1 /*- 2 * Copyright (c) 1999-2005 Apple Inc. 3 * Copyright (c) 2006-2007 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/condvar.h> 36 #include <sys/conf.h> 37 #include <sys/file.h> 38 #include <sys/filedesc.h> 39 #include <sys/fcntl.h> 40 #include <sys/ipc.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/queue.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/protosw.h> 52 #include <sys/domain.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysproto.h> 55 #include <sys/sysent.h> 56 #include <sys/systm.h> 57 #include <sys/ucred.h> 58 #include <sys/uio.h> 59 #include <sys/un.h> 60 #include <sys/unistd.h> 61 #include <sys/vnode.h> 62 63 #include <bsm/audit.h> 64 #include <bsm/audit_internal.h> 65 #include <bsm/audit_kevents.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 70 #include <security/audit/audit.h> 71 #include <security/audit/audit_private.h> 72 73 #include <vm/uma.h> 74 75 static uma_zone_t audit_record_zone; 76 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage"); 77 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 78 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 79 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 80 MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage"); 81 82 SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0, 83 "TrustedBSD audit controls"); 84 85 /* 86 * Audit control settings that are set/read by system calls and are hence 87 * non-static. 88 * 89 * Define the audit control flags. 90 */ 91 int audit_enabled; 92 int audit_suspended; 93 94 /* 95 * Flags controlling behavior in low storage situations. Should we panic if 96 * a write fails? Should we fail stop if we're out of disk space? 97 */ 98 int audit_panic_on_write_fail; 99 int audit_fail_stop; 100 int audit_argv; 101 int audit_arge; 102 103 /* 104 * Are we currently "failing stop" due to out of disk space? 105 */ 106 int audit_in_failure; 107 108 /* 109 * Global audit statistics. 110 */ 111 struct audit_fstat audit_fstat; 112 113 /* 114 * Preselection mask for non-attributable events. 115 */ 116 struct au_mask audit_nae_mask; 117 118 /* 119 * Mutex to protect global variables shared between various threads and 120 * processes. 121 */ 122 struct mtx audit_mtx; 123 124 /* 125 * Queue of audit records ready for delivery to disk. We insert new records 126 * at the tail, and remove records from the head. Also, a count of the 127 * number of records used for checking queue depth. In addition, a counter 128 * of records that we have allocated but are not yet in the queue, which is 129 * needed to estimate the total size of the combined set of records 130 * outstanding in the system. 131 */ 132 struct kaudit_queue audit_q; 133 int audit_q_len; 134 int audit_pre_q_len; 135 136 /* 137 * Audit queue control settings (minimum free, low/high water marks, etc.) 138 */ 139 struct au_qctrl audit_qctrl; 140 141 /* 142 * Condition variable to signal to the worker that it has work to do: either 143 * new records are in the queue, or a log replacement is taking place. 144 */ 145 struct cv audit_worker_cv; 146 147 /* 148 * Condition variable to flag when crossing the low watermark, meaning that 149 * threads blocked due to hitting the high watermark can wake up and continue 150 * to commit records. 151 */ 152 struct cv audit_watermark_cv; 153 154 /* 155 * Condition variable for auditing threads wait on when in fail-stop mode. 156 * Threads wait on this CV forever (and ever), never seeing the light of day 157 * again. 158 */ 159 static struct cv audit_fail_cv; 160 161 /* 162 * Kernel audit information. This will store the current audit address 163 * or host information that the kernel will use when it's generating 164 * audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2) 165 * command. 166 */ 167 static struct auditinfo_addr audit_kinfo; 168 static struct rwlock audit_kinfo_lock; 169 170 #define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \ 171 "audit_kinfo_lock") 172 #define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock) 173 #define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock) 174 #define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock) 175 #define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock) 176 177 void 178 audit_set_kinfo(struct auditinfo_addr *ak) 179 { 180 181 KASSERT(ak->ai_termid.at_type == AU_IPv4 || 182 ak->ai_termid.at_type == AU_IPv6, 183 ("audit_set_kinfo: invalid address type")); 184 185 KINFO_WLOCK(); 186 audit_kinfo = *ak; 187 KINFO_WUNLOCK(); 188 } 189 190 void 191 audit_get_kinfo(struct auditinfo_addr *ak) 192 { 193 194 KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 || 195 audit_kinfo.ai_termid.at_type == AU_IPv6, 196 ("audit_set_kinfo: invalid address type")); 197 198 KINFO_RLOCK(); 199 *ak = audit_kinfo; 200 KINFO_RUNLOCK(); 201 } 202 203 /* 204 * Construct an audit record for the passed thread. 205 */ 206 static int 207 audit_record_ctor(void *mem, int size, void *arg, int flags) 208 { 209 struct kaudit_record *ar; 210 struct thread *td; 211 struct ucred *cred; 212 213 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 214 215 td = arg; 216 ar = mem; 217 bzero(ar, sizeof(*ar)); 218 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 219 nanotime(&ar->k_ar.ar_starttime); 220 221 /* 222 * Export the subject credential. 223 */ 224 cred = td->td_ucred; 225 cru2x(cred, &ar->k_ar.ar_subj_cred); 226 ar->k_ar.ar_subj_ruid = cred->cr_ruid; 227 ar->k_ar.ar_subj_rgid = cred->cr_rgid; 228 ar->k_ar.ar_subj_egid = cred->cr_groups[0]; 229 ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid; 230 ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid; 231 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 232 ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask; 233 ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid; 234 return (0); 235 } 236 237 static void 238 audit_record_dtor(void *mem, int size, void *arg) 239 { 240 struct kaudit_record *ar; 241 242 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 243 244 ar = mem; 245 if (ar->k_ar.ar_arg_upath1 != NULL) 246 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 247 if (ar->k_ar.ar_arg_upath2 != NULL) 248 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 249 if (ar->k_ar.ar_arg_text != NULL) 250 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 251 if (ar->k_udata != NULL) 252 free(ar->k_udata, M_AUDITDATA); 253 if (ar->k_ar.ar_arg_argv != NULL) 254 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); 255 if (ar->k_ar.ar_arg_envv != NULL) 256 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); 257 if (ar->k_ar.ar_arg_groups.gidset != NULL) 258 free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET); 259 } 260 261 /* 262 * Initialize the Audit subsystem: configuration state, work queue, 263 * synchronization primitives, worker thread, and trigger device node. Also 264 * call into the BSM assembly code to initialize it. 265 */ 266 static void 267 audit_init(void) 268 { 269 270 audit_enabled = 0; 271 audit_suspended = 0; 272 audit_panic_on_write_fail = 0; 273 audit_fail_stop = 0; 274 audit_in_failure = 0; 275 audit_argv = 0; 276 audit_arge = 0; 277 278 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */ 279 audit_fstat.af_currsz = 0; 280 audit_nae_mask.am_success = 0; 281 audit_nae_mask.am_failure = 0; 282 283 TAILQ_INIT(&audit_q); 284 audit_q_len = 0; 285 audit_pre_q_len = 0; 286 audit_qctrl.aq_hiwater = AQ_HIWATER; 287 audit_qctrl.aq_lowater = AQ_LOWATER; 288 audit_qctrl.aq_bufsz = AQ_BUFSZ; 289 audit_qctrl.aq_minfree = AU_FS_MINFREE; 290 291 audit_kinfo.ai_termid.at_type = AU_IPv4; 292 audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY; 293 294 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 295 KINFO_LOCK_INIT(); 296 cv_init(&audit_worker_cv, "audit_worker_cv"); 297 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 298 cv_init(&audit_fail_cv, "audit_fail_cv"); 299 300 audit_record_zone = uma_zcreate("audit_record", 301 sizeof(struct kaudit_record), audit_record_ctor, 302 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 303 304 /* Initialize the BSM audit subsystem. */ 305 kau_init(); 306 307 audit_trigger_init(); 308 309 /* Register shutdown handler. */ 310 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 311 SHUTDOWN_PRI_FIRST); 312 313 /* Start audit worker thread. */ 314 audit_worker_init(); 315 } 316 317 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL); 318 319 /* 320 * Drain the audit queue and close the log at shutdown. Note that this can 321 * be called both from the system shutdown path and also from audit 322 * configuration syscalls, so 'arg' and 'howto' are ignored. 323 * 324 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to 325 * drain before returning, which could lead to lost records on shutdown. 326 */ 327 void 328 audit_shutdown(void *arg, int howto) 329 { 330 331 audit_rotate_vnode(NULL, NULL); 332 } 333 334 /* 335 * Return the current thread's audit record, if any. 336 */ 337 struct kaudit_record * 338 currecord(void) 339 { 340 341 return (curthread->td_ar); 342 } 343 344 /* 345 * XXXAUDIT: There are a number of races present in the code below due to 346 * release and re-grab of the mutex. The code should be revised to become 347 * slightly less racy. 348 * 349 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 350 * pre_q space, suspending the system call until there is room? 351 */ 352 struct kaudit_record * 353 audit_new(int event, struct thread *td) 354 { 355 struct kaudit_record *ar; 356 int no_record; 357 358 mtx_lock(&audit_mtx); 359 no_record = (audit_suspended || !audit_enabled); 360 mtx_unlock(&audit_mtx); 361 if (no_record) 362 return (NULL); 363 364 /* 365 * Note: the number of outstanding uncommitted audit records is 366 * limited to the number of concurrent threads servicing system calls 367 * in the kernel. 368 */ 369 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 370 ar->k_ar.ar_event = event; 371 372 mtx_lock(&audit_mtx); 373 audit_pre_q_len++; 374 mtx_unlock(&audit_mtx); 375 376 return (ar); 377 } 378 379 void 380 audit_free(struct kaudit_record *ar) 381 { 382 383 uma_zfree(audit_record_zone, ar); 384 } 385 386 void 387 audit_commit(struct kaudit_record *ar, int error, int retval) 388 { 389 au_event_t event; 390 au_class_t class; 391 au_id_t auid; 392 int sorf; 393 struct au_mask *aumask; 394 395 if (ar == NULL) 396 return; 397 398 /* 399 * Decide whether to commit the audit record by checking the error 400 * value from the system call and using the appropriate audit mask. 401 */ 402 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 403 aumask = &audit_nae_mask; 404 else 405 aumask = &ar->k_ar.ar_subj_amask; 406 407 if (error) 408 sorf = AU_PRS_FAILURE; 409 else 410 sorf = AU_PRS_SUCCESS; 411 412 /* 413 * syscalls.master sometimes contains a prototype event number, which 414 * we will transform into a more specific event number now that we 415 * have more complete information gathered during the system call. 416 */ 417 switch(ar->k_ar.ar_event) { 418 case AUE_OPEN_RWTC: 419 ar->k_ar.ar_event = audit_flags_and_error_to_openevent( 420 ar->k_ar.ar_arg_fflags, error); 421 break; 422 423 case AUE_OPENAT_RWTC: 424 ar->k_ar.ar_event = audit_flags_and_error_to_openatevent( 425 ar->k_ar.ar_arg_fflags, error); 426 break; 427 428 case AUE_SYSCTL: 429 ar->k_ar.ar_event = audit_ctlname_to_sysctlevent( 430 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 431 break; 432 433 case AUE_AUDITON: 434 /* Convert the auditon() command to an event. */ 435 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 436 break; 437 } 438 439 auid = ar->k_ar.ar_subj_auid; 440 event = ar->k_ar.ar_event; 441 class = au_event_class(event); 442 443 ar->k_ar_commit |= AR_COMMIT_KERNEL; 444 if (au_preselect(event, class, aumask, sorf) != 0) 445 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 446 if (audit_pipe_preselect(auid, event, class, sorf, 447 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 448 ar->k_ar_commit |= AR_PRESELECT_PIPE; 449 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | 450 AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { 451 mtx_lock(&audit_mtx); 452 audit_pre_q_len--; 453 mtx_unlock(&audit_mtx); 454 audit_free(ar); 455 return; 456 } 457 458 ar->k_ar.ar_errno = error; 459 ar->k_ar.ar_retval = retval; 460 nanotime(&ar->k_ar.ar_endtime); 461 462 /* 463 * Note: it could be that some records initiated while audit was 464 * enabled should still be committed? 465 */ 466 mtx_lock(&audit_mtx); 467 if (audit_suspended || !audit_enabled) { 468 audit_pre_q_len--; 469 mtx_unlock(&audit_mtx); 470 audit_free(ar); 471 return; 472 } 473 474 /* 475 * Constrain the number of committed audit records based on the 476 * configurable parameter. 477 */ 478 while (audit_q_len >= audit_qctrl.aq_hiwater) 479 cv_wait(&audit_watermark_cv, &audit_mtx); 480 481 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 482 audit_q_len++; 483 audit_pre_q_len--; 484 cv_signal(&audit_worker_cv); 485 mtx_unlock(&audit_mtx); 486 } 487 488 /* 489 * audit_syscall_enter() is called on entry to each system call. It is 490 * responsible for deciding whether or not to audit the call (preselection), 491 * and if so, allocating a per-thread audit record. audit_new() will fill in 492 * basic thread/credential properties. 493 */ 494 void 495 audit_syscall_enter(unsigned short code, struct thread *td) 496 { 497 struct au_mask *aumask; 498 au_class_t class; 499 au_event_t event; 500 au_id_t auid; 501 502 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 503 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 504 ("audit_syscall_enter: TDP_AUDITREC set")); 505 506 /* 507 * In FreeBSD, each ABI has its own system call table, and hence 508 * mapping of system call codes to audit events. Convert the code to 509 * an audit event identifier using the process system call table 510 * reference. In Darwin, there's only one, so we use the global 511 * symbol for the system call table. No audit record is generated 512 * for bad system calls, as no operation has been performed. 513 */ 514 if (code >= td->td_proc->p_sysent->sv_size) 515 return; 516 517 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 518 if (event == AUE_NULL) 519 return; 520 521 /* 522 * Check which audit mask to use; either the kernel non-attributable 523 * event mask or the process audit mask. 524 */ 525 auid = td->td_ucred->cr_audit.ai_auid; 526 if (auid == AU_DEFAUDITID) 527 aumask = &audit_nae_mask; 528 else 529 aumask = &td->td_ucred->cr_audit.ai_mask; 530 531 /* 532 * Allocate an audit record, if preselection allows it, and store in 533 * the thread for later use. 534 */ 535 class = au_event_class(event); 536 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 537 /* 538 * If we're out of space and need to suspend unprivileged 539 * processes, do that here rather than trying to allocate 540 * another audit record. 541 * 542 * Note: we might wish to be able to continue here in the 543 * future, if the system recovers. That should be possible 544 * by means of checking the condition in a loop around 545 * cv_wait(). It might be desirable to reevaluate whether an 546 * audit record is still required for this event by 547 * re-calling au_preselect(). 548 */ 549 if (audit_in_failure && 550 priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { 551 cv_wait(&audit_fail_cv, &audit_mtx); 552 panic("audit_failing_stop: thread continued"); 553 } 554 td->td_ar = audit_new(event, td); 555 if (td->td_ar != NULL) 556 td->td_pflags |= TDP_AUDITREC; 557 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) { 558 td->td_ar = audit_new(event, td); 559 if (td->td_ar != NULL) 560 td->td_pflags |= TDP_AUDITREC; 561 } else 562 td->td_ar = NULL; 563 } 564 565 /* 566 * audit_syscall_exit() is called from the return of every system call, or in 567 * the event of exit1(), during the execution of exit1(). It is responsible 568 * for committing the audit record, if any, along with return condition. 569 */ 570 void 571 audit_syscall_exit(int error, struct thread *td) 572 { 573 int retval; 574 575 /* 576 * Commit the audit record as desired; once we pass the record into 577 * audit_commit(), the memory is owned by the audit subsystem. The 578 * return value from the system call is stored on the user thread. 579 * If there was an error, the return value is set to -1, imitating 580 * the behavior of the cerror routine. 581 */ 582 if (error) 583 retval = -1; 584 else 585 retval = td->td_retval[0]; 586 587 audit_commit(td->td_ar, error, retval); 588 td->td_ar = NULL; 589 td->td_pflags &= ~TDP_AUDITREC; 590 } 591 592 void 593 audit_cred_copy(struct ucred *src, struct ucred *dest) 594 { 595 596 bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit)); 597 } 598 599 void 600 audit_cred_destroy(struct ucred *cred) 601 { 602 603 } 604 605 void 606 audit_cred_init(struct ucred *cred) 607 { 608 609 bzero(&cred->cr_audit, sizeof(cred->cr_audit)); 610 } 611 612 /* 613 * Initialize audit information for the first kernel process (proc 0) and for 614 * the first user process (init). 615 */ 616 void 617 audit_cred_kproc0(struct ucred *cred) 618 { 619 620 cred->cr_audit.ai_auid = AU_DEFAUDITID; 621 cred->cr_audit.ai_termid.at_type = AU_IPv4; 622 } 623 624 void 625 audit_cred_proc1(struct ucred *cred) 626 { 627 628 cred->cr_audit.ai_auid = AU_DEFAUDITID; 629 cred->cr_audit.ai_termid.at_type = AU_IPv4; 630 } 631 632 void 633 audit_thread_alloc(struct thread *td) 634 { 635 636 td->td_ar = NULL; 637 } 638 639 void 640 audit_thread_free(struct thread *td) 641 { 642 643 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 644 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 645 ("audit_thread_free: TDP_AUDITREC set")); 646 } 647 648 void 649 audit_proc_coredump(struct thread *td, char *path, int errcode) 650 { 651 struct kaudit_record *ar; 652 struct au_mask *aumask; 653 struct ucred *cred; 654 au_class_t class; 655 int ret, sorf; 656 char **pathp; 657 au_id_t auid; 658 659 ret = 0; 660 661 /* 662 * Make sure we are using the correct preselection mask. 663 */ 664 cred = td->td_ucred; 665 auid = cred->cr_audit.ai_auid; 666 if (auid == AU_DEFAUDITID) 667 aumask = &audit_nae_mask; 668 else 669 aumask = &cred->cr_audit.ai_mask; 670 /* 671 * It's possible for coredump(9) generation to fail. Make sure that 672 * we handle this case correctly for preselection. 673 */ 674 if (errcode != 0) 675 sorf = AU_PRS_FAILURE; 676 else 677 sorf = AU_PRS_SUCCESS; 678 class = au_event_class(AUE_CORE); 679 if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 && 680 audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) 681 return; 682 683 /* 684 * If we are interested in seeing this audit record, allocate it. 685 * Where possible coredump records should contain a pathname and arg32 686 * (signal) tokens. 687 */ 688 ar = audit_new(AUE_CORE, td); 689 if (path != NULL) { 690 pathp = &ar->k_ar.ar_arg_upath1; 691 *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); 692 audit_canon_path(td, path, *pathp); 693 ARG_SET_VALID(ar, ARG_UPATH1); 694 } 695 ar->k_ar.ar_arg_signum = td->td_proc->p_sig; 696 ARG_SET_VALID(ar, ARG_SIGNUM); 697 if (errcode != 0) 698 ret = 1; 699 audit_commit(ar, errcode, ret); 700 } 701