1 /*- 2 * Copyright (c) 1999-2005 Apple Inc. 3 * Copyright (c) 2006-2007 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/condvar.h> 36 #include <sys/conf.h> 37 #include <sys/file.h> 38 #include <sys/filedesc.h> 39 #include <sys/fcntl.h> 40 #include <sys/ipc.h> 41 #include <sys/jail.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/namei.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/queue.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/protosw.h> 53 #include <sys/domain.h> 54 #include <sys/sysctl.h> 55 #include <sys/sysproto.h> 56 #include <sys/sysent.h> 57 #include <sys/systm.h> 58 #include <sys/ucred.h> 59 #include <sys/uio.h> 60 #include <sys/un.h> 61 #include <sys/unistd.h> 62 #include <sys/vnode.h> 63 64 #include <bsm/audit.h> 65 #include <bsm/audit_internal.h> 66 #include <bsm/audit_kevents.h> 67 68 #include <netinet/in.h> 69 #include <netinet/in_pcb.h> 70 71 #include <security/audit/audit.h> 72 #include <security/audit/audit_private.h> 73 74 #include <vm/uma.h> 75 76 FEATURE(audit, "BSM audit support"); 77 78 static uma_zone_t audit_record_zone; 79 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage"); 80 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 81 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 82 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 83 MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage"); 84 85 static SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0, 86 "TrustedBSD audit controls"); 87 88 /* 89 * Audit control settings that are set/read by system calls and are hence 90 * non-static. 91 * 92 * Define the audit control flags. 93 */ 94 int audit_enabled; 95 int audit_suspended; 96 97 /* 98 * Flags controlling behavior in low storage situations. Should we panic if 99 * a write fails? Should we fail stop if we're out of disk space? 100 */ 101 int audit_panic_on_write_fail; 102 int audit_fail_stop; 103 int audit_argv; 104 int audit_arge; 105 106 /* 107 * Are we currently "failing stop" due to out of disk space? 108 */ 109 int audit_in_failure; 110 111 /* 112 * Global audit statistics. 113 */ 114 struct audit_fstat audit_fstat; 115 116 /* 117 * Preselection mask for non-attributable events. 118 */ 119 struct au_mask audit_nae_mask; 120 121 /* 122 * Mutex to protect global variables shared between various threads and 123 * processes. 124 */ 125 struct mtx audit_mtx; 126 127 /* 128 * Queue of audit records ready for delivery to disk. We insert new records 129 * at the tail, and remove records from the head. Also, a count of the 130 * number of records used for checking queue depth. In addition, a counter 131 * of records that we have allocated but are not yet in the queue, which is 132 * needed to estimate the total size of the combined set of records 133 * outstanding in the system. 134 */ 135 struct kaudit_queue audit_q; 136 int audit_q_len; 137 int audit_pre_q_len; 138 139 /* 140 * Audit queue control settings (minimum free, low/high water marks, etc.) 141 */ 142 struct au_qctrl audit_qctrl; 143 144 /* 145 * Condition variable to signal to the worker that it has work to do: either 146 * new records are in the queue, or a log replacement is taking place. 147 */ 148 struct cv audit_worker_cv; 149 150 /* 151 * Condition variable to flag when crossing the low watermark, meaning that 152 * threads blocked due to hitting the high watermark can wake up and continue 153 * to commit records. 154 */ 155 struct cv audit_watermark_cv; 156 157 /* 158 * Condition variable for auditing threads wait on when in fail-stop mode. 159 * Threads wait on this CV forever (and ever), never seeing the light of day 160 * again. 161 */ 162 static struct cv audit_fail_cv; 163 164 /* 165 * Kernel audit information. This will store the current audit address 166 * or host information that the kernel will use when it's generating 167 * audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2) 168 * command. 169 */ 170 static struct auditinfo_addr audit_kinfo; 171 static struct rwlock audit_kinfo_lock; 172 173 #define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \ 174 "audit_kinfo_lock") 175 #define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock) 176 #define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock) 177 #define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock) 178 #define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock) 179 180 void 181 audit_set_kinfo(struct auditinfo_addr *ak) 182 { 183 184 KASSERT(ak->ai_termid.at_type == AU_IPv4 || 185 ak->ai_termid.at_type == AU_IPv6, 186 ("audit_set_kinfo: invalid address type")); 187 188 KINFO_WLOCK(); 189 audit_kinfo = *ak; 190 KINFO_WUNLOCK(); 191 } 192 193 void 194 audit_get_kinfo(struct auditinfo_addr *ak) 195 { 196 197 KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 || 198 audit_kinfo.ai_termid.at_type == AU_IPv6, 199 ("audit_set_kinfo: invalid address type")); 200 201 KINFO_RLOCK(); 202 *ak = audit_kinfo; 203 KINFO_RUNLOCK(); 204 } 205 206 /* 207 * Construct an audit record for the passed thread. 208 */ 209 static int 210 audit_record_ctor(void *mem, int size, void *arg, int flags) 211 { 212 struct kaudit_record *ar; 213 struct thread *td; 214 struct ucred *cred; 215 struct prison *pr; 216 217 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 218 219 td = arg; 220 ar = mem; 221 bzero(ar, sizeof(*ar)); 222 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 223 nanotime(&ar->k_ar.ar_starttime); 224 225 /* 226 * Export the subject credential. 227 */ 228 cred = td->td_ucred; 229 cru2x(cred, &ar->k_ar.ar_subj_cred); 230 ar->k_ar.ar_subj_ruid = cred->cr_ruid; 231 ar->k_ar.ar_subj_rgid = cred->cr_rgid; 232 ar->k_ar.ar_subj_egid = cred->cr_groups[0]; 233 ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid; 234 ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid; 235 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 236 ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask; 237 ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid; 238 /* 239 * If this process is jailed, make sure we capture the name of the 240 * jail so we can use it to generate a zonename token when we covert 241 * this record to BSM. 242 */ 243 if (jailed(cred)) { 244 pr = cred->cr_prison; 245 (void) strlcpy(ar->k_ar.ar_jailname, pr->pr_name, 246 sizeof(ar->k_ar.ar_jailname)); 247 } else 248 ar->k_ar.ar_jailname[0] = '\0'; 249 return (0); 250 } 251 252 static void 253 audit_record_dtor(void *mem, int size, void *arg) 254 { 255 struct kaudit_record *ar; 256 257 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 258 259 ar = mem; 260 if (ar->k_ar.ar_arg_upath1 != NULL) 261 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 262 if (ar->k_ar.ar_arg_upath2 != NULL) 263 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 264 if (ar->k_ar.ar_arg_text != NULL) 265 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 266 if (ar->k_udata != NULL) 267 free(ar->k_udata, M_AUDITDATA); 268 if (ar->k_ar.ar_arg_argv != NULL) 269 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); 270 if (ar->k_ar.ar_arg_envv != NULL) 271 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); 272 if (ar->k_ar.ar_arg_groups.gidset != NULL) 273 free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET); 274 } 275 276 /* 277 * Initialize the Audit subsystem: configuration state, work queue, 278 * synchronization primitives, worker thread, and trigger device node. Also 279 * call into the BSM assembly code to initialize it. 280 */ 281 static void 282 audit_init(void) 283 { 284 285 audit_enabled = 0; 286 audit_suspended = 0; 287 audit_panic_on_write_fail = 0; 288 audit_fail_stop = 0; 289 audit_in_failure = 0; 290 audit_argv = 0; 291 audit_arge = 0; 292 293 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */ 294 audit_fstat.af_currsz = 0; 295 audit_nae_mask.am_success = 0; 296 audit_nae_mask.am_failure = 0; 297 298 TAILQ_INIT(&audit_q); 299 audit_q_len = 0; 300 audit_pre_q_len = 0; 301 audit_qctrl.aq_hiwater = AQ_HIWATER; 302 audit_qctrl.aq_lowater = AQ_LOWATER; 303 audit_qctrl.aq_bufsz = AQ_BUFSZ; 304 audit_qctrl.aq_minfree = AU_FS_MINFREE; 305 306 audit_kinfo.ai_termid.at_type = AU_IPv4; 307 audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY; 308 309 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 310 KINFO_LOCK_INIT(); 311 cv_init(&audit_worker_cv, "audit_worker_cv"); 312 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 313 cv_init(&audit_fail_cv, "audit_fail_cv"); 314 315 audit_record_zone = uma_zcreate("audit_record", 316 sizeof(struct kaudit_record), audit_record_ctor, 317 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 318 319 /* Initialize the BSM audit subsystem. */ 320 kau_init(); 321 322 audit_trigger_init(); 323 324 /* Register shutdown handler. */ 325 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 326 SHUTDOWN_PRI_FIRST); 327 328 /* Start audit worker thread. */ 329 audit_worker_init(); 330 } 331 332 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL); 333 334 /* 335 * Drain the audit queue and close the log at shutdown. Note that this can 336 * be called both from the system shutdown path and also from audit 337 * configuration syscalls, so 'arg' and 'howto' are ignored. 338 * 339 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to 340 * drain before returning, which could lead to lost records on shutdown. 341 */ 342 void 343 audit_shutdown(void *arg, int howto) 344 { 345 346 audit_rotate_vnode(NULL, NULL); 347 } 348 349 /* 350 * Return the current thread's audit record, if any. 351 */ 352 struct kaudit_record * 353 currecord(void) 354 { 355 356 return (curthread->td_ar); 357 } 358 359 /* 360 * XXXAUDIT: There are a number of races present in the code below due to 361 * release and re-grab of the mutex. The code should be revised to become 362 * slightly less racy. 363 * 364 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 365 * pre_q space, suspending the system call until there is room? 366 */ 367 struct kaudit_record * 368 audit_new(int event, struct thread *td) 369 { 370 struct kaudit_record *ar; 371 int no_record; 372 373 mtx_lock(&audit_mtx); 374 no_record = (audit_suspended || !audit_enabled); 375 mtx_unlock(&audit_mtx); 376 if (no_record) 377 return (NULL); 378 379 /* 380 * Note: the number of outstanding uncommitted audit records is 381 * limited to the number of concurrent threads servicing system calls 382 * in the kernel. 383 */ 384 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 385 ar->k_ar.ar_event = event; 386 387 mtx_lock(&audit_mtx); 388 audit_pre_q_len++; 389 mtx_unlock(&audit_mtx); 390 391 return (ar); 392 } 393 394 void 395 audit_free(struct kaudit_record *ar) 396 { 397 398 uma_zfree(audit_record_zone, ar); 399 } 400 401 void 402 audit_commit(struct kaudit_record *ar, int error, int retval) 403 { 404 au_event_t event; 405 au_class_t class; 406 au_id_t auid; 407 int sorf; 408 struct au_mask *aumask; 409 410 if (ar == NULL) 411 return; 412 413 /* 414 * Decide whether to commit the audit record by checking the error 415 * value from the system call and using the appropriate audit mask. 416 */ 417 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 418 aumask = &audit_nae_mask; 419 else 420 aumask = &ar->k_ar.ar_subj_amask; 421 422 if (error) 423 sorf = AU_PRS_FAILURE; 424 else 425 sorf = AU_PRS_SUCCESS; 426 427 /* 428 * syscalls.master sometimes contains a prototype event number, which 429 * we will transform into a more specific event number now that we 430 * have more complete information gathered during the system call. 431 */ 432 switch(ar->k_ar.ar_event) { 433 case AUE_OPEN_RWTC: 434 ar->k_ar.ar_event = audit_flags_and_error_to_openevent( 435 ar->k_ar.ar_arg_fflags, error); 436 break; 437 438 case AUE_OPENAT_RWTC: 439 ar->k_ar.ar_event = audit_flags_and_error_to_openatevent( 440 ar->k_ar.ar_arg_fflags, error); 441 break; 442 443 case AUE_SYSCTL: 444 ar->k_ar.ar_event = audit_ctlname_to_sysctlevent( 445 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 446 break; 447 448 case AUE_AUDITON: 449 /* Convert the auditon() command to an event. */ 450 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 451 break; 452 } 453 454 auid = ar->k_ar.ar_subj_auid; 455 event = ar->k_ar.ar_event; 456 class = au_event_class(event); 457 458 ar->k_ar_commit |= AR_COMMIT_KERNEL; 459 if (au_preselect(event, class, aumask, sorf) != 0) 460 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 461 if (audit_pipe_preselect(auid, event, class, sorf, 462 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 463 ar->k_ar_commit |= AR_PRESELECT_PIPE; 464 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | 465 AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { 466 mtx_lock(&audit_mtx); 467 audit_pre_q_len--; 468 mtx_unlock(&audit_mtx); 469 audit_free(ar); 470 return; 471 } 472 473 ar->k_ar.ar_errno = error; 474 ar->k_ar.ar_retval = retval; 475 nanotime(&ar->k_ar.ar_endtime); 476 477 /* 478 * Note: it could be that some records initiated while audit was 479 * enabled should still be committed? 480 */ 481 mtx_lock(&audit_mtx); 482 if (audit_suspended || !audit_enabled) { 483 audit_pre_q_len--; 484 mtx_unlock(&audit_mtx); 485 audit_free(ar); 486 return; 487 } 488 489 /* 490 * Constrain the number of committed audit records based on the 491 * configurable parameter. 492 */ 493 while (audit_q_len >= audit_qctrl.aq_hiwater) 494 cv_wait(&audit_watermark_cv, &audit_mtx); 495 496 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 497 audit_q_len++; 498 audit_pre_q_len--; 499 cv_signal(&audit_worker_cv); 500 mtx_unlock(&audit_mtx); 501 } 502 503 /* 504 * audit_syscall_enter() is called on entry to each system call. It is 505 * responsible for deciding whether or not to audit the call (preselection), 506 * and if so, allocating a per-thread audit record. audit_new() will fill in 507 * basic thread/credential properties. 508 */ 509 void 510 audit_syscall_enter(unsigned short code, struct thread *td) 511 { 512 struct au_mask *aumask; 513 au_class_t class; 514 au_event_t event; 515 au_id_t auid; 516 517 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 518 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 519 ("audit_syscall_enter: TDP_AUDITREC set")); 520 521 /* 522 * In FreeBSD, each ABI has its own system call table, and hence 523 * mapping of system call codes to audit events. Convert the code to 524 * an audit event identifier using the process system call table 525 * reference. In Darwin, there's only one, so we use the global 526 * symbol for the system call table. No audit record is generated 527 * for bad system calls, as no operation has been performed. 528 */ 529 if (code >= td->td_proc->p_sysent->sv_size) 530 return; 531 532 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 533 if (event == AUE_NULL) 534 return; 535 536 /* 537 * Check which audit mask to use; either the kernel non-attributable 538 * event mask or the process audit mask. 539 */ 540 auid = td->td_ucred->cr_audit.ai_auid; 541 if (auid == AU_DEFAUDITID) 542 aumask = &audit_nae_mask; 543 else 544 aumask = &td->td_ucred->cr_audit.ai_mask; 545 546 /* 547 * Allocate an audit record, if preselection allows it, and store in 548 * the thread for later use. 549 */ 550 class = au_event_class(event); 551 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 552 /* 553 * If we're out of space and need to suspend unprivileged 554 * processes, do that here rather than trying to allocate 555 * another audit record. 556 * 557 * Note: we might wish to be able to continue here in the 558 * future, if the system recovers. That should be possible 559 * by means of checking the condition in a loop around 560 * cv_wait(). It might be desirable to reevaluate whether an 561 * audit record is still required for this event by 562 * re-calling au_preselect(). 563 */ 564 if (audit_in_failure && 565 priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { 566 cv_wait(&audit_fail_cv, &audit_mtx); 567 panic("audit_failing_stop: thread continued"); 568 } 569 td->td_ar = audit_new(event, td); 570 if (td->td_ar != NULL) 571 td->td_pflags |= TDP_AUDITREC; 572 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) { 573 td->td_ar = audit_new(event, td); 574 if (td->td_ar != NULL) 575 td->td_pflags |= TDP_AUDITREC; 576 } else 577 td->td_ar = NULL; 578 } 579 580 /* 581 * audit_syscall_exit() is called from the return of every system call, or in 582 * the event of exit1(), during the execution of exit1(). It is responsible 583 * for committing the audit record, if any, along with return condition. 584 */ 585 void 586 audit_syscall_exit(int error, struct thread *td) 587 { 588 int retval; 589 590 /* 591 * Commit the audit record as desired; once we pass the record into 592 * audit_commit(), the memory is owned by the audit subsystem. The 593 * return value from the system call is stored on the user thread. 594 * If there was an error, the return value is set to -1, imitating 595 * the behavior of the cerror routine. 596 */ 597 if (error) 598 retval = -1; 599 else 600 retval = td->td_retval[0]; 601 602 audit_commit(td->td_ar, error, retval); 603 td->td_ar = NULL; 604 td->td_pflags &= ~TDP_AUDITREC; 605 } 606 607 void 608 audit_cred_copy(struct ucred *src, struct ucred *dest) 609 { 610 611 bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit)); 612 } 613 614 void 615 audit_cred_destroy(struct ucred *cred) 616 { 617 618 } 619 620 void 621 audit_cred_init(struct ucred *cred) 622 { 623 624 bzero(&cred->cr_audit, sizeof(cred->cr_audit)); 625 } 626 627 /* 628 * Initialize audit information for the first kernel process (proc 0) and for 629 * the first user process (init). 630 */ 631 void 632 audit_cred_kproc0(struct ucred *cred) 633 { 634 635 cred->cr_audit.ai_auid = AU_DEFAUDITID; 636 cred->cr_audit.ai_termid.at_type = AU_IPv4; 637 } 638 639 void 640 audit_cred_proc1(struct ucred *cred) 641 { 642 643 cred->cr_audit.ai_auid = AU_DEFAUDITID; 644 cred->cr_audit.ai_termid.at_type = AU_IPv4; 645 } 646 647 void 648 audit_thread_alloc(struct thread *td) 649 { 650 651 td->td_ar = NULL; 652 } 653 654 void 655 audit_thread_free(struct thread *td) 656 { 657 658 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 659 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 660 ("audit_thread_free: TDP_AUDITREC set")); 661 } 662 663 void 664 audit_proc_coredump(struct thread *td, char *path, int errcode) 665 { 666 struct kaudit_record *ar; 667 struct au_mask *aumask; 668 struct ucred *cred; 669 au_class_t class; 670 int ret, sorf; 671 char **pathp; 672 au_id_t auid; 673 674 ret = 0; 675 676 /* 677 * Make sure we are using the correct preselection mask. 678 */ 679 cred = td->td_ucred; 680 auid = cred->cr_audit.ai_auid; 681 if (auid == AU_DEFAUDITID) 682 aumask = &audit_nae_mask; 683 else 684 aumask = &cred->cr_audit.ai_mask; 685 /* 686 * It's possible for coredump(9) generation to fail. Make sure that 687 * we handle this case correctly for preselection. 688 */ 689 if (errcode != 0) 690 sorf = AU_PRS_FAILURE; 691 else 692 sorf = AU_PRS_SUCCESS; 693 class = au_event_class(AUE_CORE); 694 if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 && 695 audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) 696 return; 697 698 /* 699 * If we are interested in seeing this audit record, allocate it. 700 * Where possible coredump records should contain a pathname and arg32 701 * (signal) tokens. 702 */ 703 ar = audit_new(AUE_CORE, td); 704 if (path != NULL) { 705 pathp = &ar->k_ar.ar_arg_upath1; 706 *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); 707 audit_canon_path(td, AT_FDCWD, path, *pathp); 708 ARG_SET_VALID(ar, ARG_UPATH1); 709 } 710 ar->k_ar.ar_arg_signum = td->td_proc->p_sig; 711 ARG_SET_VALID(ar, ARG_SIGNUM); 712 if (errcode != 0) 713 ret = 1; 714 audit_commit(ar, errcode, ret); 715 } 716