1, "shmaddr", 1454 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1455 kau_write(rec, tok); 1456 } 1457 break; 1458 1459 case AUE_SHMGET: 1460 /* This is unusual; the return value is in an argument token */ 1461 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1462 tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id); 1463 kau_write(rec, tok); 1464 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1465 kau_write(rec, tok); 1466 } 1467 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1468 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1469 kau_write(rec, tok); 1470 } 1471 break; 1472 1473 /* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE 1474 * and AUE_SEMUNLINK are Posix IPC */ 1475 case AUE_SHMOPEN: 1476 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1477 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1478 kau_write(rec, tok); 1479 } 1480 if (ARG_IS_VALID(kar, ARG_MODE)) { 1481 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1482 kau_write(rec, tok); 1483 } 1484 /* FALLTHROUGH */ 1485 1486 case AUE_SHMUNLINK: 1487 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1488 tok = au_to_text(ar->ar_arg_text); 1489 kau_write(rec, tok); 1490 } 1491 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1492 struct ipc_perm perm; 1493 1494 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1495 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1496 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1497 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1498 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1499 perm.seq = 0; 1500 perm.key = 0; 1501 tok = au_to_ipc_perm(&perm); 1502 kau_write(rec, tok); 1503 } 1504 break; 1505 1506 case AUE_SEMOPEN: 1507 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1508 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1509 kau_write(rec, tok); 1510 } 1511 if (ARG_IS_VALID(kar, ARG_MODE)) { 1512 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1513 kau_write(rec, tok); 1514 } 1515 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1516 tok = au_to_arg32(4, "value", ar->ar_arg_value); 1517 kau_write(rec, tok); 1518 } 1519 /* FALLTHROUGH */ 1520 1521 case AUE_SEMUNLINK: 1522 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1523 tok = au_to_text(ar->ar_arg_text); 1524 kau_write(rec, tok); 1525 } 1526 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1527 struct ipc_perm perm; 1528 1529 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1530 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1531 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1532 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1533 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1534 perm.seq = 0; 1535 perm.key = 0; 1536 tok = au_to_ipc_perm(&perm); 1537 kau_write(rec, tok); 1538 } 1539 break; 1540 1541 case AUE_SEMCLOSE: 1542 if (ARG_IS_VALID(kar, ARG_FD)) { 1543 tok = au_to_arg32(1, "sem", ar->ar_arg_fd); 1544 kau_write(rec, tok); 1545 } 1546 break; 1547 1548 case AUE_SYMLINK: 1549 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1550 tok = au_to_text(ar->ar_arg_text); 1551 kau_write(rec, tok); 1552 } 1553 UPATH1_VNODE1_TOKENS; 1554 break; 1555 1556 case AUE_SYSCTL: 1557 case AUE_SYSCTL_NONADMIN: 1558 if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) { 1559 for (ctr = 0; ctr < ar->ar_arg_len; ctr++) { 1560 tok = au_to_arg32(1, "name", 1561 ar->ar_arg_ctlname[ctr]); 1562 kau_write(rec, tok); 1563 } 1564 } 1565 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1566 tok = au_to_arg32(5, "newval", ar->ar_arg_value); 1567 kau_write(rec, tok); 1568 } 1569 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1570 tok = au_to_text(ar->ar_arg_text); 1571 kau_write(rec, tok); 1572 } 1573 break; 1574 1575 case AUE_UMASK: 1576 if (ARG_IS_VALID(kar, ARG_MASK)) { 1577 tok = au_to_arg32(1, "new mask", ar->ar_arg_mask); 1578 kau_write(rec, tok); 1579 } 1580 tok = au_to_arg32(0, "prev mask", ar->ar_retval); 1581 kau_write(rec, tok); 1582 break; 1583 1584 case AUE_WAIT4: 1585 PROCESS_PID_TOKENS(1); 1586 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1587 tok = au_to_arg32(3, "options", ar->ar_arg_value); 1588 kau_write(rec, tok); 1589 } 1590 break; 1591 1592 case AUE_NULL: 1593 default: 1594 printf("BSM conversion requested for unknown event %d\n", 1595 ar->ar_event); 1596 1597 /* 1598 * Write the subject token so it is properly freed here. 1599 */ 1600 kau_write(rec, subj_tok); 1601 kau_free(rec); 1602 return (BSM_NOAUDIT); 1603 } 1604 1605 kau_write(rec, subj_tok); 1606 tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval); 1607 kau_write(rec, tok); /* Every record gets a return token */ 1608 1609 kau_close(rec, &ar->ar_endtime, ar->ar_event); 1610 1611 *pau = rec; 1612 return (BSM_SUCCESS); 1613 } 1614 1615 /* 1616 * Verify that a record is a valid BSM record. This verification is simple 1617 * now, but may be expanded on sometime in the future. Return 1 if the 1618 * record is good, 0 otherwise. 1619 */ 1620 int 1621 bsm_rec_verify(void *rec) 1622 { 1623 char c = *(char *)rec; 1624 1625 /* 1626 * Check the token ID of the first token; it has to be a header 1627 * token. 1628 * 1629 * XXXAUDIT There needs to be a token structure to map a token. 1630 * XXXAUDIT 'Shouldn't be simply looking at the first char. 1631 */ 1632 if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) && 1633 (c != AUT_HEADER64) && (c != AUT_HEADER64_EX)) 1634 return (0); 1635 return (1); 1636 } 1637