1 /* 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1999-2009 Apple Inc. 5 * Copyright (c) 2016-2017 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Portions of this software were developed by BAE Systems, the University of 9 * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL 10 * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent 11 * Computing (TC) research program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 22 * its contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 34 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/vnode.h> 43 #include <sys/ipc.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/extattr.h> 49 #include <sys/fcntl.h> 50 #include <sys/user.h> 51 #include <sys/systm.h> 52 53 #include <bsm/audit.h> 54 #include <bsm/audit_internal.h> 55 #include <bsm/audit_record.h> 56 #include <bsm/audit_kevents.h> 57 58 #include <security/audit/audit.h> 59 #include <security/audit/audit_private.h> 60 61 #include <netinet/in_systm.h> 62 #include <netinet/in.h> 63 #include <netinet/ip.h> 64 65 MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data"); 66 67 static void audit_sys_auditon(struct audit_record *ar, 68 struct au_record *rec); 69 70 /* 71 * Initialize the BSM auditing subsystem. 72 */ 73 void 74 kau_init(void) 75 { 76 77 au_evclassmap_init(); 78 au_evnamemap_init(); 79 } 80 81 /* 82 * This call reserves memory for the audit record. Memory must be guaranteed 83 * before any auditable event can be generated. The au_record structure 84 * maintains a reference to the memory allocated above and also the list of 85 * tokens associated with this record. 86 */ 87 static struct au_record * 88 kau_open(void) 89 { 90 struct au_record *rec; 91 92 rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK); 93 rec->data = NULL; 94 TAILQ_INIT(&rec->token_q); 95 rec->len = 0; 96 rec->used = 1; 97 98 return (rec); 99 } 100 101 /* 102 * Store the token with the record descriptor. 103 */ 104 static void 105 kau_write(struct au_record *rec, struct au_token *tok) 106 { 107 108 KASSERT(tok != NULL, ("kau_write: tok == NULL")); 109 110 TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens); 111 rec->len += tok->len; 112 } 113 114 /* 115 * Close out the audit record by adding the header token, identifying any 116 * missing tokens. Write out the tokens to the record memory. 117 */ 118 static void 119 kau_close(struct au_record *rec, struct timespec *ctime, short event) 120 { 121 u_char *dptr; 122 size_t tot_rec_size; 123 token_t *cur, *hdr, *trail; 124 struct timeval tm; 125 size_t hdrsize; 126 struct auditinfo_addr ak; 127 struct in6_addr *ap; 128 129 audit_get_kinfo(&ak); 130 hdrsize = 0; 131 switch (ak.ai_termid.at_type) { 132 case AU_IPv4: 133 hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ? 134 AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak); 135 break; 136 case AU_IPv6: 137 ap = (struct in6_addr *)&ak.ai_termid.at_addr[0]; 138 hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE : 139 AUDIT_HEADER_EX_SIZE(&ak); 140 break; 141 default: 142 panic("kau_close: invalid address family"); 143 } 144 tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE; 145 rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO); 146 147 tm.tv_usec = ctime->tv_nsec / 1000; 148 tm.tv_sec = ctime->tv_sec; 149 if (hdrsize != AUDIT_HEADER_SIZE) 150 hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak); 151 else 152 hdr = au_to_header32_tm(tot_rec_size, event, 0, tm); 153 TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens); 154 155 trail = au_to_trailer(tot_rec_size); 156 TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens); 157 158 rec->len = tot_rec_size; 159 dptr = rec->data; 160 TAILQ_FOREACH(cur, &rec->token_q, tokens) { 161 memcpy(dptr, cur->t_data, cur->len); 162 dptr += cur->len; 163 } 164 } 165 166 /* 167 * Free a BSM audit record by releasing all the tokens and clearing the audit 168 * record information. 169 */ 170 void 171 kau_free(struct au_record *rec) 172 { 173 struct au_token *tok; 174 175 /* Free the token list. */ 176 while ((tok = TAILQ_FIRST(&rec->token_q))) { 177 TAILQ_REMOVE(&rec->token_q, tok, tokens); 178 free(tok->t_data, M_AUDITBSM); 179 free(tok, M_AUDITBSM); 180 } 181 182 rec->used = 0; 183 rec->len = 0; 184 free(rec->data, M_AUDITBSM); 185 free(rec, M_AUDITBSM); 186 } 187 188 /* 189 * XXX: May want turn some (or all) of these macros into functions in order 190 * to reduce the generated code size. 191 * 192 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the 193 * caller are OK with this. 194 */ 195 #define ATFD1_TOKENS(argnum) do { \ 196 if (ARG_IS_VALID(kar, ARG_ATFD1)) { \ 197 tok = au_to_arg32(argnum, "at fd 1", ar->ar_arg_atfd1); \ 198 kau_write(rec, tok); \ 199 } \ 200 } while (0) 201 202 #define ATFD2_TOKENS(argnum) do { \ 203 if (ARG_IS_VALID(kar, ARG_ATFD2)) { \ 204 tok = au_to_arg32(argnum, "at fd 2", ar->ar_arg_atfd2); \ 205 kau_write(rec, tok); \ 206 } \ 207 } while (0) 208 209 #define UPATH1_TOKENS do { \ 210 if (ARG_IS_VALID(kar, ARG_UPATH1)) { \ 211 tok = au_to_path(ar->ar_arg_upath1); \ 212 kau_write(rec, tok); \ 213 } \ 214 } while (0) 215 216 #define UPATH2_TOKENS do { \ 217 if (ARG_IS_VALID(kar, ARG_UPATH2)) { \ 218 tok = au_to_path(ar->ar_arg_upath2); \ 219 kau_write(rec, tok); \ 220 } \ 221 } while (0) 222 223 #define VNODE1_TOKENS do { \ 224 if (ARG_IS_VALID(kar, ARG_ATFD)) { \ 225 tok = au_to_arg32(1, "at fd", ar->ar_arg_atfd); \ 226 kau_write(rec, tok); \ 227 } \ 228 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 229 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 230 kau_write(rec, tok); \ 231 } \ 232 } while (0) 233 234 #define UPATH1_VNODE1_TOKENS do { \ 235 UPATH1_TOKENS; \ 236 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 237 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 238 kau_write(rec, tok); \ 239 } \ 240 } while (0) 241 242 #define VNODE2_TOKENS do { \ 243 if (ARG_IS_VALID(kar, ARG_VNODE2)) { \ 244 tok = au_to_attr32(&ar->ar_arg_vnode2); \ 245 kau_write(rec, tok); \ 246 } \ 247 } while (0) 248 249 #define FD_VNODE1_TOKENS do { \ 250 if (ARG_IS_VALID(kar, ARG_VNODE1)) { \ 251 if (ARG_IS_VALID(kar, ARG_FD)) { \ 252 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); \ 253 kau_write(rec, tok); \ 254 } \ 255 tok = au_to_attr32(&ar->ar_arg_vnode1); \ 256 kau_write(rec, tok); \ 257 } else { \ 258 if (ARG_IS_VALID(kar, ARG_FD)) { \ 259 tok = au_to_arg32(1, "non-file: fd", \ 260 ar->ar_arg_fd); \ 261 kau_write(rec, tok); \ 262 } \ 263 } \ 264 } while (0) 265 266 #define PROCESS_PID_TOKENS(argn) do { \ 267 if ((ar->ar_arg_pid > 0) /* Reference a single process */ \ 268 && (ARG_IS_VALID(kar, ARG_PROCESS))) { \ 269 tok = au_to_process32_ex(ar->ar_arg_auid, \ 270 ar->ar_arg_euid, ar->ar_arg_egid, \ 271 ar->ar_arg_ruid, ar->ar_arg_rgid, \ 272 ar->ar_arg_pid, ar->ar_arg_asid, \ 273 &ar->ar_arg_termid_addr); \ 274 kau_write(rec, tok); \ 275 } else if (ARG_IS_VALID(kar, ARG_PID)) { \ 276 tok = au_to_arg32(argn, "process", ar->ar_arg_pid); \ 277 kau_write(rec, tok); \ 278 } \ 279 } while (0) 280 281 #define EXTATTR_TOKENS(namespace_argnum) do { \ 282 if (ARG_IS_VALID(kar, ARG_VALUE)) { \ 283 switch (ar->ar_arg_value) { \ 284 case EXTATTR_NAMESPACE_USER: \ 285 tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\ 286 break; \ 287 case EXTATTR_NAMESPACE_SYSTEM: \ 288 tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\ 289 break; \ 290 default: \ 291 tok = au_to_arg32((namespace_argnum), \ 292 "attrnamespace", ar->ar_arg_value); \ 293 break; \ 294 } \ 295 kau_write(rec, tok); \ 296 } \ 297 /* attrname is in the text field */ \ 298 if (ARG_IS_VALID(kar, ARG_TEXT)) { \ 299 tok = au_to_text(ar->ar_arg_text); \ 300 kau_write(rec, tok); \ 301 } \ 302 } while (0) 303 304 /* 305 * Not all pointer arguments to system calls are of interest, but in some 306 * cases they reflect delegation of rights, such as mmap(2) followed by 307 * minherit(2) before execve(2), so do the best we can. 308 */ 309 #define ADDR_TOKEN(argnum, argname) do { \ 310 if (ARG_IS_VALID(kar, ARG_ADDR)) { \ 311 if (sizeof(void *) == sizeof(uint32_t)) \ 312 tok = au_to_arg32((argnum), (argname), \ 313 (uint32_t)(uintptr_t)ar->ar_arg_addr); \ 314 else \ 315 tok = au_to_arg64((argnum), (argname), \ 316 (uint64_t)(uintptr_t)ar->ar_arg_addr); \ 317 kau_write(rec, tok); \ 318 } \ 319 } while (0) 320 321 322 /* 323 * Implement auditing for the auditon() system call. The audit tokens that 324 * are generated depend on the command that was sent into the auditon() 325 * system call. 326 */ 327 static void 328 audit_sys_auditon(struct audit_record *ar, struct au_record *rec) 329 { 330 struct au_token *tok; 331 332 tok = au_to_arg32(3, "length", ar->ar_arg_len); 333 kau_write(rec, tok); 334 switch (ar->ar_arg_cmd) { 335 case A_OLDSETPOLICY: 336 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 337 tok = au_to_arg64(2, "policy", 338 ar->ar_arg_auditon.au_policy64); 339 kau_write(rec, tok); 340 break; 341 } 342 /* FALLTHROUGH */ 343 344 case A_SETPOLICY: 345 tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy); 346 kau_write(rec, tok); 347 break; 348 349 case A_SETKMASK: 350 tok = au_to_arg32(2, "setkmask:as_success", 351 ar->ar_arg_auditon.au_mask.am_success); 352 kau_write(rec, tok); 353 tok = au_to_arg32(2, "setkmask:as_failure", 354 ar->ar_arg_auditon.au_mask.am_failure); 355 kau_write(rec, tok); 356 break; 357 358 case A_OLDSETQCTRL: 359 if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) { 360 tok = au_to_arg64(2, "setqctrl:aq_hiwater", 361 ar->ar_arg_auditon.au_qctrl64.aq64_hiwater); 362 kau_write(rec, tok); 363 tok = au_to_arg64(2, "setqctrl:aq_lowater", 364 ar->ar_arg_auditon.au_qctrl64.aq64_lowater); 365 kau_write(rec, tok); 366 tok = au_to_arg64(2, "setqctrl:aq_bufsz", 367 ar->ar_arg_auditon.au_qctrl64.aq64_bufsz); 368 kau_write(rec, tok); 369 tok = au_to_arg64(2, "setqctrl:aq_delay", 370 ar->ar_arg_auditon.au_qctrl64.aq64_delay); 371 kau_write(rec, tok); 372 tok = au_to_arg64(2, "setqctrl:aq_minfree", 373 ar->ar_arg_auditon.au_qctrl64.aq64_minfree); 374 kau_write(rec, tok); 375 break; 376 } 377 /* FALLTHROUGH */ 378 379 case A_SETQCTRL: 380 tok = au_to_arg32(2, "setqctrl:aq_hiwater", 381 ar->ar_arg_auditon.au_qctrl.aq_hiwater); 382 kau_write(rec, tok); 383 tok = au_to_arg32(2, "setqctrl:aq_lowater", 384 ar->ar_arg_auditon.au_qctrl.aq_lowater); 385 kau_write(rec, tok); 386 tok = au_to_arg32(2, "setqctrl:aq_bufsz", 387 ar->ar_arg_auditon.au_qctrl.aq_bufsz); 388 kau_write(rec, tok); 389 tok = au_to_arg32(2, "setqctrl:aq_delay", 390 ar->ar_arg_auditon.au_qctrl.aq_delay); 391 kau_write(rec, tok); 392 tok = au_to_arg32(2, "setqctrl:aq_minfree", 393 ar->ar_arg_auditon.au_qctrl.aq_minfree); 394 kau_write(rec, tok); 395 break; 396 397 case A_SETUMASK: 398 tok = au_to_arg32(2, "setumask:as_success", 399 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 400 kau_write(rec, tok); 401 tok = au_to_arg32(2, "setumask:as_failure", 402 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 403 kau_write(rec, tok); 404 break; 405 406 case A_SETSMASK: 407 tok = au_to_arg32(2, "setsmask:as_success", 408 ar->ar_arg_auditon.au_auinfo.ai_mask.am_success); 409 kau_write(rec, tok); 410 tok = au_to_arg32(2, "setsmask:as_failure", 411 ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure); 412 kau_write(rec, tok); 413 break; 414 415 case A_OLDSETCOND: 416 if ((size_t)ar->ar_arg_len == sizeof(int64_t)) { 417 tok = au_to_arg64(2, "setcond", 418 ar->ar_arg_auditon.au_cond64); 419 kau_write(rec, tok); 420 break; 421 } 422 /* FALLTHROUGH */ 423 424 case A_SETCOND: 425 tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond); 426 kau_write(rec, tok); 427 break; 428 429 case A_SETCLASS: 430 tok = au_to_arg32(2, "setclass:ec_event", 431 ar->ar_arg_auditon.au_evclass.ec_number); 432 kau_write(rec, tok); 433 tok = au_to_arg32(2, "setclass:ec_class", 434 ar->ar_arg_auditon.au_evclass.ec_class); 435 kau_write(rec, tok); 436 break; 437 438 case A_SETPMASK: 439 tok = au_to_arg32(2, "setpmask:as_success", 440 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success); 441 kau_write(rec, tok); 442 tok = au_to_arg32(2, "setpmask:as_failure", 443 ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure); 444 kau_write(rec, tok); 445 break; 446 447 case A_SETFSIZE: 448 tok = au_to_arg32(2, "setfsize:filesize", 449 ar->ar_arg_auditon.au_fstat.af_filesz); 450 kau_write(rec, tok); 451 break; 452 453 default: 454 break; 455 } 456 } 457 458 /* 459 * Convert an internal kernel audit record to a BSM record and return a 460 * success/failure indicator. The BSM record is passed as an out parameter to 461 * this function. 462 * 463 * Return conditions: 464 * BSM_SUCCESS: The BSM record is valid 465 * BSM_FAILURE: Failure; the BSM record is NULL. 466 * BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL. 467 */ 468 int 469 kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau) 470 { 471 struct au_token *tok, *subj_tok, *jail_tok; 472 struct au_record *rec; 473 au_tid_t tid; 474 struct audit_record *ar; 475 int ctr; 476 477 KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL")); 478 479 *pau = NULL; 480 ar = &kar->k_ar; 481 rec = kau_open(); 482 483 /* 484 * Create the subject token. If this credential was jailed be sure to 485 * generate a zonename token. 486 */ 487 if (ar->ar_jailname[0] != '\0') 488 jail_tok = au_to_zonename(ar->ar_jailname); 489 else 490 jail_tok = NULL; 491 switch (ar->ar_subj_term_addr.at_type) { 492 case AU_IPv4: 493 tid.port = ar->ar_subj_term_addr.at_port; 494 tid.machine = ar->ar_subj_term_addr.at_addr[0]; 495 subj_tok = au_to_subject32(ar->ar_subj_auid, /* audit ID */ 496 ar->ar_subj_cred.cr_uid, /* eff uid */ 497 ar->ar_subj_egid, /* eff group id */ 498 ar->ar_subj_ruid, /* real uid */ 499 ar->ar_subj_rgid, /* real group id */ 500 ar->ar_subj_pid, /* process id */ 501 ar->ar_subj_asid, /* session ID */ 502 &tid); 503 break; 504 case AU_IPv6: 505 subj_tok = au_to_subject32_ex(ar->ar_subj_auid, 506 ar->ar_subj_cred.cr_uid, 507 ar->ar_subj_egid, 508 ar->ar_subj_ruid, 509 ar->ar_subj_rgid, 510 ar->ar_subj_pid, 511 ar->ar_subj_asid, 512 &ar->ar_subj_term_addr); 513 break; 514 default: 515 bzero(&tid, sizeof(tid)); 516 subj_tok = au_to_subject32(ar->ar_subj_auid, 517 ar->ar_subj_cred.cr_uid, 518 ar->ar_subj_egid, 519 ar->ar_subj_ruid, 520 ar->ar_subj_rgid, 521 ar->ar_subj_pid, 522 ar->ar_subj_asid, 523 &tid); 524 } 525 526 /* 527 * The logic inside each case fills in the tokens required for the 528 * event, except for the header, trailer, and return tokens. The 529 * header and trailer tokens are added by the kau_close() function. 530 * The return token is added outside of the switch statement. 531 */ 532 switch(ar->ar_event) { 533 case AUE_ACCEPT: 534 if (ARG_IS_VALID(kar, ARG_FD)) { 535 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 536 kau_write(rec, tok); 537 } 538 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 539 tok = au_to_sock_inet((struct sockaddr_in *) 540 &ar->ar_arg_sockaddr); 541 kau_write(rec, tok); 542 } 543 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 544 tok = au_to_sock_unix((struct sockaddr_un *) 545 &ar->ar_arg_sockaddr); 546 kau_write(rec, tok); 547 UPATH1_TOKENS; 548 } 549 break; 550 551 case AUE_BIND: 552 case AUE_LISTEN: 553 case AUE_CONNECT: 554 case AUE_RECV: 555 case AUE_RECVFROM: 556 case AUE_RECVMSG: 557 case AUE_SEND: 558 case AUE_SENDMSG: 559 case AUE_SENDTO: 560 /* 561 * Socket-related events. 562 */ 563 if (ARG_IS_VALID(kar, ARG_FD)) { 564 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 565 kau_write(rec, tok); 566 } 567 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 568 tok = au_to_sock_inet((struct sockaddr_in *) 569 &ar->ar_arg_sockaddr); 570 kau_write(rec, tok); 571 } 572 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 573 tok = au_to_sock_unix((struct sockaddr_un *) 574 &ar->ar_arg_sockaddr); 575 kau_write(rec, tok); 576 UPATH1_TOKENS; 577 } 578 /* XXX Need to handle ARG_SADDRINET6 */ 579 break; 580 581 case AUE_BINDAT: 582 case AUE_CONNECTAT: 583 ATFD1_TOKENS(1); 584 if (ARG_IS_VALID(kar, ARG_FD)) { 585 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 586 kau_write(rec, tok); 587 } 588 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 589 tok = au_to_sock_unix((struct sockaddr_un *) 590 &ar->ar_arg_sockaddr); 591 kau_write(rec, tok); 592 UPATH1_TOKENS; 593 } 594 break; 595 596 case AUE_SENDFILE: 597 FD_VNODE1_TOKENS; 598 if (ARG_IS_VALID(kar, ARG_SADDRINET)) { 599 tok = au_to_sock_inet((struct sockaddr_in *) 600 &ar->ar_arg_sockaddr); 601 kau_write(rec, tok); 602 } 603 if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) { 604 tok = au_to_sock_unix((struct sockaddr_un *) 605 &ar->ar_arg_sockaddr); 606 kau_write(rec, tok); 607 UPATH1_TOKENS; 608 } 609 /* XXX Need to handle ARG_SADDRINET6 */ 610 break; 611 612 case AUE_SOCKET: 613 case AUE_SOCKETPAIR: 614 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 615 tok = au_to_arg32(1, "domain", 616 ar->ar_arg_sockinfo.so_domain); 617 kau_write(rec, tok); 618 tok = au_to_arg32(2, "type", 619 ar->ar_arg_sockinfo.so_type); 620 kau_write(rec, tok); 621 tok = au_to_arg32(3, "protocol", 622 ar->ar_arg_sockinfo.so_protocol); 623 kau_write(rec, tok); 624 } 625 break; 626 627 case AUE_SETSOCKOPT: 628 case AUE_SHUTDOWN: 629 if (ARG_IS_VALID(kar, ARG_FD)) { 630 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 631 kau_write(rec, tok); 632 } 633 break; 634 635 case AUE_ACCT: 636 if (ARG_IS_VALID(kar, ARG_UPATH1)) { 637 UPATH1_VNODE1_TOKENS; 638 } else { 639 tok = au_to_arg32(1, "accounting off", 0); 640 kau_write(rec, tok); 641 } 642 break; 643 644 case AUE_SETAUID: 645 if (ARG_IS_VALID(kar, ARG_AUID)) { 646 tok = au_to_arg32(2, "setauid", ar->ar_arg_auid); 647 kau_write(rec, tok); 648 } 649 break; 650 651 case AUE_SETAUDIT: 652 if (ARG_IS_VALID(kar, ARG_AUID) && 653 ARG_IS_VALID(kar, ARG_ASID) && 654 ARG_IS_VALID(kar, ARG_AMASK) && 655 ARG_IS_VALID(kar, ARG_TERMID)) { 656 tok = au_to_arg32(1, "setaudit:auid", 657 ar->ar_arg_auid); 658 kau_write(rec, tok); 659 tok = au_to_arg32(1, "setaudit:port", 660 ar->ar_arg_termid.port); 661 kau_write(rec, tok); 662 tok = au_to_arg32(1, "setaudit:machine", 663 ar->ar_arg_termid.machine); 664 kau_write(rec, tok); 665 tok = au_to_arg32(1, "setaudit:as_success", 666 ar->ar_arg_amask.am_success); 667 kau_write(rec, tok); 668 tok = au_to_arg32(1, "setaudit:as_failure", 669 ar->ar_arg_amask.am_failure); 670 kau_write(rec, tok); 671 tok = au_to_arg32(1, "setaudit:asid", 672 ar->ar_arg_asid); 673 kau_write(rec, tok); 674 } 675 break; 676 677 case AUE_SETAUDIT_ADDR: 678 if (ARG_IS_VALID(kar, ARG_AUID) && 679 ARG_IS_VALID(kar, ARG_ASID) && 680 ARG_IS_VALID(kar, ARG_AMASK) && 681 ARG_IS_VALID(kar, ARG_TERMID_ADDR)) { 682 tok = au_to_arg32(1, "setaudit_addr:auid", 683 ar->ar_arg_auid); 684 kau_write(rec, tok); 685 tok = au_to_arg32(1, "setaudit_addr:as_success", 686 ar->ar_arg_amask.am_success); 687 kau_write(rec, tok); 688 tok = au_to_arg32(1, "setaudit_addr:as_failure", 689 ar->ar_arg_amask.am_failure); 690 kau_write(rec, tok); 691 tok = au_to_arg32(1, "setaudit_addr:asid", 692 ar->ar_arg_asid); 693 kau_write(rec, tok); 694 tok = au_to_arg32(1, "setaudit_addr:type", 695 ar->ar_arg_termid_addr.at_type); 696 kau_write(rec, tok); 697 tok = au_to_arg32(1, "setaudit_addr:port", 698 ar->ar_arg_termid_addr.at_port); 699 kau_write(rec, tok); 700 if (ar->ar_arg_termid_addr.at_type == AU_IPv6) 701 tok = au_to_in_addr_ex((struct in6_addr *) 702 &ar->ar_arg_termid_addr.at_addr[0]); 703 if (ar->ar_arg_termid_addr.at_type == AU_IPv4) 704 tok = au_to_in_addr((struct in_addr *) 705 &ar->ar_arg_termid_addr.at_addr[0]); 706 kau_write(rec, tok); 707 } 708 break; 709 710 case AUE_AUDITON: 711 /* 712 * For AUDITON commands without own event, audit the cmd. 713 */ 714 if (ARG_IS_VALID(kar, ARG_CMD)) { 715 tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd); 716 kau_write(rec, tok); 717 } 718 /* FALLTHROUGH */ 719 720 case AUE_AUDITON_GETCAR: 721 case AUE_AUDITON_GETCLASS: 722 case AUE_AUDITON_GETCOND: 723 case AUE_AUDITON_GETCWD: 724 case AUE_AUDITON_GETKMASK: 725 case AUE_AUDITON_GETSTAT: 726 case AUE_AUDITON_GPOLICY: 727 case AUE_AUDITON_GQCTRL: 728 case AUE_AUDITON_SETCLASS: 729 case AUE_AUDITON_SETCOND: 730 case AUE_AUDITON_SETKMASK: 731 case AUE_AUDITON_SETSMASK: 732 case AUE_AUDITON_SETSTAT: 733 case AUE_AUDITON_SETUMASK: 734 case AUE_AUDITON_SPOLICY: 735 case AUE_AUDITON_SQCTRL: 736 if (ARG_IS_VALID(kar, ARG_AUDITON)) 737 audit_sys_auditon(ar, rec); 738 break; 739 740 case AUE_AUDITCTL: 741 UPATH1_VNODE1_TOKENS; 742 break; 743 744 case AUE_EXIT: 745 if (ARG_IS_VALID(kar, ARG_EXIT)) { 746 tok = au_to_exit(ar->ar_arg_exitretval, 747 ar->ar_arg_exitstatus); 748 kau_write(rec, tok); 749 } 750 break; 751 752 case AUE_ADJTIME: 753 case AUE_CLOCK_SETTIME: 754 case AUE_AUDIT: 755 case AUE_DUP2: 756 case AUE_GETAUDIT: 757 case AUE_GETAUDIT_ADDR: 758 case AUE_GETAUID: 759 case AUE_GETCWD: 760 case AUE_GETFSSTAT: 761 case AUE_GETRESUID: 762 case AUE_GETRESGID: 763 case AUE_KQUEUE: 764 case AUE_MODLOAD: 765 case AUE_MODUNLOAD: 766 case AUE_MSGSYS: 767 case AUE_NTP_ADJTIME: 768 case AUE_PIPE: 769 case AUE_POSIX_OPENPT: 770 case AUE_PROFILE: 771 case AUE_RTPRIO: 772 case AUE_SEMSYS: 773 case AUE_SETFIB: 774 case AUE_SHMSYS: 775 case AUE_SETPGRP: 776 case AUE_SETRLIMIT: 777 case AUE_SETSID: 778 case AUE_SETTIMEOFDAY: 779 case AUE_SYSARCH: 780 781 /* 782 * Header, subject, and return tokens added at end. 783 */ 784 break; 785 786 case AUE_ACL_DELETE_FD: 787 case AUE_ACL_DELETE_FILE: 788 case AUE_ACL_CHECK_FD: 789 case AUE_ACL_CHECK_FILE: 790 case AUE_ACL_CHECK_LINK: 791 case AUE_ACL_DELETE_LINK: 792 case AUE_ACL_GET_FD: 793 case AUE_ACL_GET_FILE: 794 case AUE_ACL_GET_LINK: 795 case AUE_ACL_SET_FD: 796 case AUE_ACL_SET_FILE: 797 case AUE_ACL_SET_LINK: 798 if (ARG_IS_VALID(kar, ARG_VALUE)) { 799 tok = au_to_arg32(1, "type", ar->ar_arg_value); 800 kau_write(rec, tok); 801 } 802 ATFD1_TOKENS(1); 803 UPATH1_VNODE1_TOKENS; 804 break; 805 806 case AUE_CHDIR: 807 case AUE_CHROOT: 808 case AUE_FSTATAT: 809 case AUE_FUTIMESAT: 810 case AUE_GETATTRLIST: 811 case AUE_JAIL: 812 case AUE_LUTIMES: 813 case AUE_NFS_GETFH: 814 case AUE_LGETFH: 815 case AUE_LSTAT: 816 case AUE_LPATHCONF: 817 case AUE_PATHCONF: 818 case AUE_READLINK: 819 case AUE_READLINKAT: 820 case AUE_REVOKE: 821 case AUE_RMDIR: 822 case AUE_SEARCHFS: 823 case AUE_SETATTRLIST: 824 case AUE_STAT: 825 case AUE_STATFS: 826 case AUE_SWAPON: 827 case AUE_SWAPOFF: 828 case AUE_TRUNCATE: 829 case AUE_UNDELETE: 830 case AUE_UNLINK: 831 case AUE_UNLINKAT: 832 case AUE_UTIMES: 833 ATFD1_TOKENS(1); 834 UPATH1_VNODE1_TOKENS; 835 break; 836 837 case AUE_ACCESS: 838 case AUE_EACCESS: 839 case AUE_FACCESSAT: 840 ATFD1_TOKENS(1); 841 UPATH1_VNODE1_TOKENS; 842 if (ARG_IS_VALID(kar, ARG_VALUE)) { 843 tok = au_to_arg32(2, "mode", ar->ar_arg_value); 844 kau_write(rec, tok); 845 } 846 break; 847 848 case AUE_FHSTATFS: 849 case AUE_FHOPEN: 850 case AUE_FHSTAT: 851 /* XXXRW: Need to audit vnode argument. */ 852 break; 853 854 case AUE_CHFLAGS: 855 case AUE_LCHFLAGS: 856 case AUE_CHFLAGSAT: 857 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 858 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 859 kau_write(rec, tok); 860 } 861 UPATH1_VNODE1_TOKENS; 862 break; 863 864 case AUE_CHMOD: 865 case AUE_LCHMOD: 866 if (ARG_IS_VALID(kar, ARG_MODE)) { 867 tok = au_to_arg32(2, "new file mode", 868 ar->ar_arg_mode); 869 kau_write(rec, tok); 870 } 871 UPATH1_VNODE1_TOKENS; 872 break; 873 874 case AUE_FCHMODAT: 875 ATFD1_TOKENS(1); 876 if (ARG_IS_VALID(kar, ARG_MODE)) { 877 tok = au_to_arg32(3, "new file mode", 878 ar->ar_arg_mode); 879 kau_write(rec, tok); 880 } 881 UPATH1_VNODE1_TOKENS; 882 break; 883 884 case AUE_CHOWN: 885 case AUE_LCHOWN: 886 if (ARG_IS_VALID(kar, ARG_UID)) { 887 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 888 kau_write(rec, tok); 889 } 890 if (ARG_IS_VALID(kar, ARG_GID)) { 891 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 892 kau_write(rec, tok); 893 } 894 UPATH1_VNODE1_TOKENS; 895 break; 896 897 case AUE_FCHOWNAT: 898 ATFD1_TOKENS(1); 899 if (ARG_IS_VALID(kar, ARG_UID)) { 900 tok = au_to_arg32(3, "new file uid", ar->ar_arg_uid); 901 kau_write(rec, tok); 902 } 903 if (ARG_IS_VALID(kar, ARG_GID)) { 904 tok = au_to_arg32(4, "new file gid", ar->ar_arg_gid); 905 kau_write(rec, tok); 906 } 907 UPATH1_VNODE1_TOKENS; 908 break; 909 910 case AUE_EXCHANGEDATA: 911 UPATH1_VNODE1_TOKENS; 912 UPATH2_TOKENS; 913 break; 914 915 case AUE_CLOSE: 916 if (ARG_IS_VALID(kar, ARG_FD)) { 917 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 918 kau_write(rec, tok); 919 } 920 UPATH1_VNODE1_TOKENS; 921 break; 922 923 case AUE_CLOSEFROM: 924 if (ARG_IS_VALID(kar, ARG_FD)) { 925 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 926 kau_write(rec, tok); 927 } 928 break; 929 930 case AUE_CORE: 931 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 932 tok = au_to_arg32(1, "signal", ar->ar_arg_signum); 933 kau_write(rec, tok); 934 } 935 UPATH1_VNODE1_TOKENS; 936 break; 937 938 case AUE_EXTATTRCTL: 939 UPATH1_VNODE1_TOKENS; 940 if (ARG_IS_VALID(kar, ARG_CMD)) { 941 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 942 kau_write(rec, tok); 943 } 944 /* extattrctl(2) filename parameter is in upath2/vnode2 */ 945 UPATH2_TOKENS; 946 VNODE2_TOKENS; 947 EXTATTR_TOKENS(4); 948 break; 949 950 case AUE_EXTATTR_GET_FILE: 951 case AUE_EXTATTR_SET_FILE: 952 case AUE_EXTATTR_LIST_FILE: 953 case AUE_EXTATTR_DELETE_FILE: 954 case AUE_EXTATTR_GET_LINK: 955 case AUE_EXTATTR_SET_LINK: 956 case AUE_EXTATTR_LIST_LINK: 957 case AUE_EXTATTR_DELETE_LINK: 958 UPATH1_VNODE1_TOKENS; 959 EXTATTR_TOKENS(2); 960 break; 961 962 case AUE_EXTATTR_GET_FD: 963 case AUE_EXTATTR_SET_FD: 964 case AUE_EXTATTR_LIST_FD: 965 case AUE_EXTATTR_DELETE_FD: 966 if (ARG_IS_VALID(kar, ARG_FD)) { 967 tok = au_to_arg32(2, "fd", ar->ar_arg_fd); 968 kau_write(rec, tok); 969 } 970 EXTATTR_TOKENS(2); 971 break; 972 973 case AUE_FEXECVE: 974 if (ARG_IS_VALID(kar, ARG_FD)) { 975 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 976 kau_write(rec, tok); 977 } 978 /* FALLTHROUGH */ 979 980 case AUE_EXECVE: 981 case AUE_MAC_EXECVE: 982 if (ARG_IS_VALID(kar, ARG_ARGV)) { 983 tok = au_to_exec_args(ar->ar_arg_argv, 984 ar->ar_arg_argc); 985 kau_write(rec, tok); 986 } 987 if (ARG_IS_VALID(kar, ARG_ENVV)) { 988 tok = au_to_exec_env(ar->ar_arg_envv, 989 ar->ar_arg_envc); 990 kau_write(rec, tok); 991 } 992 UPATH1_VNODE1_TOKENS; 993 break; 994 995 case AUE_FCHMOD: 996 if (ARG_IS_VALID(kar, ARG_MODE)) { 997 tok = au_to_arg32(2, "new file mode", 998 ar->ar_arg_mode); 999 kau_write(rec, tok); 1000 } 1001 FD_VNODE1_TOKENS; 1002 break; 1003 1004 /* 1005 * XXXRW: Some of these need to handle non-vnode cases as well. 1006 */ 1007 case AUE_FCHDIR: 1008 case AUE_FPATHCONF: 1009 case AUE_FSTAT: 1010 case AUE_FSTATFS: 1011 case AUE_FSYNC: 1012 case AUE_FTRUNCATE: 1013 case AUE_FUTIMES: 1014 case AUE_GETDIRENTRIES: 1015 case AUE_GETDIRENTRIESATTR: 1016 case AUE_LSEEK: 1017 case AUE_POLL: 1018 case AUE_POSIX_FALLOCATE: 1019 case AUE_PREAD: 1020 case AUE_PWRITE: 1021 case AUE_READ: 1022 case AUE_READV: 1023 case AUE_WRITE: 1024 case AUE_WRITEV: 1025 FD_VNODE1_TOKENS; 1026 break; 1027 1028 case AUE_FCHOWN: 1029 if (ARG_IS_VALID(kar, ARG_UID)) { 1030 tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid); 1031 kau_write(rec, tok); 1032 } 1033 if (ARG_IS_VALID(kar, ARG_GID)) { 1034 tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid); 1035 kau_write(rec, tok); 1036 } 1037 FD_VNODE1_TOKENS; 1038 break; 1039 1040 case AUE_FCNTL: 1041 if (ARG_IS_VALID(kar, ARG_CMD)) { 1042 tok = au_to_arg32(2, "cmd", 1043 au_fcntl_cmd_to_bsm(ar->ar_arg_cmd)); 1044 kau_write(rec, tok); 1045 } 1046 FD_VNODE1_TOKENS; 1047 break; 1048 1049 case AUE_FCHFLAGS: 1050 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1051 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1052 kau_write(rec, tok); 1053 } 1054 FD_VNODE1_TOKENS; 1055 break; 1056 1057 case AUE_FLOCK: 1058 if (ARG_IS_VALID(kar, ARG_CMD)) { 1059 tok = au_to_arg32(2, "operation", ar->ar_arg_cmd); 1060 kau_write(rec, tok); 1061 } 1062 FD_VNODE1_TOKENS; 1063 break; 1064 1065 case AUE_RFORK: 1066 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1067 tok = au_to_arg32(1, "flags", ar->ar_arg_fflags); 1068 kau_write(rec, tok); 1069 } 1070 /* FALLTHROUGH */ 1071 1072 case AUE_FORK: 1073 case AUE_VFORK: 1074 if (ARG_IS_VALID(kar, ARG_PID)) { 1075 tok = au_to_arg32(0, "child PID", ar->ar_arg_pid); 1076 kau_write(rec, tok); 1077 } 1078 break; 1079 1080 case AUE_IOCTL: 1081 if (ARG_IS_VALID(kar, ARG_CMD)) { 1082 tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd); 1083 kau_write(rec, tok); 1084 } 1085 if (ARG_IS_VALID(kar, ARG_VNODE1)) 1086 FD_VNODE1_TOKENS; 1087 else { 1088 if (ARG_IS_VALID(kar, ARG_SOCKINFO)) { 1089 tok = kau_to_socket(&ar->ar_arg_sockinfo); 1090 kau_write(rec, tok); 1091 } else { 1092 if (ARG_IS_VALID(kar, ARG_FD)) { 1093 tok = au_to_arg32(1, "fd", 1094 ar->ar_arg_fd); 1095 kau_write(rec, tok); 1096 } 1097 } 1098 } 1099 break; 1100 1101 case AUE_KILL: 1102 case AUE_KILLPG: 1103 if (ARG_IS_VALID(kar, ARG_SIGNUM)) { 1104 tok = au_to_arg32(2, "signal", ar->ar_arg_signum); 1105 kau_write(rec, tok); 1106 } 1107 PROCESS_PID_TOKENS(1); 1108 break; 1109 1110 case AUE_KTRACE: 1111 if (ARG_IS_VALID(kar, ARG_CMD)) { 1112 tok = au_to_arg32(2, "ops", ar->ar_arg_cmd); 1113 kau_write(rec, tok); 1114 } 1115 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1116 tok = au_to_arg32(3, "trpoints", ar->ar_arg_value); 1117 kau_write(rec, tok); 1118 } 1119 PROCESS_PID_TOKENS(4); 1120 UPATH1_VNODE1_TOKENS; 1121 break; 1122 1123 case AUE_LINK: 1124 case AUE_LINKAT: 1125 case AUE_RENAME: 1126 case AUE_RENAMEAT: 1127 ATFD1_TOKENS(1); 1128 UPATH1_VNODE1_TOKENS; 1129 ATFD2_TOKENS(3); 1130 UPATH2_TOKENS; 1131 break; 1132 1133 case AUE_LOADSHFILE: 1134 ADDR_TOKEN(4, "base addr"); 1135 UPATH1_VNODE1_TOKENS; 1136 break; 1137 1138 case AUE_MKDIR: 1139 case AUE_MKDIRAT: 1140 case AUE_MKFIFO: 1141 case AUE_MKFIFOAT: 1142 ATFD1_TOKENS(1); 1143 if (ARG_IS_VALID(kar, ARG_MODE)) { 1144 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1145 kau_write(rec, tok); 1146 } 1147 UPATH1_VNODE1_TOKENS; 1148 break; 1149 1150 case AUE_MKNOD: 1151 case AUE_MKNODAT: 1152 ATFD1_TOKENS(1); 1153 if (ARG_IS_VALID(kar, ARG_MODE)) { 1154 tok = au_to_arg32(2, "mode", ar->ar_arg_mode); 1155 kau_write(rec, tok); 1156 } 1157 if (ARG_IS_VALID(kar, ARG_DEV)) { 1158 tok = au_to_arg32(3, "dev", ar->ar_arg_dev); 1159 kau_write(rec, tok); 1160 } 1161 UPATH1_VNODE1_TOKENS; 1162 break; 1163 1164 case AUE_MMAP: 1165 case AUE_MUNMAP: 1166 case AUE_MPROTECT: 1167 case AUE_MLOCK: 1168 case AUE_MUNLOCK: 1169 case AUE_MINHERIT: 1170 ADDR_TOKEN(1, "addr"); 1171 if (ARG_IS_VALID(kar, ARG_LEN)) { 1172 tok = au_to_arg32(2, "len", ar->ar_arg_len); 1173 kau_write(rec, tok); 1174 } 1175 if (ar->ar_event == AUE_MMAP) 1176 FD_VNODE1_TOKENS; 1177 if (ar->ar_event == AUE_MPROTECT) { 1178 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1179 tok = au_to_arg32(3, "protection", 1180 ar->ar_arg_value); 1181 kau_write(rec, tok); 1182 } 1183 } 1184 if (ar->ar_event == AUE_MINHERIT) { 1185 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1186 tok = au_to_arg32(3, "inherit", 1187 ar->ar_arg_value); 1188 kau_write(rec, tok); 1189 } 1190 } 1191 break; 1192 1193 case AUE_MOUNT: 1194 case AUE_NMOUNT: 1195 /* XXX Need to handle NFS mounts */ 1196 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1197 tok = au_to_arg32(3, "flags", ar->ar_arg_fflags); 1198 kau_write(rec, tok); 1199 } 1200 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1201 tok = au_to_text(ar->ar_arg_text); 1202 kau_write(rec, tok); 1203 } 1204 /* FALLTHROUGH */ 1205 1206 case AUE_NFS_SVC: 1207 if (ARG_IS_VALID(kar, ARG_CMD)) { 1208 tok = au_to_arg32(1, "flags", ar->ar_arg_cmd); 1209 kau_write(rec, tok); 1210 } 1211 break; 1212 1213 case AUE_UMOUNT: 1214 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1215 tok = au_to_arg32(2, "flags", ar->ar_arg_value); 1216 kau_write(rec, tok); 1217 } 1218 UPATH1_VNODE1_TOKENS; 1219 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1220 tok = au_to_text(ar->ar_arg_text); 1221 kau_write(rec, tok); 1222 } 1223 break; 1224 1225 case AUE_MSGCTL: 1226 ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd); 1227 /* Fall through */ 1228 1229 case AUE_MSGRCV: 1230 case AUE_MSGSND: 1231 tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id); 1232 kau_write(rec, tok); 1233 if (ar->ar_errno != EINVAL) { 1234 tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id); 1235 kau_write(rec, tok); 1236 } 1237 break; 1238 1239 case AUE_MSGGET: 1240 if (ar->ar_errno == 0) { 1241 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1242 tok = au_to_ipc(AT_IPC_MSG, 1243 ar->ar_arg_svipc_id); 1244 kau_write(rec, tok); 1245 } 1246 } 1247 break; 1248 1249 case AUE_RESETSHFILE: 1250 ADDR_TOKEN(1, "base addr"); 1251 break; 1252 1253 case AUE_OPEN_RC: 1254 case AUE_OPEN_RTC: 1255 case AUE_OPEN_RWC: 1256 case AUE_OPEN_RWTC: 1257 case AUE_OPEN_WC: 1258 case AUE_OPEN_WTC: 1259 case AUE_CREAT: 1260 if (ARG_IS_VALID(kar, ARG_MODE)) { 1261 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1262 kau_write(rec, tok); 1263 } 1264 /* FALLTHROUGH */ 1265 1266 case AUE_OPEN_R: 1267 case AUE_OPEN_RT: 1268 case AUE_OPEN_RW: 1269 case AUE_OPEN_RWT: 1270 case AUE_OPEN_W: 1271 case AUE_OPEN_WT: 1272 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1273 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1274 kau_write(rec, tok); 1275 } 1276 UPATH1_VNODE1_TOKENS; 1277 break; 1278 1279 case AUE_OPENAT_RC: 1280 case AUE_OPENAT_RTC: 1281 case AUE_OPENAT_RWC: 1282 case AUE_OPENAT_RWTC: 1283 case AUE_OPENAT_WC: 1284 case AUE_OPENAT_WTC: 1285 if (ARG_IS_VALID(kar, ARG_MODE)) { 1286 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1287 kau_write(rec, tok); 1288 } 1289 /* FALLTHROUGH */ 1290 1291 case AUE_OPENAT_R: 1292 case AUE_OPENAT_RT: 1293 case AUE_OPENAT_RW: 1294 case AUE_OPENAT_RWT: 1295 case AUE_OPENAT_W: 1296 case AUE_OPENAT_WT: 1297 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1298 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1299 kau_write(rec, tok); 1300 } 1301 ATFD1_TOKENS(1); 1302 UPATH1_VNODE1_TOKENS; 1303 break; 1304 1305 case AUE_PROCCTL: 1306 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1307 tok = au_to_arg32(1, "idtype", ar->ar_arg_value); 1308 kau_write(rec, tok); 1309 } 1310 if (ARG_IS_VALID(kar, ARG_CMD)) { 1311 tok = au_to_arg32(2, "com", ar->ar_arg_cmd); 1312 kau_write(rec, tok); 1313 } 1314 PROCESS_PID_TOKENS(3); 1315 break; 1316 1317 case AUE_PTRACE: 1318 if (ARG_IS_VALID(kar, ARG_CMD)) { 1319 tok = au_to_arg32(1, "request", ar->ar_arg_cmd); 1320 kau_write(rec, tok); 1321 } 1322 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1323 tok = au_to_arg32(4, "data", ar->ar_arg_value); 1324 kau_write(rec, tok); 1325 } 1326 PROCESS_PID_TOKENS(2); 1327 break; 1328 1329 case AUE_QUOTACTL: 1330 if (ARG_IS_VALID(kar, ARG_CMD)) { 1331 tok = au_to_arg32(2, "command", ar->ar_arg_cmd); 1332 kau_write(rec, tok); 1333 } 1334 if (ARG_IS_VALID(kar, ARG_UID)) { 1335 tok = au_to_arg32(3, "uid", ar->ar_arg_uid); 1336 kau_write(rec, tok); 1337 } 1338 if (ARG_IS_VALID(kar, ARG_GID)) { 1339 tok = au_to_arg32(3, "gid", ar->ar_arg_gid); 1340 kau_write(rec, tok); 1341 } 1342 UPATH1_VNODE1_TOKENS; 1343 break; 1344 1345 case AUE_REBOOT: 1346 if (ARG_IS_VALID(kar, ARG_CMD)) { 1347 tok = au_to_arg32(1, "howto", ar->ar_arg_cmd); 1348 kau_write(rec, tok); 1349 } 1350 break; 1351 1352 case AUE_SEMCTL: 1353 ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd); 1354 /* Fall through */ 1355 1356 case AUE_SEMOP: 1357 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1358 tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id); 1359 kau_write(rec, tok); 1360 if (ar->ar_errno != EINVAL) { 1361 tok = au_to_ipc(AT_IPC_SEM, 1362 ar->ar_arg_svipc_id); 1363 kau_write(rec, tok); 1364 } 1365 } 1366 break; 1367 1368 case AUE_SEMGET: 1369 if (ar->ar_errno == 0) { 1370 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1371 tok = au_to_ipc(AT_IPC_SEM, 1372 ar->ar_arg_svipc_id); 1373 kau_write(rec, tok); 1374 } 1375 } 1376 break; 1377 1378 case AUE_SETEGID: 1379 if (ARG_IS_VALID(kar, ARG_EGID)) { 1380 tok = au_to_arg32(1, "egid", ar->ar_arg_egid); 1381 kau_write(rec, tok); 1382 } 1383 break; 1384 1385 case AUE_SETEUID: 1386 if (ARG_IS_VALID(kar, ARG_EUID)) { 1387 tok = au_to_arg32(1, "euid", ar->ar_arg_euid); 1388 kau_write(rec, tok); 1389 } 1390 break; 1391 1392 case AUE_SETREGID: 1393 if (ARG_IS_VALID(kar, ARG_RGID)) { 1394 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1395 kau_write(rec, tok); 1396 } 1397 if (ARG_IS_VALID(kar, ARG_EGID)) { 1398 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1399 kau_write(rec, tok); 1400 } 1401 break; 1402 1403 case AUE_SETREUID: 1404 if (ARG_IS_VALID(kar, ARG_RUID)) { 1405 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1406 kau_write(rec, tok); 1407 } 1408 if (ARG_IS_VALID(kar, ARG_EUID)) { 1409 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1410 kau_write(rec, tok); 1411 } 1412 break; 1413 1414 case AUE_SETRESGID: 1415 if (ARG_IS_VALID(kar, ARG_RGID)) { 1416 tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid); 1417 kau_write(rec, tok); 1418 } 1419 if (ARG_IS_VALID(kar, ARG_EGID)) { 1420 tok = au_to_arg32(2, "egid", ar->ar_arg_egid); 1421 kau_write(rec, tok); 1422 } 1423 if (ARG_IS_VALID(kar, ARG_SGID)) { 1424 tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid); 1425 kau_write(rec, tok); 1426 } 1427 break; 1428 1429 case AUE_SETRESUID: 1430 if (ARG_IS_VALID(kar, ARG_RUID)) { 1431 tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid); 1432 kau_write(rec, tok); 1433 } 1434 if (ARG_IS_VALID(kar, ARG_EUID)) { 1435 tok = au_to_arg32(2, "euid", ar->ar_arg_euid); 1436 kau_write(rec, tok); 1437 } 1438 if (ARG_IS_VALID(kar, ARG_SUID)) { 1439 tok = au_to_arg32(3, "suid", ar->ar_arg_suid); 1440 kau_write(rec, tok); 1441 } 1442 break; 1443 1444 case AUE_SETGID: 1445 if (ARG_IS_VALID(kar, ARG_GID)) { 1446 tok = au_to_arg32(1, "gid", ar->ar_arg_gid); 1447 kau_write(rec, tok); 1448 } 1449 break; 1450 1451 case AUE_SETUID: 1452 if (ARG_IS_VALID(kar, ARG_UID)) { 1453 tok = au_to_arg32(1, "uid", ar->ar_arg_uid); 1454 kau_write(rec, tok); 1455 } 1456 break; 1457 1458 case AUE_SETGROUPS: 1459 if (ARG_IS_VALID(kar, ARG_GROUPSET)) { 1460 for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++) 1461 { 1462 tok = au_to_arg32(1, "setgroups", 1463 ar->ar_arg_groups.gidset[ctr]); 1464 kau_write(rec, tok); 1465 } 1466 } 1467 break; 1468 1469 case AUE_SETLOGIN: 1470 if (ARG_IS_VALID(kar, ARG_LOGIN)) { 1471 tok = au_to_text(ar->ar_arg_login); 1472 kau_write(rec, tok); 1473 } 1474 break; 1475 1476 case AUE_SETPRIORITY: 1477 if (ARG_IS_VALID(kar, ARG_CMD)) { 1478 tok = au_to_arg32(1, "which", ar->ar_arg_cmd); 1479 kau_write(rec, tok); 1480 } 1481 if (ARG_IS_VALID(kar, ARG_UID)) { 1482 tok = au_to_arg32(2, "who", ar->ar_arg_uid); 1483 kau_write(rec, tok); 1484 } 1485 PROCESS_PID_TOKENS(2); 1486 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1487 tok = au_to_arg32(3, "priority", ar->ar_arg_value); 1488 kau_write(rec, tok); 1489 } 1490 break; 1491 1492 case AUE_SETPRIVEXEC: 1493 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1494 tok = au_to_arg32(1, "flag", ar->ar_arg_value); 1495 kau_write(rec, tok); 1496 } 1497 break; 1498 1499 /* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */ 1500 case AUE_SHMAT: 1501 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1502 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1503 kau_write(rec, tok); 1504 /* XXXAUDIT: Does having the ipc token make sense? */ 1505 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1506 kau_write(rec, tok); 1507 } 1508 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1509 tok = au_to_arg32(2, "shmaddr", 1510 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1511 kau_write(rec, tok); 1512 } 1513 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1514 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1515 kau_write(rec, tok); 1516 } 1517 break; 1518 1519 case AUE_SHMCTL: 1520 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1521 tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id); 1522 kau_write(rec, tok); 1523 /* XXXAUDIT: Does having the ipc token make sense? */ 1524 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1525 kau_write(rec, tok); 1526 } 1527 switch (ar->ar_arg_svipc_cmd) { 1528 case IPC_STAT: 1529 ar->ar_event = AUE_SHMCTL_STAT; 1530 break; 1531 case IPC_RMID: 1532 ar->ar_event = AUE_SHMCTL_RMID; 1533 break; 1534 case IPC_SET: 1535 ar->ar_event = AUE_SHMCTL_SET; 1536 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1537 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1538 kau_write(rec, tok); 1539 } 1540 break; 1541 default: 1542 break; /* We will audit a bad command */ 1543 } 1544 break; 1545 1546 case AUE_SHMDT: 1547 if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) { 1548 tok = au_to_arg32(1, "shmaddr", 1549 (int)(uintptr_t)ar->ar_arg_svipc_addr); 1550 kau_write(rec, tok); 1551 } 1552 break; 1553 1554 case AUE_SHMGET: 1555 /* This is unusual; the return value is in an argument token */ 1556 if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) { 1557 tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id); 1558 kau_write(rec, tok); 1559 tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id); 1560 kau_write(rec, tok); 1561 } 1562 if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) { 1563 tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm); 1564 kau_write(rec, tok); 1565 } 1566 break; 1567 1568 /* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE 1569 * and AUE_SEMUNLINK are Posix IPC */ 1570 case AUE_SHMOPEN: 1571 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1572 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1573 kau_write(rec, tok); 1574 } 1575 if (ARG_IS_VALID(kar, ARG_MODE)) { 1576 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1577 kau_write(rec, tok); 1578 } 1579 /* FALLTHROUGH */ 1580 1581 case AUE_SHMUNLINK: 1582 UPATH1_TOKENS; 1583 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1584 struct ipc_perm perm; 1585 1586 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1587 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1588 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1589 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1590 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1591 perm.seq = 0; 1592 perm.key = 0; 1593 tok = au_to_ipc_perm(&perm); 1594 kau_write(rec, tok); 1595 } 1596 break; 1597 1598 case AUE_SEMOPEN: 1599 if (ARG_IS_VALID(kar, ARG_FFLAGS)) { 1600 tok = au_to_arg32(2, "flags", ar->ar_arg_fflags); 1601 kau_write(rec, tok); 1602 } 1603 if (ARG_IS_VALID(kar, ARG_MODE)) { 1604 tok = au_to_arg32(3, "mode", ar->ar_arg_mode); 1605 kau_write(rec, tok); 1606 } 1607 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1608 tok = au_to_arg32(4, "value", ar->ar_arg_value); 1609 kau_write(rec, tok); 1610 } 1611 /* FALLTHROUGH */ 1612 1613 case AUE_SEMUNLINK: 1614 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1615 tok = au_to_text(ar->ar_arg_text); 1616 kau_write(rec, tok); 1617 } 1618 if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) { 1619 struct ipc_perm perm; 1620 1621 perm.uid = ar->ar_arg_pipc_perm.pipc_uid; 1622 perm.gid = ar->ar_arg_pipc_perm.pipc_gid; 1623 perm.cuid = ar->ar_arg_pipc_perm.pipc_uid; 1624 perm.cgid = ar->ar_arg_pipc_perm.pipc_gid; 1625 perm.mode = ar->ar_arg_pipc_perm.pipc_mode; 1626 perm.seq = 0; 1627 perm.key = 0; 1628 tok = au_to_ipc_perm(&perm); 1629 kau_write(rec, tok); 1630 } 1631 break; 1632 1633 case AUE_SEMCLOSE: 1634 if (ARG_IS_VALID(kar, ARG_FD)) { 1635 tok = au_to_arg32(1, "sem", ar->ar_arg_fd); 1636 kau_write(rec, tok); 1637 } 1638 break; 1639 1640 case AUE_SYMLINK: 1641 case AUE_SYMLINKAT: 1642 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1643 tok = au_to_text(ar->ar_arg_text); 1644 kau_write(rec, tok); 1645 } 1646 ATFD1_TOKENS(1); 1647 UPATH1_VNODE1_TOKENS; 1648 break; 1649 1650 case AUE_SYSCTL: 1651 case AUE_SYSCTL_NONADMIN: 1652 if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) { 1653 for (ctr = 0; ctr < ar->ar_arg_len; ctr++) { 1654 tok = au_to_arg32(1, "name", 1655 ar->ar_arg_ctlname[ctr]); 1656 kau_write(rec, tok); 1657 } 1658 } 1659 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1660 tok = au_to_arg32(5, "newval", ar->ar_arg_value); 1661 kau_write(rec, tok); 1662 } 1663 if (ARG_IS_VALID(kar, ARG_TEXT)) { 1664 tok = au_to_text(ar->ar_arg_text); 1665 kau_write(rec, tok); 1666 } 1667 break; 1668 1669 case AUE_UMASK: 1670 if (ARG_IS_VALID(kar, ARG_MASK)) { 1671 tok = au_to_arg32(1, "new mask", ar->ar_arg_mask); 1672 kau_write(rec, tok); 1673 } 1674 tok = au_to_arg32(0, "prev mask", ar->ar_retval); 1675 kau_write(rec, tok); 1676 break; 1677 1678 case AUE_WAIT4: 1679 case AUE_WAIT6: 1680 PROCESS_PID_TOKENS(1); 1681 if (ARG_IS_VALID(kar, ARG_VALUE)) { 1682 tok = au_to_arg32(3, "options", ar->ar_arg_value); 1683 kau_write(rec, tok); 1684 } 1685 break; 1686 1687 case AUE_CAP_RIGHTS_LIMIT: 1688 /* 1689 * XXXRW/XXXJA: Would be nice to audit socket/etc information. 1690 */ 1691 FD_VNODE1_TOKENS; 1692 if (ARG_IS_VALID(kar, ARG_RIGHTS)) { 1693 tok = au_to_rights(&ar->ar_arg_rights); 1694 kau_write(rec, tok); 1695 } 1696 break; 1697 1698 case AUE_CAP_FCNTLS_GET: 1699 case AUE_CAP_IOCTLS_GET: 1700 case AUE_CAP_IOCTLS_LIMIT: 1701 case AUE_CAP_RIGHTS_GET: 1702 if (ARG_IS_VALID(kar, ARG_FD)) { 1703 tok = au_to_arg32(1, "fd", ar->ar_arg_fd); 1704 kau_write(rec, tok); 1705 } 1706 break; 1707 1708 case AUE_CAP_FCNTLS_LIMIT: 1709 FD_VNODE1_TOKENS; 1710 if (ARG_IS_VALID(kar, ARG_FCNTL_RIGHTS)) { 1711 tok = au_to_arg32(2, "fcntlrights", 1712 ar->ar_arg_fcntl_rights); 1713 kau_write(rec, tok); 1714 } 1715 break; 1716 1717 case AUE_CAP_ENTER: 1718 case AUE_CAP_GETMODE: 1719 break; 1720 1721 case AUE_NULL: 1722 default: 1723 printf("BSM conversion requested for unknown event %d\n", 1724 ar->ar_event); 1725 1726 /* 1727 * Write the subject token so it is properly freed here. 1728 */ 1729 if (jail_tok != NULL) 1730 kau_write(rec, jail_tok); 1731 kau_write(rec, subj_tok); 1732 kau_free(rec); 1733 return (BSM_NOAUDIT); 1734 } 1735 1736 if (jail_tok != NULL) 1737 kau_write(rec, jail_tok); 1738 kau_write(rec, subj_tok); 1739 tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval); 1740 kau_write(rec, tok); /* Every record gets a return token */ 1741 1742 kau_close(rec, &ar->ar_endtime, ar->ar_event); 1743 1744 *pau = rec; 1745 return (BSM_SUCCESS); 1746 } 1747 1748 /* 1749 * Verify that a record is a valid BSM record. This verification is simple 1750 * now, but may be expanded on sometime in the future. Return 1 if the 1751 * record is good, 0 otherwise. 1752 */ 1753 int 1754 bsm_rec_verify(void *rec) 1755 { 1756 char c = *(char *)rec; 1757 1758 /* 1759 * Check the token ID of the first token; it has to be a header 1760 * token. 1761 * 1762 * XXXAUDIT There needs to be a token structure to map a token. 1763 * XXXAUDIT 'Shouldn't be simply looking at the first char. 1764 */ 1765 if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) && 1766 (c != AUT_HEADER64) && (c != AUT_HEADER64_EX)) 1767 return (0); 1768 return (1); 1769 } 1770