1 /* 2 * Copyright (c) 1999-2009 Apple Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 14 * its contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/vnode.h> 35 #include <sys/ipc.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mutex.h> 39 #include <sys/socket.h> 40 #include <sys/extattr.h> 41 #include <sys/fcntl.h> 42 #include <sys/user.h> 43 #include <sys/systm.h> 44 45 #include <bsm/audit.h> 46 #include <bsm/audit_internal.h> 47 #include <bsm/audit_record.h> 48 #include <bsm/audit_kevents.h> 49 50 #include <security/audit/audit.h> 51 #include <security/audit/audit_private.h> 52 53 #include <netinet/in_systm.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 57 MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data"); 58 59 static void audit_sys_auditon(struct audit_record *ar, 60 struct au_record *rec); 61 62 /* 63 * Initialize the BSM auditing subsystem. 64 */ 65 void 66 kau_init(void) 67 { 68 69 au_evclassmap_init(); 70 } 71 72 /* 73 * This call reserves memory for the audit record. Memory must be guaranteed 74 * before any auditable event can be generated. The au_record structure 75 * maintains a reference to the memory allocated above and also the list of 76 * tokens associated with this record. 77 */ 78 static struct au_record * 79 kau_open(void) 80 { 81 struct au_record *rec; 82 83 rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK); 84 rec->data = NULL; 85 TAILQ_INIT(&rec->token_q); 86 rec->len = 0; 87 rec->used = 1; 88 89 return (rec); 90 } 91 92 /* 93 * Store the token with the record descriptor. 94 */ 95 static void 96 kau_write(struct au_record *rec, struct au_token *tok) 97 { 98 99 KASSERT(tok != NULL, ("kau_write: tok == NULL")); 100 101 TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens); 102 rec->len += tok->len; 103 } 104 105 /* 106 * Close out the audit record by adding the header token, identifying any 107 * missing tokens. Write out the tokens to the record memory. 108 */ 109 static void 110 kau_close(struct au_record *rec, struct timespec *ctime, short event) 111 { 112 u_char *dptr; 113 size_t tot_rec_size; 114 token_t *cur, *hdr, *trail; 115 struct timeval tm; 116 size_t hdrsize; 117 struct auditinfo_addr ak; 118 struct in6_addr *ap; 119 120 audit_get_kinfo(&ak); 121 hdrsize = 0; 122 switch (ak.ai_termid.at_type) { 123 case AU_IPv4: 124 hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ? 125 AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak); 126 break; 127 case AU_IPv6: 128 ap = (struct in6_addr *)&ak.ai_termid.at_addr[0]; 129 hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE : 130 AUDIT_HEADER_EX_SIZE(&ak); 131 break; 132 default: 133 panic("kau_close: invalid address family"); 134 } 135 tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE; 136 rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO); 137 138 tm.tv_usec = ctime->tv_nsec / 1000; 139 tm.tv_sec = ctime->tv_sec; 140 if (hdrsize != AUDIT_HEADER_SIZE) 141 hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak); 142 else 143 hdr = au_to_header32_tm(tot_rec_size, event, 0, tm); 144 TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens); 145 146 trail = au_to_trailer(tot_rec_size); 147 TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens); 148 149 rec->len = tot_rec_size; 150 dptr = rec->data; 151 TAILQ_FOREACH(cur, &rec->token_q, tokens) { 152 memcpy(dptr, cur->t_data, cur->len); 153 dptr += cur->len; 154 } 155 } 156 157 /* 158 * Free a BSM audit record by releasing all the tokens and clearing the audit 159 * record information. 160 */ 161 void 162 kau_free(struct au_record *rec) 163 { 164 struct au_token *tok; 165 166 /* Free the token list. */ 167 while ((tok = TAILQ_FIRST(&rec->token_q))) { 168 TAILQ_REMOVE(&rec->token_q, tok, tokens); 169 free(tok->t_data, M_AUDITBSM); 170 free(tok, M_AUDITBSM); 171 } 172 173 rec->used = 0; 174 rec->len = 0; 175 free(rec->data, M_AUDITBSM); 176 free(rec, M_AUDITBSM); 177 } 178 179 /* 180 * XXX: May want turn some (or all) of these macros into functions in order 181 * to reduce the generated code size. 182 * 183 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the 184 * caller are OK with this. 185 */ 186 #define ATFD1_TOKENS(argnum) do { \ 187 if (ARG_IS_VALID(kar, ARG_ATFD1)) { \ 188 tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1); \ 189 kau_write(rec, tok); \ 190 } \ 191 } while (0) 192 193 #define ATFD2_TOKENS(argnum) do { \ 194 if (ARG_IS_VALID(kar, ARG_ATFD2)) { \ 195 tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2); \ 196 kau_write(rec, tok); \ 197 } \ 198 } while (0) 199 200 #define UPATH1_TOKENS do { \ 201 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 202 tok = au_to_path(ar->ar_arg_upath1); \ 203 kau_write(rec, tok); \ 204 } \ 205 } while (0) 206 207 #define UPATH2_TOKENS do { \ 208 if (ARG_IS_VALID(kar, ARG_UPATH2)) { \ 209 tok = au_to_path(ar->ar_arg_upath2); \ 210 kau_write(rec, tok); \ 211 } \ 212 } while (0) 213 214 #define VNODE1_TOKENS do { \ 215 if (ARG_IS_VALID(kar, ARG_ATFD)) { \ 216 tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd); \ 217 kau_write(rec, tok); \ 218 } \ 219 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 220 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 221 kau_write(rec, tok); \ 222 } \ 223 } while (0) 224 225 #define UPATH1_VNODE1_TOKENS do { \ 226 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 227 UPATH1_TOKENS; \ 228 } \ 229 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 230 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 231 kau_write(rec, tok); \ 232 } \ 233 } while (0) 234 235 #define VNODE2_TOKENS do { \ 236 if (ARG_IS_VALID(kar, ARG_VNODE2)) { \ 237 tok = au_to_attr32(&ar->ar_arg_vnode2); \ 238 kau_write(rec, tok); \ 239 } \ 240 } while (0) 241 242 #define FD_VNODE1_TOKENS do { \ 243 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 244 if (ARG_IS_VALID(kar, ARG_FD)) { \ 245 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \ 246 kau_write(rec, tok); \ 247 } \ 248 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 249 kau_write(rec, tok); \ 250 } else { \ 251 if (ARG_IS_VALID(kar, ARG_FD)) { \ 252 tok = au_to_arg32(1, "non-file: fd", \ 253 ar->ar_arg_fd); \ 254 kau_write(rec, tok); \ 255 } \ 256 } \ 257 } while (0) 258 259 #define PROCESS_PID_TOKENS(argn) do { \ 260 if ((ar->ar_arg_pid > 0) /* Reference a single process */ \ 261 && (ARG_IS_VALID(kar, ARG_PROCESS))) { \ 262 tok = au_to_process32_ex(ar->ar_arg_auid, \ 263 ar->ar_arg_euid, ar->ar_arg_egid, \ 264 ar->ar_arg_ruid, ar->ar_arg_rgid, \ 265 ar->ar_arg_pid, ar->ar_arg_asid, \ 266 &ar->ar_arg_termid_addr); \ 267 kau_write(rec, tok); \ 268 } else if (ARG_IS_VALID(kar, ARG_PID)) { \ 269 tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \ 270 kau_write(rec, tok); \ 271 } \ 272 } while (0) 273 274 #define EXTATTR_TOKENS(namespace_argnum) do { \ 275 if (ARG_IS_VALID(kar, ARG_VALUE)) { \ 276 switch (ar->ar_arg_value) { \ 277 case EXTATTR_NAMESPACE_USER: \ 278 tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\ 279 break; \ 280 case EXTATTR_NAMESPACE_SYSTEM: \ 281 tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\ 282 break; \ 283 default: \ 284 tok = au_to_arg32((namespace_argnum), \ 285 "attrnamespace", ar->ar_arg_value); \ 286 break; \ 287 } \ 288 kau_write(rec, tok); \ 289 } \ 290 /* attrname is in the text field */ \ 291 if (ARG_IS_VALID(kar, ARG_TEXT)) { \ 292 tok = au_to_text(ar->ar_arg_text); \ 293 kau_write(rec, tok); \ 294 } \ 295 } while (0) 296 297 /* 298 * Not all pointer arguments to system calls are of interest, but in some 299 * cases they reflect delegation of rights, such as mmap(2) followed by 300 * minherit(2) before execve(2), so do the best we can. 301 */ 302 #define ADDR_TOKEN(argnum, argname) do { \ 303 if (ARG_IS_VALID(kar, ARG_ADDR)) { \ 304 if (sizeof(void *) == sizeof(uint32_t)) \ 305 tok = au_to_arg32((argnum), (argname), \ 306 (uint32_t)(uintptr_t)ar->ar_arg_addr); \ 307 else \ 308 tok = au_to_arg64((argnum), (argname), \ 309 (uint64_t)(uintptr_t)ar->ar_arg_addr); \ 310 kau_write(rec, tok); \ 311 } \ 312 } while (0) 313 314 315 /* 316 * Implement auditing for the auditon() system call. The audit tokens that 317 * are generated depend on the command that was sent into the auditon() 318 * system call. 319 */ 320 static void 321 audit_sys_auditon(struct audit_record *ar, struct au_record *rec) 322 { 323 struct au_token *tok; 324 325 tok = au_to_arg32(3, "length", ar->ar_arg_len); 326 kau_write(rec, tok); 327 switch (ar->ar_arg_cmd) { 328 case A_OLDSETPOLICY: 329 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 330 tok = au_to_arg64(2, "policy", 331 ar->ar_arg_auditon.au_policy64); 332 kau_write(rec, tok); 333 break; 334 } 335 /* FALLTHROUGH */ 336 337 case A_SETPOLICY: 338 tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy); 339 kau_write(rec, tok); 340 break; 341 342 case A_SETKMASK: 343 tok = au_to_arg32(2, "setkmask:as_success", 344 ar->ar_arg_auditon.au_mask.am_success); 345 kau_write(rec, tok); 346 tok = au_to_arg32(2, "setkmask:as_failure", 347 ar->ar_arg_auditon.au_mask.am_failure); 348 kau_write(rec, tok); 349 break; 350 351 case A_OLDSETQCTRL: 352 if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) { 353 tok = au_to_arg64(2, "setqctrl:aq_hiwater", 354 ar->ar_arg_auditon.au_qctrl64.aq64_hiwater); 355 kau_write(rec, tok); 356 tok = au_to_arg64(2, "setqctrl:aq_lowater", 357 ar->ar_arg_auditon.au_qctrl64.aq64_lowater); 358 kau_write(rec, tok); 359 tok = au_to_arg64(2, "setqctrl:aq_bufsz", 360 ar->ar_arg_auditon.au_qctrl64.aq64_bufsz); 361 kau_write(rec, tok); 362 tok = au_to_arg64(2, "setqctrl:aq_delay", 363 ar->ar_arg_auditon.au_qctrl64.aq64_delay); 364 kau_write(rec, tok); 365 tok = au_to_arg64(2, "setqctrl:aq_minfree", 366 ar->ar_arg_auditon.au_qctrl64.aq64_minfree); 367 kau_write(rec, tok); 368 break; 369 } 370 /* FALLTHROUGH */ 371 372 case A_SETQCTRL: 373 tok = au_to_arg32(2, "setqctrl:aq_hiwater", 374 ar->ar_arg_auditon.au_qctrl.aq_hiwater); 375 kau_write(rec, tok); 376 tok = au_to_arg32(2, "setqctrl:aq_lowater", 377 ar->ar_arg_auditon.au_qctrl.aq_lowater); 378 kau_write(rec, tok); 379 tok = au_to_arg32(2, "setqctrl:aq_bufsz", 380 ar->ar_arg_auditon.au_qctrl.aq_bufsz); 381 kau_write(rec, tok); 382 tok = au_to_arg32(2, "setqctrl:aq_delay", 383 ar->ar_arg_auditon.au_qctrl.aq_delay); 384 kau_write(rec, tok); 385 tok = au_to_arg32(2, "setqctrl:aq_minfree", 386 ar->ar_arg_auditon.au_qctrl.aq_minfree); 387 kau_write(rec, tok); 388 break; 389 390 case A_SETUMASK: 391 tok = au_to_arg32(2, "setumask:as_success", 392 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 393 kau_write(rec, tok); 394 tok = au_to_arg32(2, "setumask:as_failure", 395 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 396 kau_write(rec, tok); 397 break; 398 399 case A_SETSMASK: 400 tok = au_to_arg32(2, "setsmask:as_success", 401 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 402 kau_write(rec, tok); 403 tok = au_to_arg32(2, "setsmask:as_failure", 404 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 405 kau_write(rec, tok); 406 break; 407 408 case A_OLDSETCOND: 409 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 410 tok = au_to_arg64(2, "setcond", 411 ar->ar_arg_auditon.au_cond64); 412 kau_write(rec, tok); 413 break; 414 } 415 /* FALLTHROUGH */ 416 417 case A_SETCOND: 418 tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond); 419 kau_write(rec, tok); 420 break; 421 422 case A_SETCLASS: 423 kau_write(rec, tok); 424 tok = au_to_arg32(2, "setclass:ec_event", 425 ar->ar_arg_auditon.au_evclass.ec_number); 426 kau_write(rec, tok); 427 tok = au_to_arg32(2, "setclass:ec_class", 428 ar->ar_arg_auditon.au_evclass.ec_class); 429 kau_write(rec, tok); 430 break; 431 432 case A_SETPMASK: 433 tok = au_to_arg32(2, "setpmask:as_success", 434 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success); 435 kau_write(rec, tok); 436 tok = au_to_arg32(2, "setpmask:as_failure", 437 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure); 438 kau_write(rec, tok); 439 break; 440 441 case A_SETFSIZE: 442 tok = au_to_arg32(2, "setfsize:filesize", 443 ar->ar_arg_auditon.au_fstat.af_filesz); 444 kau_write(rec, tok); 445 break; 446 447 default: 448 break; 449 } 450 } 451 452 /* 453 * Convert an internal kernel audit record to a BSM record and return a 454 * success/failure indicator. The BSM record is passed as an out parameter to 455 * this function. 456 * 457 * Return conditions: 458 * BSM_SUCCESS: The BSM record is valid 459 * BSM_FAILURE: Failure; the BSM record is NULL. 460 * BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL. 461 */ 462 int 463 kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau) 464 { 465 struct au_token *tok, *subj_tok; 466 struct au_record *rec; 467 au_tid_t tid; 468 struct audit_record *ar; 469 int ctr; 470 471 KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL")); 472 473 *pau = NULL; 474 ar = &kar->k_ar; 475 rec = kau_open(); 476 477 /* 478 * Create the subject token. 479 */ 480 switch (ar->ar_subj_term_addr.at_type) { 481 case AU_IPv4: 482 tid.port = ar->ar_subj_term_addr.at_port; 483 tid.machine = ar->ar_subj_term_addr.at_addr[0]; 484 subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */ 485 ar->ar_subj_cred.cr_uid, /* eff uid */ 486 ar->ar_subj_egid, /* eff group id */ 487 ar->ar_subj_ruid, /* real uid */ 488 ar->ar_subj_rgid, /* real group id */ 489 ar->ar_subj_pid, /* process id */ 490 ar->ar_subj_asid, /* session ID */ 491 &tid); 492 break; 493 case AU_IPv6: 494 subj_tok = au_to_subject32_ex(ar->ar_subj_auid, 495 ar->ar_subj_cred.cr_uid, 496 ar->ar_subj_egid, 497 ar->ar_subj_ruid, 498 ar->ar_subj_rgid, 499 ar->ar_subj_pid, 500 ar->ar_subj_asid, 501 &ar->ar_subj_term_addr); 502 break; 503 default: 504 bzero(&tid, sizeof(tid)); 505 subj_tok = au_to_subject32(ar->ar_subj_auid, 506 ar->ar_subj_cred.cr_uid, 507 ar->ar_subj_egid, 508 ar->ar_subj_ruid, 509 ar->ar_subj_rgid, 510 ar->ar_subj_pid, 511 ar->ar_subj_asid, 512 &tid); 513 } 514 515 /* 516 * The logic inside each case fills in the tokens required for the 517 * event, except for the header, trailer, and return tokens. The 518 * header and trailer tokens are added by the kau_close() function. 519 * The return token is added outside of the switch statement. 520 */ 521 switch(ar->ar_event) { 522 case AUE_ACCEPT: 523 case AUE_BIND: 524 case AUE_LISTEN: 525 case AUE_CONNECT: 526 case AUE_RECV: 527 case AUE_RECVFROM: 528 case AUE_RECVMSG: 529 case AUE_SEND: 530 case AUE_SENDFILE: 531 case AUE_SENDMSG: 532 case AUE_SENDTO: 533 /* 534 * Socket-related events. 535 */ 536 if (ARG_IS_VALID(kar, ARG_FD)) { 537 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 538 kau_write(rec, tok); 539 } 540 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 541 tok = au_to_sock_inet((struct sockaddr_in *) 542 &ar->ar_arg_sockaddr); 543 kau_write(rec, tok); 544 } 545 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 546 tok = au_to_sock_unix((struct sockaddr_un *) 547 &ar->ar_arg_sockaddr); 548 kau_write(rec, tok); 549 UPATH1_TOKENS; 550 } 551 /* XXX Need to handle ARG_SADDRINET6 */ 552 break; 553 554 case AUE_SOCKET: 555 case AUE_SOCKETPAIR: 556 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 557 tok = au_to_arg32(1, "domain", 558 ar->ar_arg_sockinfo.so_domain); 559 kau_write(rec, tok); 560 tok = au_to_arg32(2, "type", 561 ar->ar_arg_sockinfo.so_type); 562 kau_write(rec, tok); 563 tok = au_to_arg32(3, "protocol", 564 ar->ar_arg_sockinfo.so_protocol); 565 kau_write(rec, tok); 566 } 567 break; 568 569 case AUE_SETSOCKOPT: 570 case AUE_SHUTDOWN: 571 if (ARG_IS_VALID(kar, ARG_FD)) { 572 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 573 kau_write(rec, tok); 574 } 575 break; 576 577 case AUE_ACCT: 578 if (ARG_IS_VALID(kar, ARG_UPATH1)) { 579 UPATH1_VNODE1_TOKENS; 580 } else { 581 tok = au_to_arg32(1, "accounting off", 0); 582 kau_write(rec, tok); 583 } 584 break; 585 586 case AUE_SETAUID: 587 if (ARG_IS_VALID(kar, ARG_AUID)) { 588 tok = au_to_arg32(2, "setauid", ar->ar_arg_auid); 589 kau_write(rec, tok); 590 } 591 break; 592 593 case AUE_SETAUDIT: 594 if (ARG_IS_VALID(kar, ARG_AUID) && 595 ARG_IS_VALID(kar, ARG_ASID) && 596 ARG_IS_VALID(kar, ARG_AMASK) && 597 ARG_IS_VALID(kar, ARG_TERMID)) { 598 tok = au_to_arg32(1, "setaudit:auid", 599 ar->ar_arg_auid); 600 kau_write(rec, tok); 601 tok = au_to_arg32(1, "setaudit:port", 602 ar->ar_arg_termid.port); 603 kau_write(rec, tok); 604 tok = au_to_arg32(1, "setaudit:machine", 605 ar->ar_arg_termid.machine); 606 kau_write(rec, tok); 607 tok = au_to_arg32(1, "setaudit:as_success", 608 ar->ar_arg_amask.am_success); 609 kau_write(rec, tok); 610 tok = au_to_arg32(1, "setaudit:as_failure", 611 ar->ar_arg_amask.am_failure); 612 kau_write(rec, tok); 613 tok = au_to_arg32(1, "setaudit:asid", 614 ar->ar_arg_asid); 615 kau_write(rec, tok); 616 } 617 break; 618 619 case AUE_SETAUDIT_ADDR: 620 if (ARG_IS_VALID(kar, ARG_AUID) && 621 ARG_IS_VALID(kar, ARG_ASID) && 622 ARG_IS_VALID(kar, ARG_AMASK) && 623 ARG_IS_VALID(kar, ARG_TERMID_ADDR)) { 624 tok = au_to_arg32(1, "setaudit_addr:auid", 625 ar->ar_arg_auid); 626 kau_write(rec, tok); 627 tok = au_to_arg32(1, "setaudit_addr:as_success", 628 ar->ar_arg_amask.am_success); 629 kau_write(rec, tok); 630 tok = au_to_arg32(1, "setaudit_addr:as_failure", 631 ar->ar_arg_amask.am_failure); 632 kau_write(rec, tok); 633 tok = au_to_arg32(1, "setaudit_addr:asid", 634 ar->ar_arg_asid); 635 kau_write(rec, tok); 636 tok = au_to_arg32(1, "setaudit_addr:type", 637 ar->ar_arg_termid_addr.at_type); 638 kau_write(rec, tok); 639 tok = au_to_arg32(1, "setaudit_addr:port", 640 ar->ar_arg_termid_addr.at_port); 641 kau_write(rec, tok); 642 if (ar->ar_arg_termid_addr.at_type == AU_IPv6) 643 tok = au_to_in_addr_ex((struct in6_addr *) 644 &ar->ar_arg_termid_addr.at_addr[0]); 645 if (ar->ar_arg_termid_addr.at_type == AU_IPv4) 646 tok = au_to_in_addr((struct in_addr *) 647 &ar->ar_arg_termid_addr.at_addr[0]); 648 kau_write(rec, tok); 649 } 650 break; 651 652 case AUE_AUDITON: 653 /* 654 * For AUDITON commands without own event, audit the cmd. 655 */ 656 if (ARG_IS_VALID(kar, ARG_CMD)) { 657 tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd); 658 kau_write(rec, tok); 659 } 660 /* FALLTHROUGH */ 661 662 case AUE_AUDITON_GETCAR: 663 case AUE_AUDITON_GETCLASS: 664 case AUE_AUDITON_GETCOND: 665 case AUE_AUDITON_GETCWD: 666 case AUE_AUDITON_GETKMASK: 667 case AUE_AUDITON_GETSTAT: 668 case AUE_AUDITON_GPOLICY: 669 case AUE_AUDITON_GQCTRL: 670 case AUE_AUDITON_SETCLASS: 671 case AUE_AUDITON_SETCOND: 672 case AUE_AUDITON_SETKMASK: 673 case AUE_AUDITON_SETSMASK: 674 case AUE_AUDITON_SETSTAT: 675 case AUE_AUDITON_SETUMASK: 676 case AUE_AUDITON_SPOLICY: 677 case AUE_AUDITON_SQCTRL: 678 if (ARG_IS_VALID(kar, ARG_AUDITON)) 679 audit_sys_auditon(ar, rec); 680 break; 681 682 case AUE_AUDITCTL: 683 UPATH1_VNODE1_TOKENS; 684 break; 685 686 case AUE_EXIT: 687 if (ARG_IS_VALID(kar, ARG_EXIT)) { 688 tok = au_to_exit(ar->ar_arg_exitretval, 689 ar->ar_arg_exitstatus); 690 kau_write(rec, tok); 691 } 692 break; 693 694 case AUE_ADJTIME: 695 case AUE_CLOCK_SETTIME: 696 case AUE_AUDIT: 697 case AUE_DUP2: 698 case AUE_GETAUDIT: 699 case AUE_GETAUDIT_ADDR: 700 case AUE_GETAUID: 701 case AUE_GETCWD: 702 case AUE_GETFSSTAT: 703 case AUE_GETRESUID: 704 case AUE_GETRESGID: 705 case AUE_KQUEUE: 706 case AUE_MODLOAD: 707 case AUE_MODUNLOAD: 708 case AUE_MSGSYS: 709 case AUE_NTP_ADJTIME: 710 case AUE_PIPE: 711 case AUE_POSIX_OPENPT: 712 case AUE_PROFILE: 713 case AUE_RTPRIO: 714 case AUE_SEMSYS: 715 case AUE_SHMSYS: 716 case AUE_SETPGRP: 717 case AUE_SETRLIMIT: 718 case AUE_SETSID: 719 case AUE_SETTIMEOFDAY: 720 case AUE_SYSARCH: 721 722 /* 723 * Header, subject, and return tokens added at end. 724 */ 725 break; 726 727 case AUE_MKFIFO: 728 if (ARG_IS_VALID(kar, ARG_MODE)) { 729 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 730 kau_write(rec, tok); 731 } 732 /* FALLTHROUGH */ 733 734 case AUE_CHDIR: 735 case AUE_CHROOT: 736 case AUE_FSTATAT: 737 case AUE_FUTIMESAT: 738 case AUE_GETATTRLIST: 739 case AUE_JAIL: 740 case AUE_LUTIMES: 741 case AUE_NFS_GETFH: 742 case AUE_LSTAT: 743 case AUE_PATHCONF: 744 case AUE_READLINK: 745 case AUE_REVOKE: 746 case AUE_RMDIR: 747 case AUE_SEARCHFS: 748 case AUE_SETATTRLIST: 749 case AUE_STAT: 750 case AUE_STATFS: 751 case AUE_SWAPON: 752 case AUE_SWAPOFF: 753 case AUE_TRUNCATE: 754 case AUE_UNDELETE: 755 case AUE_UNLINK: 756 case AUE_UNLINKAT: 757 case AUE_UTIMES: 758 ATFD1_TOKENS(1); 759 UPATH1_VNODE1_TOKENS; 760 break; 761 762 case AUE_ACCESS: 763 case AUE_EACCESS: 764 UPATH1_VNODE1_TOKENS; 765 if (ARG_IS_VALID(kar, ARG_VALUE)) { 766 tok = au_to_arg32(2, "mode", ar->ar_arg_value); 767 kau_write(rec, tok); 768 } 769 break; 770 771 case AUE_FHSTATFS: 772 case AUE_FHOPEN: 773 case AUE_FHSTAT: 774 /* XXXRW: Need to audit vnode argument. */ 775 break; 776 777 case AUE_CHFLAGS: 778 case AUE_LCHFLAGS: 779 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 780 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 781 kau_write(rec, tok); 782 } 783 UPATH1_VNODE1_TOKENS; 784 break; 785 786 case AUE_CHMOD: 787 case AUE_LCHMOD: 788 if (ARG_IS_VALID(kar, ARG_MODE)) { 789 tok = au_to_arg32(2, "new file mode", 790 ar->ar_arg_mode); 791 kau_write(rec, tok); 792 } 793 UPATH1_VNODE1_TOKENS; 794 break; 795 796 case AUE_FCHMODAT: 797 ATFD1_TOKENS(1); 798 if (ARG_IS_VALID(kar, ARG_MODE)) { 799 tok = au_to_arg32(3, "new file mode", 800 ar->ar_arg_mode); 801 kau_write(rec, tok); 802 } 803 UPATH1_VNODE1_TOKENS; 804 break; 805 806 case AUE_CHOWN: 807 case AUE_LCHOWN: 808 if (ARG_IS_VALID(kar, ARG_UID)) { 809 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 810 kau_write(rec, tok); 811 } 812 if (ARG_IS_VALID(kar, ARG_GID)) { 813 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 814 kau_write(rec, tok); 815 } 816 UPATH1_VNODE1_TOKENS; 817 break; 818 819 case AUE_FCHOWNAT: 820 ATFD1_TOKENS(1); 821 if (ARG_IS_VALID(kar, ARG_UID)) { 822 tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid); 823 kau_write(rec, tok); 824 } 825 if (ARG_IS_VALID(kar, ARG_GID)) { 826 tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid); 827 kau_write(rec, tok); 828 } 829 UPATH1_VNODE1_TOKENS; 830 break; 831 832 case AUE_EXCHANGEDATA: 833 UPATH1_VNODE1_TOKENS; 834 UPATH2_TOKENS; 835 break; 836 837 case AUE_CLOSE: 838 if (ARG_IS_VALID(kar, ARG_FD)) { 839 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 840 kau_write(rec, tok); 841 } 842 UPATH1_VNODE1_TOKENS; 843 break; 844 845 case AUE_CLOSEFROM: 846 if (ARG_IS_VALID(kar, ARG_FD)) { 847 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 848 kau_write(rec, tok); 849 } 850 break; 851 852 case AUE_CORE: 853 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 854 tok = au_to_arg32(1, "signal", ar->ar_arg_signum); 855 kau_write(rec, tok); 856 } 857 UPATH1_VNODE1_TOKENS; 858 break; 859 860 case AUE_EXTATTRCTL: 861 UPATH1_VNODE1_TOKENS; 862 if (ARG_IS_VALID(kar, ARG_CMD)) { 863 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 864 kau_write(rec, tok); 865 } 866 /* extattrctl(2) filename parameter is in upath2/vnode2 */ 867 UPATH2_TOKENS; 868 VNODE2_TOKENS; 869 EXTATTR_TOKENS(4); 870 break; 871 872 case AUE_EXTATTR_GET_FILE: 873 case AUE_EXTATTR_SET_FILE: 874 case AUE_EXTATTR_LIST_FILE: 875 case AUE_EXTATTR_DELETE_FILE: 876 case AUE_EXTATTR_GET_LINK: 877 case AUE_EXTATTR_SET_LINK: 878 case AUE_EXTATTR_LIST_LINK: 879 case AUE_EXTATTR_DELETE_LINK: 880 UPATH1_VNODE1_TOKENS; 881 EXTATTR_TOKENS(2); 882 break; 883 884 case AUE_EXTATTR_GET_FD: 885 case AUE_EXTATTR_SET_FD: 886 case AUE_EXTATTR_LIST_FD: 887 case AUE_EXTATTR_DELETE_FD: 888 if (ARG_IS_VALID(kar, ARG_FD)) { 889 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 890 kau_write(rec, tok); 891 } 892 EXTATTR_TOKENS(2); 893 break; 894 895 case AUE_FEXECVE: 896 if (ARG_IS_VALID(kar, ARG_FD)) { 897 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 898 kau_write(rec, tok); 899 } 900 /* FALLTHROUGH */ 901 902 case AUE_EXECVE: 903 case AUE_MAC_EXECVE: 904 if (ARG_IS_VALID(kar, ARG_ARGV)) { 905 tok = au_to_exec_args(ar->ar_arg_argv, 906 ar->ar_arg_argc); 907 kau_write(rec, tok); 908 } 909 if (ARG_IS_VALID(kar, ARG_ENVV)) { 910 tok = au_to_exec_env(ar->ar_arg_envv, 911 ar->ar_arg_envc); 912 kau_write(rec, tok); 913 } 914 UPATH1_VNODE1_TOKENS; 915 break; 916 917 case AUE_FCHMOD: 918 if (ARG_IS_VALID(kar, ARG_MODE)) { 919 tok = au_to_arg32(2, "new file mode", 920 ar->ar_arg_mode); 921 kau_write(rec, tok); 922 } 923 FD_VNODE1_TOKENS; 924 break; 925 926 /* 927 * XXXRW: Some of these need to handle non-vnode cases as well. 928 */ 929 case AUE_FCHDIR: 930 case AUE_FPATHCONF: 931 case AUE_FSTAT: 932 case AUE_FSTATFS: 933 case AUE_FSYNC: 934 case AUE_FTRUNCATE: 935 case AUE_FUTIMES: 936 case AUE_GETDIRENTRIES: 937 case AUE_GETDIRENTRIESATTR: 938 case AUE_LSEEK: 939 case AUE_POLL: 940 case AUE_READ: 941 case AUE_READV: 942 case AUE_WRITE: 943 case AUE_WRITEV: 944 FD_VNODE1_TOKENS; 945 break; 946 947 case AUE_FCHOWN: 948 if (ARG_IS_VALID(kar, ARG_UID)) { 949 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 950 kau_write(rec, tok); 951 } 952 if (ARG_IS_VALID(kar, ARG_GID)) { 953 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 954 kau_write(rec, tok); 955 } 956 FD_VNODE1_TOKENS; 957 break; 958 959 case AUE_FCNTL: 960 if (ARG_IS_VALID(kar, ARG_CMD)) { 961 tok = au_to_arg32(2, "cmd", 962 au_fcntl_cmd_to_bsm(ar->ar_arg_cmd)); 963 kau_write(rec, tok); 964 } 965 if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK || 966 ar->ar_arg_cmd == F_SETLKW) { 967 FD_VNODE1_TOKENS; 968 } 969 break; 970 971 case AUE_FCHFLAGS: 972 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 973 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 974 kau_write(rec, tok); 975 } 976 FD_VNODE1_TOKENS; 977 break; 978 979 case AUE_FLOCK: 980 if (ARG_IS_VALID(kar, ARG_CMD)) { 981 tok = au_to_arg32(2, "operation", ar->ar_arg_cmd); 982 kau_write(rec, tok); 983 } 984 FD_VNODE1_TOKENS; 985 break; 986 987 case AUE_RFORK: 988 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 989 tok = au_to_arg32(1, "flags", ar->ar_arg_fflags); 990 kau_write(rec, tok); 991 } 992 /* FALLTHROUGH */ 993 994 case AUE_FORK: 995 case AUE_VFORK: 996 if (ARG_IS_VALID(kar, ARG_PID)) { 997 tok = au_to_arg32(0, "child PID", ar->ar_arg_pid); 998 kau_write(rec, tok); 999 } 1000 break; 1001 1002 case AUE_IOCTL: 1003 if (ARG_IS_VALID(kar, ARG_CMD)) { 1004 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 1005 kau_write(rec, tok); 1006 } 1007 if (ARG_IS_VALID(kar, ARG_VNODE1)) 1008 FD_VNODE1_TOKENS; 1009 else { 1010 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 1011 tok = kau_to_socket(&ar->ar_arg_sockinfo); 1012 kau_write(rec, tok); 1013 } else { 1014 if (ARG_IS_VALID(kar, ARG_FD)) { 1015 tok = au_to_arg32(1, "fd", 1016 ar->ar_arg_fd); 1017 kau_write(rec, tok); 1018 } 1019 } 1020 } 1021 break; 1022 1023 case AUE_KILL: 1024 case AUE_KILLPG: 1025 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 1026 tok = au_to_arg32(2, "signal", ar->ar_arg_signum); 1027 kau_write(rec, tok); 1028 } 1029 PROCESS_PID_TOKENS(1); 1030 break; 1031 1032 case AUE_KTRACE: 1033 if (ARG_IS_VALID(kar, ARG_CMD)) { 1034 tok = au_to_arg32(2, "ops", ar->ar_arg_cmd); 1035 kau_write(rec, tok); 1036 } 1037 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1038 tok = au_to_arg32(3, "trpoints", ar->ar_arg_value); 1039 kau_write(rec, tok); 1040 } 1041 PROCESS_PID_TOKENS(4); 1042 UPATH1_VNODE1_TOKENS; 1043 break; 1044 1045 case AUE_LINK: 1046 case AUE_LINKAT: 1047 case AUE_RENAME: 1048 case AUE_RENAMEAT: 1049 ATFD1_TOKENS(1); 1050 UPATH1_VNODE1_TOKENS; 1051 ATFD2_TOKENS(3); 1052 UPATH2_TOKENS; 1053 break; 1054 1055 case AUE_LOADSHFILE: 1056 ADDR_TOKEN(4, "base addr"); 1057 UPATH1_VNODE1_TOKENS; 1058 break; 1059 1060 case AUE_MKDIR: 1061 if (ARG_IS_VALID(kar, ARG_MODE)) { 1062 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1063 kau_write(rec, tok); 1064 } 1065 UPATH1_VNODE1_TOKENS; 1066 break; 1067 1068 case AUE_MKNOD: 1069 if (ARG_IS_VALID(kar, ARG_MODE)) { 1070 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1071 kau_write(rec, tok); 1072 } 1073 if (ARG_IS_VALID(kar, ARG_DEV)) { 1074 tok = au_to_arg32(3, "dev", ar->ar_arg_dev); 1075 kau_write(rec, tok); 1076 } 1077 UPATH1_VNODE1_TOKENS; 1078 break; 1079 1080 case AUE_MMAP: 1081 case AUE_MUNMAP: 1082 case AUE_MPROTECT: 1083 case AUE_MLOCK: 1084 case AUE_MUNLOCK: 1085 case AUE_MINHERIT: 1086 ADDR_TOKEN(1, "addr"); 1087 if (ARG_IS_VALID(kar, ARG_LEN)) { 1088 tok = au_to_arg32(2, "len", ar->ar_arg_len); 1089 kau_write(rec, tok); 1090 } 1091 if (ar->ar_event == AUE_MMAP) 1092 FD_VNODE1_TOKENS; 1093 if (ar->ar_event == AUE_MPROTECT) { 1094 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1095 tok = au_to_arg32(3, "protection", 1096 ar->ar_arg_value); 1097 kau_write(rec, tok); 1098 } 1099 } 1100 if (ar->ar_event == AUE_MINHERIT) { 1101 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1102 tok = au_to_arg32(3, "inherit", 1103 ar->ar_arg_value); 1104 kau_write(rec, tok); 1105 } 1106 } 1107 break; 1108 1109 case AUE_MOUNT: 1110 case AUE_NMOUNT: 1111 /* XXX Need to handle NFS mounts */ 1112 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1113 tok = au_to_arg32(3, "flags", ar->ar_arg_fflags); 1114 kau_write(rec, tok); 1115 } 1116 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1117 tok = au_to_text(ar->ar_arg_text); 1118 kau_write(rec, tok); 1119 } 1120 /* FALLTHROUGH */ 1121 1122 case AUE_NFS_SVC: 1123 if (ARG_IS_VALID(kar, ARG_CMD)) { 1124 tok = au_to_arg32(1, "flags", ar->ar_arg_cmd); 1125 kau_write(rec, tok); 1126 } 1127 break; 1128 1129 case AUE_UMOUNT: 1130 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1131 tok = au_to_arg32(2, "flags", ar->ar_arg_value); 1132 kau_write(rec, tok); 1133 } 1134 UPATH1_VNODE1_TOKENS; 1135 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1136 tok = au_to_text(ar->ar_arg_text); 1137 kau_write(rec, tok); 1138 } 1139 break; 1140 1141 case AUE_MSGCTL: 1142 ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd); 1143 /* Fall through */ 1144 1145 case AUE_MSGRCV: 1146 case AUE_MSGSND: 1147 tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id); 1148 kau_write(rec, tok); 1149 if (ar->ar_errno != EINVAL) { 1150 tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id); 1151 kau_write(rec, tok); 1152 } 1153 break; 1154 1155 case AUE_MSGGET: 1156 if (ar->ar_errno == 0) { 1157 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1158 tok = au_to_ipc(AT_IPC_MSG, 1159 ar->ar_arg_svipc_id); 1160 kau_write(rec, tok); 1161 } 1162 } 1163 break; 1164 1165 case AUE_RESETSHFILE: 1166 ADDR_TOKEN(1, "base addr"); 1167 break; 1168 1169 case AUE_OPEN_RC: 1170 case AUE_OPEN_RTC: 1171 case AUE_OPEN_RWC: 1172 case AUE_OPEN_RWTC: 1173 case AUE_OPEN_WC: 1174 case AUE_OPEN_WTC: 1175 case AUE_CREAT: 1176 if (ARG_IS_VALID(kar, ARG_MODE)) { 1177 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1178 kau_write(rec, tok); 1179 } 1180 /* FALLTHROUGH */ 1181 1182 case AUE_OPEN_R: 1183 case AUE_OPEN_RT: 1184 case AUE_OPEN_RW: 1185 case AUE_OPEN_RWT: 1186 case AUE_OPEN_W: 1187 case AUE_OPEN_WT: 1188 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1189 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1190 kau_write(rec, tok); 1191 } 1192 UPATH1_VNODE1_TOKENS; 1193 break; 1194 1195 case AUE_OPENAT_RC: 1196 case AUE_OPENAT_RTC: 1197 case AUE_OPENAT_RWC: 1198 case AUE_OPENAT_RWTC: 1199 case AUE_OPENAT_WC: 1200 case AUE_OPENAT_WTC: 1201 if (ARG_IS_VALID(kar, ARG_MODE)) { 1202 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1203 kau_write(rec, tok); 1204 } 1205 /* FALLTHROUGH */ 1206 1207 case AUE_OPENAT_R: 1208 case AUE_OPENAT_RT: 1209 case AUE_OPENAT_RW: 1210 case AUE_OPENAT_RWT: 1211 case AUE_OPENAT_W: 1212 case AUE_OPENAT_WT: 1213 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1214 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1215 kau_write(rec, tok); 1216 } 1217 ATFD1_TOKENS(1); 1218 UPATH1_VNODE1_TOKENS; 1219 break; 1220 1221 case AUE_PTRACE: 1222 if (ARG_IS_VALID(kar, ARG_CMD)) { 1223 tok = au_to_arg32(1, "request", ar->ar_arg_cmd); 1224 kau_write(rec, tok); 1225 } 1226 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1227 tok = au_to_arg32(4, "data", ar->ar_arg_value); 1228 kau_write(rec, tok); 1229 } 1230 PROCESS_PID_TOKENS(2); 1231 break; 1232 1233 case AUE_QUOTACTL: 1234 if (ARG_IS_VALID(kar, ARG_CMD)) { 1235 tok = au_to_arg32(2, "command", ar->ar_arg_cmd); 1236 kau_write(rec, tok); 1237 } 1238 if (ARG_IS_VALID(kar, ARG_UID)) { 1239 tok = au_to_arg32(3, "uid", ar->ar_arg_uid); 1240 kau_write(rec, tok); 1241 } 1242 if (ARG_IS_VALID(kar, ARG_GID)) { 1243 tok = au_to_arg32(3, "gid", ar->ar_arg_gid); 1244 kau_write(rec, tok); 1245 } 1246 UPATH1_VNODE1_TOKENS; 1247 break; 1248 1249 case AUE_REBOOT: 1250 if (ARG_IS_VALID(kar, ARG_CMD)) { 1251 tok = au_to_arg32(1, "howto", ar->ar_arg_cmd); 1252 kau_write(rec, tok); 1253 } 1254 break; 1255 1256 case AUE_SEMCTL: 1257 ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd); 1258 /* Fall through */ 1259 1260 case AUE_SEMOP: 1261 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1262 tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id); 1263 kau_write(rec, tok); 1264 if (ar->ar_errno != EINVAL) { 1265 tok = au_to_ipc(AT_IPC_SEM, 1266 ar->ar_arg_svipc_id); 1267 kau_write(rec, tok); 1268 } 1269 } 1270 break; 1271 1272 case AUE_SEMGET: 1273 if (ar->ar_errno == 0) { 1274 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1275 tok = au_to_ipc(AT_IPC_SEM, 1276 ar->ar_arg_svipc_id); 1277 kau_write(rec, tok); 1278 } 1279 } 1280 break; 1281 1282 case AUE_SETEGID: 1283 if (ARG_IS_VALID(kar, ARG_EGID)) { 1284 tok = au_to_arg32(1, "egid", ar->ar_arg_egid); 1285 kau_write(rec, tok); 1286 } 1287 break; 1288 1289 case AUE_SETEUID: 1290 if (ARG_IS_VALID(kar, ARG_EUID)) { 1291 tok = au_to_arg32(1, "euid", ar->ar_arg_euid); 1292 kau_write(rec, tok); 1293 } 1294 break; 1295 1296 case AUE_SETREGID: 1297 if (ARG_IS_VALID(kar, ARG_RGID)) { 1298 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1299 kau_write(rec, tok); 1300 } 1301 if (ARG_IS_VALID(kar, ARG_EGID)) { 1302 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1303 kau_write(rec, tok); 1304 } 1305 break; 1306 1307 case AUE_SETREUID: 1308 if (ARG_IS_VALID(kar, ARG_RUID)) { 1309 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1310 kau_write(rec, tok); 1311 } 1312 if (ARG_IS_VALID(kar, ARG_EUID)) { 1313 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1314 kau_write(rec, tok); 1315 } 1316 break; 1317 1318 case AUE_SETRESGID: 1319 if (ARG_IS_VALID(kar, ARG_RGID)) { 1320 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1321 kau_write(rec, tok); 1322 } 1323 if (ARG_IS_VALID(kar, ARG_EGID)) { 1324 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1325 kau_write(rec, tok); 1326 } 1327 if (ARG_IS_VALID(kar, ARG_SGID)) { 1328 tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid); 1329 kau_write(rec, tok); 1330 } 1331 break; 1332 1333 case AUE_SETRESUID: 1334 if (ARG_IS_VALID(kar, ARG_RUID)) { 1335 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1336 kau_write(rec, tok); 1337 } 1338 if (ARG_IS_VALID(kar, ARG_EUID)) { 1339 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1340 kau_write(rec, tok); 1341 } 1342 if (ARG_IS_VALID(kar, ARG_SUID)) { 1343 tok = au_to_arg32(3, "suid", ar->ar_arg_suid); 1344 kau_write(rec, tok); 1345 } 1346 break; 1347 1348 case AUE_SETGID: 1349 if (ARG_IS_VALID(kar, ARG_GID)) { 1350 tok = au_to_arg32(1, "gid", ar->ar_arg_gid); 1351 kau_write(rec, tok); 1352 } 1353 break; 1354 1355 case AUE_SETUID: 1356 if (ARG_IS_VALID(kar, ARG_UID)) { 1357 tok = au_to_arg32(1, "uid", ar->ar_arg_uid); 1358 kau_write(rec, tok); 1359 } 1360 break; 1361 1362 case AUE_SETGROUPS: 1363 if (ARG_IS_VALID(kar, ARG_GROUPSET)) { 1364 for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++) 1365 { 1366 tok = au_to_arg32(1, "setgroups", 1367 ar->ar_arg_groups.gidset[ctr]); 1368 kau_write(rec, tok); 1369 } 1370 } 1371 break; 1372 1373 case AUE_SETLOGIN: 1374 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1375 tok = au_to_text(ar->ar_arg_text); 1376 kau_write(rec, tok); 1377 } 1378 break; 1379 1380 case AUE_SETPRIORITY: 1381 if (ARG_IS_VALID(kar, ARG_CMD)) { 1382 tok = au_to_arg32(1, "which", ar->ar_arg_cmd); 1383 kau_write(rec, tok); 1384 } 1385 if (ARG_IS_VALID(kar, ARG_UID)) { 1386 tok = au_to_arg32(2, "who", ar->ar_arg_uid); 1387 kau_write(rec, tok); 1388 } 1389 PROCESS_PID_TOKENS(2); 1390 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1391 tok = au_to_arg32(3, "priority", ar->ar_arg_value); 1392 kau_write(rec, tok); 1393 } 1394 break; 1395 1396 case AUE_SETPRIVEXEC: 1397 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1398 tok = au_to_arg32(1, "flag", ar->ar_arg_value); 1399 kau_write(rec, tok); 1400 } 1401 break; 1402 1403 /* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */ 1404 case AUE_SHMAT: 1405 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1406 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1407 kau_write(rec, tok); 1408 /* XXXAUDIT: Does having the ipc token make sense? */ 1409 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1410 kau_write(rec, tok); 1411 } 1412 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1413 tok = au_to_arg32(2, "shmaddr", 1414 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1415 kau_write(rec, tok); 1416 } 1417 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1418 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1419 kau_write(rec, tok); 1420 } 1421 break; 1422 1423 case AUE_SHMCTL: 1424 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1425 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1426 kau_write(rec, tok); 1427 /* XXXAUDIT: Does having the ipc token make sense? */ 1428 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1429 kau_write(rec, tok); 1430 } 1431 switch (ar->ar_arg_svipc_cmd) { 1432 case IPC_STAT: 1433 ar->ar_event = AUE_SHMCTL_STAT; 1434 break; 1435 case IPC_RMID: 1436 ar->ar_event = AUE_SHMCTL_RMID; 1437 break; 1438 case IPC_SET: 1439 ar->ar_event = AUE_SHMCTL_SET; 1440 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1441 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1442 kau_write(rec, tok); 1443 } 1444 break; 1445 default: 1446 break; /* We will audit a bad command */ 1447 } 1448 break; 1449 1450 case AUE_SHMDT: 1451 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1452 tok = au_to_arg32(1, "shmaddr", 1453 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1454 kau_write(rec, tok); 1455 } 1456 break; 1457 1458 case AUE_SHMGET: 1459 /* This is unusual; the return value is in an argument token */ 1460 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1461 tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id); 1462 kau_write(rec, tok); 1463 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1464 kau_write(rec, tok); 1465 } 1466 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1467 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1468 kau_write(rec, tok); 1469 } 1470 break; 1471 1472 /* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE 1473 * and AUE_SEMUNLINK are Posix IPC */ 1474 case AUE_SHMOPEN: 1475 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1476 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1477 kau_write(rec, tok); 1478 } 1479 if (ARG_IS_VALID(kar, ARG_MODE)) { 1480 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1481 kau_write(rec, tok); 1482 } 1483 /* FALLTHROUGH */ 1484 1485 case AUE_SHMUNLINK: 1486 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1487 tok = au_to_text(ar->ar_arg_text); 1488 kau_write(rec, tok); 1489 } 1490 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1491 struct ipc_perm perm; 1492 1493 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1494 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1495 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1496 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1497 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1498 perm.seq = 0; 1499 perm.key = 0; 1500 tok = au_to_ipc_perm(&perm); 1501 kau_write(rec, tok); 1502 } 1503 break; 1504 1505 case AUE_SEMOPEN: 1506 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1507 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1508 kau_write(rec, tok); 1509 } 1510 if (ARG_IS_VALID(kar, ARG_MODE)) { 1511 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1512 kau_write(rec, tok); 1513 } 1514 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1515 tok = au_to_arg32(4, "value", ar->ar_arg_value); 1516 kau_write(rec, tok); 1517 } 1518 /* FALLTHROUGH */ 1519 1520 case AUE_SEMUNLINK: 1521 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1522 tok = au_to_text(ar->ar_arg_text); 1523 kau_write(rec, tok); 1524 } 1525 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1526 struct ipc_perm perm; 1527 1528 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1529 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1530 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1531 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1532 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1533 perm.seq = 0; 1534 perm.key = 0; 1535 tok = au_to_ipc_perm(&perm); 1536 kau_write(rec, tok); 1537 } 1538 break; 1539 1540 case AUE_SEMCLOSE: 1541 if (ARG_IS_VALID(kar, ARG_FD)) { 1542 tok = au_to_arg32(1, "sem", ar->ar_arg_fd); 1543 kau_write(rec, tok); 1544 } 1545 break; 1546 1547 case AUE_SYMLINK: 1548 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1549 tok = au_to_text(ar->ar_arg_text); 1550 kau_write(rec, tok); 1551 } 1552 UPATH1_VNODE1_TOKENS; 1553 break; 1554 1555 case AUE_SYSCTL: 1556 case AUE_SYSCTL_NONADMIN: 1557 if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) { 1558 for (ctr = 0; ctr < ar->ar_arg_len; ctr++) { 1559 tok = au_to_arg32(1, "name", 1560 ar->ar_arg_ctlname[ctr]); 1561 kau_write(rec, tok); 1562 } 1563 } 1564 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1565 tok = au_to_arg32(5, "newval", ar->ar_arg_value); 1566 kau_write(rec, tok); 1567 } 1568 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1569 tok = au_to_text(ar->ar_arg_text); 1570 kau_write(rec, tok); 1571 } 1572 break; 1573 1574 case AUE_UMASK: 1575 if (ARG_IS_VALID(kar, ARG_MASK)) { 1576 tok = au_to_arg32(1, "new mask", ar->ar_arg_mask); 1577 kau_write(rec, tok); 1578 } 1579 tok = au_to_arg32(0, "prev mask", ar->ar_retval); 1580 kau_write(rec, tok); 1581 break; 1582 1583 case AUE_WAIT4: 1584 PROCESS_PID_TOKENS(1); 1585 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1586 tok = au_to_arg32(3, "options", ar->ar_arg_value); 1587 kau_write(rec, tok); 1588 } 1589 break; 1590 1591 case AUE_NULL: 1592 default: 1593 printf("BSM conversion requested for unknown event %d\n", 1594 ar->ar_event); 1595 1596 /* 1597 * Write the subject token so it is properly freed here. 1598 */ 1599 kau_write(rec, subj_tok); 1600 kau_free(rec); 1601 return (BSM_NOAUDIT); 1602 } 1603 1604 kau_write(rec, subj_tok); 1605 tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval); 1606 kau_write(rec, tok); /* Every record gets a return token */ 1607 1608 kau_close(rec, &ar->ar_endtime, ar->ar_event); 1609 1610 *pau = rec; 1611 return (BSM_SUCCESS); 1612 } 1613 1614 /* 1615 * Verify that a record is a valid BSM record. This verification is simple 1616 * now, but may be expanded on sometime in the future. Return 1 if the 1617 * record is good, 0 otherwise. 1618 */ 1619 int 1620 bsm_rec_verify(void *rec) 1621 { 1622 char c = *(char *)rec; 1623 1624 /* 1625 * Check the token ID of the first token; it has to be a header 1626 * token. 1627 * 1628 * XXXAUDIT There needs to be a token structure to map a token. 1629 * XXXAUDIT 'Shouldn't be simply looking at the first char. 1630 */ 1631 if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) && 1632 (c != AUT_HEADER64) && (c != AUT_HEADER64_EX)) 1633 return (0); 1634 return (1); 1635 } 1636