xref: /freebsd/sys/security/audit/audit.c (revision d940bfec8c329dd82d8d54efebd81c8aa420503b)
1 /*-
2  * Copyright (c) 1999-2005 Apple Inc.
3  * Copyright (c) 2006-2007 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/condvar.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/filedesc.h>
39 #include <sys/fcntl.h>
40 #include <sys/ipc.h>
41 #include <sys/jail.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/queue.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/protosw.h>
53 #include <sys/domain.h>
54 #include <sys/sysctl.h>
55 #include <sys/sysproto.h>
56 #include <sys/sysent.h>
57 #include <sys/systm.h>
58 #include <sys/ucred.h>
59 #include <sys/uio.h>
60 #include <sys/un.h>
61 #include <sys/unistd.h>
62 #include <sys/vnode.h>
63 
64 #include <bsm/audit.h>
65 #include <bsm/audit_internal.h>
66 #include <bsm/audit_kevents.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 
71 #include <security/audit/audit.h>
72 #include <security/audit/audit_private.h>
73 
74 #include <vm/uma.h>
75 
76 FEATURE(audit, "BSM audit support");
77 
78 static uma_zone_t	audit_record_zone;
79 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
80 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
81 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
82 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
83 MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage");
84 
85 static SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0,
86     "TrustedBSD audit controls");
87 
88 /*
89  * Audit control settings that are set/read by system calls and are hence
90  * non-static.
91  *
92  * Define the audit control flags.
93  */
94 int			audit_enabled;
95 int			audit_suspended;
96 
97 /*
98  * Flags controlling behavior in low storage situations.  Should we panic if
99  * a write fails?  Should we fail stop if we're out of disk space?
100  */
101 int			audit_panic_on_write_fail;
102 int			audit_fail_stop;
103 int			audit_argv;
104 int			audit_arge;
105 
106 /*
107  * Are we currently "failing stop" due to out of disk space?
108  */
109 int			audit_in_failure;
110 
111 /*
112  * Global audit statistics.
113  */
114 struct audit_fstat	audit_fstat;
115 
116 /*
117  * Preselection mask for non-attributable events.
118  */
119 struct au_mask		audit_nae_mask;
120 
121 /*
122  * Mutex to protect global variables shared between various threads and
123  * processes.
124  */
125 struct mtx		audit_mtx;
126 
127 /*
128  * Queue of audit records ready for delivery to disk.  We insert new records
129  * at the tail, and remove records from the head.  Also, a count of the
130  * number of records used for checking queue depth.  In addition, a counter
131  * of records that we have allocated but are not yet in the queue, which is
132  * needed to estimate the total size of the combined set of records
133  * outstanding in the system.
134  */
135 struct kaudit_queue	audit_q;
136 int			audit_q_len;
137 int			audit_pre_q_len;
138 
139 /*
140  * Audit queue control settings (minimum free, low/high water marks, etc.)
141  */
142 struct au_qctrl		audit_qctrl;
143 
144 /*
145  * Condition variable to signal to the worker that it has work to do: either
146  * new records are in the queue, or a log replacement is taking place.
147  */
148 struct cv		audit_worker_cv;
149 
150 /*
151  * Condition variable to flag when crossing the low watermark, meaning that
152  * threads blocked due to hitting the high watermark can wake up and continue
153  * to commit records.
154  */
155 struct cv		audit_watermark_cv;
156 
157 /*
158  * Condition variable for  auditing threads wait on when in fail-stop mode.
159  * Threads wait on this CV forever (and ever), never seeing the light of day
160  * again.
161  */
162 static struct cv	audit_fail_cv;
163 
164 /*
165  * Kernel audit information.  This will store the current audit address
166  * or host information that the kernel will use when it's generating
167  * audit records.  This data is modified by the A_GET{SET}KAUDIT auditon(2)
168  * command.
169  */
170 static struct auditinfo_addr	audit_kinfo;
171 static struct rwlock		audit_kinfo_lock;
172 
173 #define	KINFO_LOCK_INIT()	rw_init(&audit_kinfo_lock, \
174 				    "audit_kinfo_lock")
175 #define	KINFO_RLOCK()		rw_rlock(&audit_kinfo_lock)
176 #define	KINFO_WLOCK()		rw_wlock(&audit_kinfo_lock)
177 #define	KINFO_RUNLOCK()		rw_runlock(&audit_kinfo_lock)
178 #define	KINFO_WUNLOCK()		rw_wunlock(&audit_kinfo_lock)
179 
180 void
181 audit_set_kinfo(struct auditinfo_addr *ak)
182 {
183 
184 	KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
185 	    ak->ai_termid.at_type == AU_IPv6,
186 	    ("audit_set_kinfo: invalid address type"));
187 
188 	KINFO_WLOCK();
189 	audit_kinfo = *ak;
190 	KINFO_WUNLOCK();
191 }
192 
193 void
194 audit_get_kinfo(struct auditinfo_addr *ak)
195 {
196 
197 	KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
198 	    audit_kinfo.ai_termid.at_type == AU_IPv6,
199 	    ("audit_set_kinfo: invalid address type"));
200 
201 	KINFO_RLOCK();
202 	*ak = audit_kinfo;
203 	KINFO_RUNLOCK();
204 }
205 
206 /*
207  * Construct an audit record for the passed thread.
208  */
209 static int
210 audit_record_ctor(void *mem, int size, void *arg, int flags)
211 {
212 	struct kaudit_record *ar;
213 	struct thread *td;
214 	struct ucred *cred;
215 	struct prison *pr;
216 
217 	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
218 
219 	td = arg;
220 	ar = mem;
221 	bzero(ar, sizeof(*ar));
222 	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
223 	nanotime(&ar->k_ar.ar_starttime);
224 
225 	/*
226 	 * Export the subject credential.
227 	 */
228 	cred = td->td_ucred;
229 	cru2x(cred, &ar->k_ar.ar_subj_cred);
230 	ar->k_ar.ar_subj_ruid = cred->cr_ruid;
231 	ar->k_ar.ar_subj_rgid = cred->cr_rgid;
232 	ar->k_ar.ar_subj_egid = cred->cr_groups[0];
233 	ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid;
234 	ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid;
235 	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
236 	ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask;
237 	ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid;
238 	/*
239 	 * If this process is jailed, make sure we capture the name of the
240 	 * jail so we can use it to generate a zonename token when we covert
241 	 * this record to BSM.
242 	 */
243 	if (jailed(cred)) {
244 		pr = cred->cr_prison;
245 		(void) strlcpy(ar->k_ar.ar_jailname, pr->pr_name,
246 		    sizeof(ar->k_ar.ar_jailname));
247 	} else
248 		ar->k_ar.ar_jailname[0] = '\0';
249 	return (0);
250 }
251 
252 static void
253 audit_record_dtor(void *mem, int size, void *arg)
254 {
255 	struct kaudit_record *ar;
256 
257 	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
258 
259 	ar = mem;
260 	if (ar->k_ar.ar_arg_upath1 != NULL)
261 		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
262 	if (ar->k_ar.ar_arg_upath2 != NULL)
263 		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
264 	if (ar->k_ar.ar_arg_text != NULL)
265 		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
266 	if (ar->k_udata != NULL)
267 		free(ar->k_udata, M_AUDITDATA);
268 	if (ar->k_ar.ar_arg_argv != NULL)
269 		free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
270 	if (ar->k_ar.ar_arg_envv != NULL)
271 		free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
272 	if (ar->k_ar.ar_arg_groups.gidset != NULL)
273 		free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET);
274 }
275 
276 /*
277  * Initialize the Audit subsystem: configuration state, work queue,
278  * synchronization primitives, worker thread, and trigger device node.  Also
279  * call into the BSM assembly code to initialize it.
280  */
281 static void
282 audit_init(void)
283 {
284 
285 	audit_enabled = 0;
286 	audit_suspended = 0;
287 	audit_panic_on_write_fail = 0;
288 	audit_fail_stop = 0;
289 	audit_in_failure = 0;
290 	audit_argv = 0;
291 	audit_arge = 0;
292 
293 	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded. */
294 	audit_fstat.af_currsz = 0;
295 	audit_nae_mask.am_success = 0;
296 	audit_nae_mask.am_failure = 0;
297 
298 	TAILQ_INIT(&audit_q);
299 	audit_q_len = 0;
300 	audit_pre_q_len = 0;
301 	audit_qctrl.aq_hiwater = AQ_HIWATER;
302 	audit_qctrl.aq_lowater = AQ_LOWATER;
303 	audit_qctrl.aq_bufsz = AQ_BUFSZ;
304 	audit_qctrl.aq_minfree = AU_FS_MINFREE;
305 
306 	audit_kinfo.ai_termid.at_type = AU_IPv4;
307 	audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
308 
309 	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
310 	KINFO_LOCK_INIT();
311 	cv_init(&audit_worker_cv, "audit_worker_cv");
312 	cv_init(&audit_watermark_cv, "audit_watermark_cv");
313 	cv_init(&audit_fail_cv, "audit_fail_cv");
314 
315 	audit_record_zone = uma_zcreate("audit_record",
316 	    sizeof(struct kaudit_record), audit_record_ctor,
317 	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
318 
319 	/* Initialize the BSM audit subsystem. */
320 	kau_init();
321 
322 	audit_trigger_init();
323 
324 	/* Register shutdown handler. */
325 	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
326 	    SHUTDOWN_PRI_FIRST);
327 
328 	/* Start audit worker thread. */
329 	audit_worker_init();
330 }
331 
332 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
333 
334 /*
335  * Drain the audit queue and close the log at shutdown.  Note that this can
336  * be called both from the system shutdown path and also from audit
337  * configuration syscalls, so 'arg' and 'howto' are ignored.
338  *
339  * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to
340  * drain before returning, which could lead to lost records on shutdown.
341  */
342 void
343 audit_shutdown(void *arg, int howto)
344 {
345 
346 	audit_rotate_vnode(NULL, NULL);
347 }
348 
349 /*
350  * Return the current thread's audit record, if any.
351  */
352 struct kaudit_record *
353 currecord(void)
354 {
355 
356 	return (curthread->td_ar);
357 }
358 
359 /*
360  * XXXAUDIT: There are a number of races present in the code below due to
361  * release and re-grab of the mutex.  The code should be revised to become
362  * slightly less racy.
363  *
364  * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
365  * pre_q space, suspending the system call until there is room?
366  */
367 struct kaudit_record *
368 audit_new(int event, struct thread *td)
369 {
370 	struct kaudit_record *ar;
371 	int no_record;
372 
373 	mtx_lock(&audit_mtx);
374 	no_record = (audit_suspended || !audit_enabled);
375 	mtx_unlock(&audit_mtx);
376 	if (no_record)
377 		return (NULL);
378 
379 	/*
380 	 * Note: the number of outstanding uncommitted audit records is
381 	 * limited to the number of concurrent threads servicing system calls
382 	 * in the kernel.
383 	 */
384 	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
385 	ar->k_ar.ar_event = event;
386 
387 	mtx_lock(&audit_mtx);
388 	audit_pre_q_len++;
389 	mtx_unlock(&audit_mtx);
390 
391 	return (ar);
392 }
393 
394 void
395 audit_free(struct kaudit_record *ar)
396 {
397 
398 	uma_zfree(audit_record_zone, ar);
399 }
400 
401 void
402 audit_commit(struct kaudit_record *ar, int error, int retval)
403 {
404 	au_event_t event;
405 	au_class_t class;
406 	au_id_t auid;
407 	int sorf;
408 	struct au_mask *aumask;
409 
410 	if (ar == NULL)
411 		return;
412 
413 	/*
414 	 * Decide whether to commit the audit record by checking the error
415 	 * value from the system call and using the appropriate audit mask.
416 	 */
417 	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
418 		aumask = &audit_nae_mask;
419 	else
420 		aumask = &ar->k_ar.ar_subj_amask;
421 
422 	if (error)
423 		sorf = AU_PRS_FAILURE;
424 	else
425 		sorf = AU_PRS_SUCCESS;
426 
427 	/*
428 	 * syscalls.master sometimes contains a prototype event number, which
429 	 * we will transform into a more specific event number now that we
430 	 * have more complete information gathered during the system call.
431 	 */
432 	switch(ar->k_ar.ar_event) {
433 	case AUE_OPEN_RWTC:
434 		ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
435 		    ar->k_ar.ar_arg_fflags, error);
436 		break;
437 
438 	case AUE_OPENAT_RWTC:
439 		ar->k_ar.ar_event = audit_flags_and_error_to_openatevent(
440 		    ar->k_ar.ar_arg_fflags, error);
441 		break;
442 
443 	case AUE_SYSCTL:
444 		ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
445 		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
446 		break;
447 
448 	case AUE_AUDITON:
449 		/* Convert the auditon() command to an event. */
450 		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
451 		break;
452 	}
453 
454 	auid = ar->k_ar.ar_subj_auid;
455 	event = ar->k_ar.ar_event;
456 	class = au_event_class(event);
457 
458 	ar->k_ar_commit |= AR_COMMIT_KERNEL;
459 	if (au_preselect(event, class, aumask, sorf) != 0)
460 		ar->k_ar_commit |= AR_PRESELECT_TRAIL;
461 	if (audit_pipe_preselect(auid, event, class, sorf,
462 	    ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
463 		ar->k_ar_commit |= AR_PRESELECT_PIPE;
464 	if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
465 	    AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) {
466 		mtx_lock(&audit_mtx);
467 		audit_pre_q_len--;
468 		mtx_unlock(&audit_mtx);
469 		audit_free(ar);
470 		return;
471 	}
472 
473 	ar->k_ar.ar_errno = error;
474 	ar->k_ar.ar_retval = retval;
475 	nanotime(&ar->k_ar.ar_endtime);
476 
477 	/*
478 	 * Note: it could be that some records initiated while audit was
479 	 * enabled should still be committed?
480 	 */
481 	mtx_lock(&audit_mtx);
482 	if (audit_suspended || !audit_enabled) {
483 		audit_pre_q_len--;
484 		mtx_unlock(&audit_mtx);
485 		audit_free(ar);
486 		return;
487 	}
488 
489 	/*
490 	 * Constrain the number of committed audit records based on the
491 	 * configurable parameter.
492 	 */
493 	while (audit_q_len >= audit_qctrl.aq_hiwater)
494 		cv_wait(&audit_watermark_cv, &audit_mtx);
495 
496 	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
497 	audit_q_len++;
498 	audit_pre_q_len--;
499 	cv_signal(&audit_worker_cv);
500 	mtx_unlock(&audit_mtx);
501 }
502 
503 /*
504  * audit_syscall_enter() is called on entry to each system call.  It is
505  * responsible for deciding whether or not to audit the call (preselection),
506  * and if so, allocating a per-thread audit record.  audit_new() will fill in
507  * basic thread/credential properties.
508  */
509 void
510 audit_syscall_enter(unsigned short code, struct thread *td)
511 {
512 	struct au_mask *aumask;
513 	au_class_t class;
514 	au_event_t event;
515 	au_id_t auid;
516 
517 	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
518 	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
519 	    ("audit_syscall_enter: TDP_AUDITREC set"));
520 
521 	/*
522 	 * In FreeBSD, each ABI has its own system call table, and hence
523 	 * mapping of system call codes to audit events.  Convert the code to
524 	 * an audit event identifier using the process system call table
525 	 * reference.  In Darwin, there's only one, so we use the global
526 	 * symbol for the system call table.  No audit record is generated
527 	 * for bad system calls, as no operation has been performed.
528 	 */
529 	if (code >= td->td_proc->p_sysent->sv_size)
530 		return;
531 
532 	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
533 	if (event == AUE_NULL)
534 		return;
535 
536 	/*
537 	 * Check which audit mask to use; either the kernel non-attributable
538 	 * event mask or the process audit mask.
539 	 */
540 	auid = td->td_ucred->cr_audit.ai_auid;
541 	if (auid == AU_DEFAUDITID)
542 		aumask = &audit_nae_mask;
543 	else
544 		aumask = &td->td_ucred->cr_audit.ai_mask;
545 
546 	/*
547 	 * Allocate an audit record, if preselection allows it, and store in
548 	 * the thread for later use.
549 	 */
550 	class = au_event_class(event);
551 	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
552 		/*
553 		 * If we're out of space and need to suspend unprivileged
554 		 * processes, do that here rather than trying to allocate
555 		 * another audit record.
556 		 *
557 		 * Note: we might wish to be able to continue here in the
558 		 * future, if the system recovers.  That should be possible
559 		 * by means of checking the condition in a loop around
560 		 * cv_wait().  It might be desirable to reevaluate whether an
561 		 * audit record is still required for this event by
562 		 * re-calling au_preselect().
563 		 */
564 		if (audit_in_failure &&
565 		    priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
566 			cv_wait(&audit_fail_cv, &audit_mtx);
567 			panic("audit_failing_stop: thread continued");
568 		}
569 		td->td_ar = audit_new(event, td);
570 		if (td->td_ar != NULL)
571 			td->td_pflags |= TDP_AUDITREC;
572 	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
573 		td->td_ar = audit_new(event, td);
574 		if (td->td_ar != NULL)
575 			td->td_pflags |= TDP_AUDITREC;
576 	} else
577 		td->td_ar = NULL;
578 }
579 
580 /*
581  * audit_syscall_exit() is called from the return of every system call, or in
582  * the event of exit1(), during the execution of exit1().  It is responsible
583  * for committing the audit record, if any, along with return condition.
584  */
585 void
586 audit_syscall_exit(int error, struct thread *td)
587 {
588 	int retval;
589 
590 	/*
591 	 * Commit the audit record as desired; once we pass the record into
592 	 * audit_commit(), the memory is owned by the audit subsystem.  The
593 	 * return value from the system call is stored on the user thread.
594 	 * If there was an error, the return value is set to -1, imitating
595 	 * the behavior of the cerror routine.
596 	 */
597 	if (error)
598 		retval = -1;
599 	else
600 		retval = td->td_retval[0];
601 
602 	audit_commit(td->td_ar, error, retval);
603 	td->td_ar = NULL;
604 	td->td_pflags &= ~TDP_AUDITREC;
605 }
606 
607 void
608 audit_cred_copy(struct ucred *src, struct ucred *dest)
609 {
610 
611 	bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
612 }
613 
614 void
615 audit_cred_destroy(struct ucred *cred)
616 {
617 
618 }
619 
620 void
621 audit_cred_init(struct ucred *cred)
622 {
623 
624 	bzero(&cred->cr_audit, sizeof(cred->cr_audit));
625 }
626 
627 /*
628  * Initialize audit information for the first kernel process (proc 0) and for
629  * the first user process (init).
630  */
631 void
632 audit_cred_kproc0(struct ucred *cred)
633 {
634 
635 	cred->cr_audit.ai_auid = AU_DEFAUDITID;
636 	cred->cr_audit.ai_termid.at_type = AU_IPv4;
637 }
638 
639 void
640 audit_cred_proc1(struct ucred *cred)
641 {
642 
643 	cred->cr_audit.ai_auid = AU_DEFAUDITID;
644 	cred->cr_audit.ai_termid.at_type = AU_IPv4;
645 }
646 
647 void
648 audit_thread_alloc(struct thread *td)
649 {
650 
651 	td->td_ar = NULL;
652 }
653 
654 void
655 audit_thread_free(struct thread *td)
656 {
657 
658 	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
659 	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
660 	    ("audit_thread_free: TDP_AUDITREC set"));
661 }
662 
663 void
664 audit_proc_coredump(struct thread *td, char *path, int errcode)
665 {
666 	struct kaudit_record *ar;
667 	struct au_mask *aumask;
668 	struct ucred *cred;
669 	au_class_t class;
670 	int ret, sorf;
671 	char **pathp;
672 	au_id_t auid;
673 
674 	ret = 0;
675 
676 	/*
677 	 * Make sure we are using the correct preselection mask.
678 	 */
679 	cred = td->td_ucred;
680 	auid = cred->cr_audit.ai_auid;
681 	if (auid == AU_DEFAUDITID)
682 		aumask = &audit_nae_mask;
683 	else
684 		aumask = &cred->cr_audit.ai_mask;
685 	/*
686 	 * It's possible for coredump(9) generation to fail.  Make sure that
687 	 * we handle this case correctly for preselection.
688 	 */
689 	if (errcode != 0)
690 		sorf = AU_PRS_FAILURE;
691 	else
692 		sorf = AU_PRS_SUCCESS;
693 	class = au_event_class(AUE_CORE);
694 	if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
695 	    audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0)
696 		return;
697 
698 	/*
699 	 * If we are interested in seeing this audit record, allocate it.
700 	 * Where possible coredump records should contain a pathname and arg32
701 	 * (signal) tokens.
702 	 */
703 	ar = audit_new(AUE_CORE, td);
704 	if (ar == NULL)
705 		return;
706 	if (path != NULL) {
707 		pathp = &ar->k_ar.ar_arg_upath1;
708 		*pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
709 		audit_canon_path(td, AT_FDCWD, path, *pathp);
710 		ARG_SET_VALID(ar, ARG_UPATH1);
711 	}
712 	ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
713 	ARG_SET_VALID(ar, ARG_SIGNUM);
714 	if (errcode != 0)
715 		ret = 1;
716 	audit_commit(ar, errcode, ret);
717 }
718