1 /* 2 * Copyright (c) 1999-2005 Apple Computer, Inc. 3 * Copyright (c) 2006 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/condvar.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/filedesc.h> 38 #include <sys/fcntl.h> 39 #include <sys/ipc.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/namei.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/queue.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/domain.h> 52 #include <sys/sysproto.h> 53 #include <sys/sysent.h> 54 #include <sys/systm.h> 55 #include <sys/ucred.h> 56 #include <sys/uio.h> 57 #include <sys/un.h> 58 #include <sys/unistd.h> 59 #include <sys/vnode.h> 60 61 #include <bsm/audit.h> 62 #include <bsm/audit_internal.h> 63 #include <bsm/audit_kevents.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_pcb.h> 67 68 #include <security/audit/audit.h> 69 #include <security/audit/audit_private.h> 70 71 #include <vm/uma.h> 72 73 static uma_zone_t audit_record_zone; 74 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage"); 75 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 76 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 77 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 78 79 /* 80 * Audit control settings that are set/read by system calls and are 81 * hence non-static. 82 */ 83 /* 84 * Define the audit control flags. 85 */ 86 int audit_enabled; 87 int audit_suspended; 88 89 /* 90 * Flags controlling behavior in low storage situations. Should we panic if 91 * a write fails? Should we fail stop if we're out of disk space? 92 */ 93 int audit_panic_on_write_fail; 94 int audit_fail_stop; 95 int audit_argv; 96 int audit_arge; 97 98 /* 99 * Are we currently "failing stop" due to out of disk space? 100 */ 101 int audit_in_failure; 102 103 /* 104 * Global audit statistiscs. 105 */ 106 struct audit_fstat audit_fstat; 107 108 /* 109 * Preselection mask for non-attributable events. 110 */ 111 struct au_mask audit_nae_mask; 112 113 /* 114 * Mutex to protect global variables shared between various threads and 115 * processes. 116 */ 117 struct mtx audit_mtx; 118 119 /* 120 * Queue of audit records ready for delivery to disk. We insert new 121 * records at the tail, and remove records from the head. Also, 122 * a count of the number of records used for checking queue depth. 123 * In addition, a counter of records that we have allocated but are 124 * not yet in the queue, which is needed to estimate the total 125 * size of the combined set of records outstanding in the system. 126 */ 127 struct kaudit_queue audit_q; 128 int audit_q_len; 129 int audit_pre_q_len; 130 131 /* 132 * Audit queue control settings (minimum free, low/high water marks, etc.) 133 */ 134 struct au_qctrl audit_qctrl; 135 136 /* 137 * Condition variable to signal to the worker that it has work to do: 138 * either new records are in the queue, or a log replacement is taking 139 * place. 140 */ 141 struct cv audit_worker_cv; 142 143 /* 144 * Condition variable to flag when crossing the low watermark, meaning that 145 * threads blocked due to hitting the high watermark can wake up and continue 146 * to commit records. 147 */ 148 struct cv audit_watermark_cv; 149 150 /* 151 * Condition variable for auditing threads wait on when in fail-stop mode. 152 * Threads wait on this CV forever (and ever), never seeing the light of 153 * day again. 154 */ 155 static struct cv audit_fail_cv; 156 157 /* 158 * Construct an audit record for the passed thread. 159 */ 160 static int 161 audit_record_ctor(void *mem, int size, void *arg, int flags) 162 { 163 struct kaudit_record *ar; 164 struct thread *td; 165 166 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 167 168 td = arg; 169 ar = mem; 170 bzero(ar, sizeof(*ar)); 171 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 172 nanotime(&ar->k_ar.ar_starttime); 173 174 /* 175 * Export the subject credential. 176 */ 177 cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred); 178 ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid; 179 ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid; 180 ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0]; 181 PROC_LOCK(td->td_proc); 182 ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid; 183 ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid; 184 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 185 ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask; 186 ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid; 187 bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); 188 PROC_UNLOCK(td->td_proc); 189 190 return (0); 191 } 192 193 static void 194 audit_record_dtor(void *mem, int size, void *arg) 195 { 196 struct kaudit_record *ar; 197 198 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 199 200 ar = mem; 201 if (ar->k_ar.ar_arg_upath1 != NULL) 202 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 203 if (ar->k_ar.ar_arg_upath2 != NULL) 204 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 205 if (ar->k_ar.ar_arg_text != NULL) 206 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 207 if (ar->k_udata != NULL) 208 free(ar->k_udata, M_AUDITDATA); 209 if (ar->k_ar.ar_arg_argv != NULL) 210 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); 211 if (ar->k_ar.ar_arg_envv != NULL) 212 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); 213 } 214 215 /* 216 * Initialize the Audit subsystem: configuration state, work queue, 217 * synchronization primitives, worker thread, and trigger device node. Also 218 * call into the BSM assembly code to initialize it. 219 */ 220 static void 221 audit_init(void) 222 { 223 224 printf("Security auditing service present\n"); 225 audit_enabled = 0; 226 audit_suspended = 0; 227 audit_panic_on_write_fail = 0; 228 audit_fail_stop = 0; 229 audit_in_failure = 0; 230 audit_argv = 0; 231 audit_arge = 0; 232 233 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ 234 audit_fstat.af_currsz = 0; 235 audit_nae_mask.am_success = AU_NULL; 236 audit_nae_mask.am_failure = AU_NULL; 237 238 TAILQ_INIT(&audit_q); 239 audit_q_len = 0; 240 audit_pre_q_len = 0; 241 audit_qctrl.aq_hiwater = AQ_HIWATER; 242 audit_qctrl.aq_lowater = AQ_LOWATER; 243 audit_qctrl.aq_bufsz = AQ_BUFSZ; 244 audit_qctrl.aq_minfree = AU_FS_MINFREE; 245 246 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 247 cv_init(&audit_worker_cv, "audit_worker_cv"); 248 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 249 cv_init(&audit_fail_cv, "audit_fail_cv"); 250 251 audit_record_zone = uma_zcreate("audit_record", 252 sizeof(struct kaudit_record), audit_record_ctor, 253 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 254 255 /* Initialize the BSM audit subsystem. */ 256 kau_init(); 257 258 audit_trigger_init(); 259 260 /* Register shutdown handler. */ 261 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 262 SHUTDOWN_PRI_FIRST); 263 264 /* Start audit worker thread. */ 265 audit_worker_init(); 266 } 267 268 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL) 269 270 /* 271 * Drain the audit queue and close the log at shutdown. Note that this can 272 * be called both from the system shutdown path and also from audit 273 * configuration syscalls, so 'arg' and 'howto' are ignored. 274 */ 275 void 276 audit_shutdown(void *arg, int howto) 277 { 278 279 audit_rotate_vnode(NULL, NULL); 280 } 281 282 /* 283 * Return the current thread's audit record, if any. 284 */ 285 __inline__ struct kaudit_record * 286 currecord(void) 287 { 288 289 return (curthread->td_ar); 290 } 291 292 /* 293 * XXXAUDIT: There are a number of races present in the code below due to 294 * release and re-grab of the mutex. The code should be revised to become 295 * slightly less racy. 296 * 297 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 298 * pre_q space, suspending the system call until there is room? 299 */ 300 struct kaudit_record * 301 audit_new(int event, struct thread *td) 302 { 303 struct kaudit_record *ar; 304 int no_record; 305 306 mtx_lock(&audit_mtx); 307 no_record = (audit_suspended || !audit_enabled); 308 mtx_unlock(&audit_mtx); 309 if (no_record) 310 return (NULL); 311 312 /* 313 * Note: the number of outstanding uncommitted audit records is 314 * limited to the number of concurrent threads servicing system calls 315 * in the kernel. 316 */ 317 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 318 ar->k_ar.ar_event = event; 319 320 mtx_lock(&audit_mtx); 321 audit_pre_q_len++; 322 mtx_unlock(&audit_mtx); 323 324 return (ar); 325 } 326 327 void 328 audit_free(struct kaudit_record *ar) 329 { 330 331 uma_zfree(audit_record_zone, ar); 332 } 333 334 void 335 audit_commit(struct kaudit_record *ar, int error, int retval) 336 { 337 au_event_t event; 338 au_class_t class; 339 au_id_t auid; 340 int sorf; 341 struct au_mask *aumask; 342 343 if (ar == NULL) 344 return; 345 346 /* 347 * Decide whether to commit the audit record by checking the 348 * error value from the system call and using the appropriate 349 * audit mask. 350 * 351 * XXXAUDIT: Synchronize access to audit_nae_mask? 352 */ 353 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 354 aumask = &audit_nae_mask; 355 else 356 aumask = &ar->k_ar.ar_subj_amask; 357 358 if (error) 359 sorf = AU_PRS_FAILURE; 360 else 361 sorf = AU_PRS_SUCCESS; 362 363 switch(ar->k_ar.ar_event) { 364 365 case AUE_OPEN_RWTC: 366 /* The open syscall always writes a AUE_OPEN_RWTC event; change 367 * it to the proper type of event based on the flags and the 368 * error value. 369 */ 370 ar->k_ar.ar_event = flags_and_error_to_openevent( 371 ar->k_ar.ar_arg_fflags, error); 372 break; 373 374 case AUE_SYSCTL: 375 ar->k_ar.ar_event = ctlname_to_sysctlevent( 376 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 377 break; 378 379 case AUE_AUDITON: 380 /* Convert the auditon() command to an event */ 381 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 382 break; 383 } 384 385 auid = ar->k_ar.ar_subj_auid; 386 event = ar->k_ar.ar_event; 387 class = au_event_class(event); 388 389 ar->k_ar_commit |= AR_COMMIT_KERNEL; 390 if (au_preselect(event, class, aumask, sorf) != 0) 391 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 392 if (audit_pipe_preselect(auid, event, class, sorf, 393 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 394 ar->k_ar_commit |= AR_PRESELECT_PIPE; 395 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | 396 AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { 397 mtx_lock(&audit_mtx); 398 audit_pre_q_len--; 399 mtx_unlock(&audit_mtx); 400 audit_free(ar); 401 return; 402 } 403 404 ar->k_ar.ar_errno = error; 405 ar->k_ar.ar_retval = retval; 406 407 /* 408 * We might want to do some system-wide post-filtering 409 * here at some point. 410 */ 411 412 /* 413 * Timestamp system call end. 414 */ 415 nanotime(&ar->k_ar.ar_endtime); 416 417 mtx_lock(&audit_mtx); 418 419 /* 420 * Note: it could be that some records initiated while audit was 421 * enabled should still be committed? 422 */ 423 if (audit_suspended || !audit_enabled) { 424 audit_pre_q_len--; 425 mtx_unlock(&audit_mtx); 426 audit_free(ar); 427 return; 428 } 429 430 /* 431 * Constrain the number of committed audit records based on 432 * the configurable parameter. 433 */ 434 while (audit_q_len >= audit_qctrl.aq_hiwater) { 435 AUDIT_PRINTF(("audit_commit: sleeping to wait for " 436 "audit queue to drain below high water mark\n")); 437 cv_wait(&audit_watermark_cv, &audit_mtx); 438 AUDIT_PRINTF(("audit_commit: woke up waiting for " 439 "audit queue draining\n")); 440 } 441 442 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 443 audit_q_len++; 444 audit_pre_q_len--; 445 cv_signal(&audit_worker_cv); 446 mtx_unlock(&audit_mtx); 447 } 448 449 /* 450 * audit_syscall_enter() is called on entry to each system call. It is 451 * responsible for deciding whether or not to audit the call (preselection), 452 * and if so, allocating a per-thread audit record. audit_new() will fill in 453 * basic thread/credential properties. 454 */ 455 void 456 audit_syscall_enter(unsigned short code, struct thread *td) 457 { 458 struct au_mask *aumask; 459 au_class_t class; 460 au_event_t event; 461 au_id_t auid; 462 463 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 464 465 /* 466 * In FreeBSD, each ABI has its own system call table, and hence 467 * mapping of system call codes to audit events. Convert the code to 468 * an audit event identifier using the process system call table 469 * reference. In Darwin, there's only one, so we use the global 470 * symbol for the system call table. No audit record is generated 471 * for bad system calls, as no operation has been performed. 472 */ 473 if (code >= td->td_proc->p_sysent->sv_size) 474 return; 475 476 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 477 if (event == AUE_NULL) 478 return; 479 480 /* 481 * Check which audit mask to use; either the kernel non-attributable 482 * event mask or the process audit mask. 483 */ 484 auid = td->td_proc->p_au->ai_auid; 485 if (auid == AU_DEFAUDITID) 486 aumask = &audit_nae_mask; 487 else 488 aumask = &td->td_proc->p_au->ai_mask; 489 490 /* 491 * Allocate an audit record, if preselection allows it, and store 492 * in the thread for later use. 493 */ 494 class = au_event_class(event); 495 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 496 /* 497 * If we're out of space and need to suspend unprivileged 498 * processes, do that here rather than trying to allocate 499 * another audit record. 500 * 501 * Note: we might wish to be able to continue here in the 502 * future, if the system recovers. That should be possible 503 * by means of checking the condition in a loop around 504 * cv_wait(). It might be desirable to reevaluate whether an 505 * audit record is still required for this event by 506 * re-calling au_preselect(). 507 */ 508 if (audit_in_failure && 509 priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { 510 cv_wait(&audit_fail_cv, &audit_mtx); 511 panic("audit_failing_stop: thread continued"); 512 } 513 td->td_ar = audit_new(event, td); 514 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) 515 td->td_ar = audit_new(event, td); 516 else 517 td->td_ar = NULL; 518 } 519 520 /* 521 * audit_syscall_exit() is called from the return of every system call, or in 522 * the event of exit1(), during the execution of exit1(). It is responsible 523 * for committing the audit record, if any, along with return condition. 524 */ 525 void 526 audit_syscall_exit(int error, struct thread *td) 527 { 528 int retval; 529 530 /* 531 * Commit the audit record as desired; once we pass the record 532 * into audit_commit(), the memory is owned by the audit 533 * subsystem. 534 * The return value from the system call is stored on the user 535 * thread. If there was an error, the return value is set to -1, 536 * imitating the behavior of the cerror routine. 537 */ 538 if (error) 539 retval = -1; 540 else 541 retval = td->td_retval[0]; 542 543 audit_commit(td->td_ar, error, retval); 544 if (td->td_ar != NULL) 545 AUDIT_PRINTF(("audit record committed by pid %d\n", 546 td->td_proc->p_pid)); 547 td->td_ar = NULL; 548 549 } 550 551 /* 552 * Allocate storage for a new process (init, or otherwise). 553 */ 554 void 555 audit_proc_alloc(struct proc *p) 556 { 557 558 KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)", 559 p->p_pid)); 560 p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK); 561 } 562 563 /* 564 * Allocate storage for a new thread. 565 */ 566 void 567 audit_thread_alloc(struct thread *td) 568 { 569 570 td->td_ar = NULL; 571 } 572 573 /* 574 * Thread destruction. 575 */ 576 void 577 audit_thread_free(struct thread *td) 578 { 579 580 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 581 } 582 583 /* 584 * Initialize audit information for the first kernel process (proc 0) and for 585 * the first user process (init). 586 * 587 * XXX It is not clear what the initial values should be for audit ID, 588 * session ID, etc. 589 */ 590 void 591 audit_proc_kproc0(struct proc *p) 592 { 593 594 KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)", 595 p->p_pid)); 596 bzero(p->p_au, sizeof(*(p)->p_au)); 597 } 598 599 void 600 audit_proc_init(struct proc *p) 601 { 602 603 KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)", 604 p->p_pid)); 605 bzero(p->p_au, sizeof(*(p)->p_au)); 606 p->p_au->ai_auid = AU_DEFAUDITID; 607 } 608 609 /* 610 * Copy the audit info from the parent process to the child process when 611 * a fork takes place. 612 */ 613 void 614 audit_proc_fork(struct proc *parent, struct proc *child) 615 { 616 617 PROC_LOCK_ASSERT(parent, MA_OWNED); 618 PROC_LOCK_ASSERT(child, MA_OWNED); 619 KASSERT(parent->p_au != NULL, 620 ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid)); 621 KASSERT(child->p_au != NULL, 622 ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid)); 623 bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); 624 } 625 626 /* 627 * Free the auditing structure for the process. 628 */ 629 void 630 audit_proc_free(struct proc *p) 631 { 632 633 KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid)); 634 free(p->p_au, M_AUDITPROC); 635 p->p_au = NULL; 636 } 637