1 /*- 2 * Copyright (c) 1999-2005 Apple Inc. 3 * Copyright (c) 2006-2007 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/condvar.h> 36 #include <sys/conf.h> 37 #include <sys/file.h> 38 #include <sys/filedesc.h> 39 #include <sys/fcntl.h> 40 #include <sys/ipc.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/queue.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/protosw.h> 52 #include <sys/domain.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysproto.h> 55 #include <sys/sysent.h> 56 #include <sys/systm.h> 57 #include <sys/ucred.h> 58 #include <sys/uio.h> 59 #include <sys/un.h> 60 #include <sys/unistd.h> 61 #include <sys/vnode.h> 62 63 #include <bsm/audit.h> 64 #include <bsm/audit_internal.h> 65 #include <bsm/audit_kevents.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 70 #include <security/audit/audit.h> 71 #include <security/audit/audit_private.h> 72 73 #include <vm/uma.h> 74 75 FEATURE(audit, "BSM audit support"); 76 77 static uma_zone_t audit_record_zone; 78 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage"); 79 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 80 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 81 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 82 MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage"); 83 84 static SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0, 85 "TrustedBSD audit controls"); 86 87 /* 88 * Audit control settings that are set/read by system calls and are hence 89 * non-static. 90 * 91 * Define the audit control flags. 92 */ 93 int audit_enabled; 94 int audit_suspended; 95 96 /* 97 * Flags controlling behavior in low storage situations. Should we panic if 98 * a write fails? Should we fail stop if we're out of disk space? 99 */ 100 int audit_panic_on_write_fail; 101 int audit_fail_stop; 102 int audit_argv; 103 int audit_arge; 104 105 /* 106 * Are we currently "failing stop" due to out of disk space? 107 */ 108 int audit_in_failure; 109 110 /* 111 * Global audit statistics. 112 */ 113 struct audit_fstat audit_fstat; 114 115 /* 116 * Preselection mask for non-attributable events. 117 */ 118 struct au_mask audit_nae_mask; 119 120 /* 121 * Mutex to protect global variables shared between various threads and 122 * processes. 123 */ 124 struct mtx audit_mtx; 125 126 /* 127 * Queue of audit records ready for delivery to disk. We insert new records 128 * at the tail, and remove records from the head. Also, a count of the 129 * number of records used for checking queue depth. In addition, a counter 130 * of records that we have allocated but are not yet in the queue, which is 131 * needed to estimate the total size of the combined set of records 132 * outstanding in the system. 133 */ 134 struct kaudit_queue audit_q; 135 int audit_q_len; 136 int audit_pre_q_len; 137 138 /* 139 * Audit queue control settings (minimum free, low/high water marks, etc.) 140 */ 141 struct au_qctrl audit_qctrl; 142 143 /* 144 * Condition variable to signal to the worker that it has work to do: either 145 * new records are in the queue, or a log replacement is taking place. 146 */ 147 struct cv audit_worker_cv; 148 149 /* 150 * Condition variable to flag when crossing the low watermark, meaning that 151 * threads blocked due to hitting the high watermark can wake up and continue 152 * to commit records. 153 */ 154 struct cv audit_watermark_cv; 155 156 /* 157 * Condition variable for auditing threads wait on when in fail-stop mode. 158 * Threads wait on this CV forever (and ever), never seeing the light of day 159 * again. 160 */ 161 static struct cv audit_fail_cv; 162 163 /* 164 * Kernel audit information. This will store the current audit address 165 * or host information that the kernel will use when it's generating 166 * audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2) 167 * command. 168 */ 169 static struct auditinfo_addr audit_kinfo; 170 static struct rwlock audit_kinfo_lock; 171 172 #define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \ 173 "audit_kinfo_lock") 174 #define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock) 175 #define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock) 176 #define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock) 177 #define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock) 178 179 void 180 audit_set_kinfo(struct auditinfo_addr *ak) 181 { 182 183 KASSERT(ak->ai_termid.at_type == AU_IPv4 || 184 ak->ai_termid.at_type == AU_IPv6, 185 ("audit_set_kinfo: invalid address type")); 186 187 KINFO_WLOCK(); 188 audit_kinfo = *ak; 189 KINFO_WUNLOCK(); 190 } 191 192 void 193 audit_get_kinfo(struct auditinfo_addr *ak) 194 { 195 196 KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 || 197 audit_kinfo.ai_termid.at_type == AU_IPv6, 198 ("audit_set_kinfo: invalid address type")); 199 200 KINFO_RLOCK(); 201 *ak = audit_kinfo; 202 KINFO_RUNLOCK(); 203 } 204 205 /* 206 * Construct an audit record for the passed thread. 207 */ 208 static int 209 audit_record_ctor(void *mem, int size, void *arg, int flags) 210 { 211 struct kaudit_record *ar; 212 struct thread *td; 213 struct ucred *cred; 214 215 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 216 217 td = arg; 218 ar = mem; 219 bzero(ar, sizeof(*ar)); 220 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 221 nanotime(&ar->k_ar.ar_starttime); 222 223 /* 224 * Export the subject credential. 225 */ 226 cred = td->td_ucred; 227 cru2x(cred, &ar->k_ar.ar_subj_cred); 228 ar->k_ar.ar_subj_ruid = cred->cr_ruid; 229 ar->k_ar.ar_subj_rgid = cred->cr_rgid; 230 ar->k_ar.ar_subj_egid = cred->cr_groups[0]; 231 ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid; 232 ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid; 233 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 234 ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask; 235 ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid; 236 return (0); 237 } 238 239 static void 240 audit_record_dtor(void *mem, int size, void *arg) 241 { 242 struct kaudit_record *ar; 243 244 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 245 246 ar = mem; 247 if (ar->k_ar.ar_arg_upath1 != NULL) 248 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 249 if (ar->k_ar.ar_arg_upath2 != NULL) 250 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 251 if (ar->k_ar.ar_arg_text != NULL) 252 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 253 if (ar->k_udata != NULL) 254 free(ar->k_udata, M_AUDITDATA); 255 if (ar->k_ar.ar_arg_argv != NULL) 256 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); 257 if (ar->k_ar.ar_arg_envv != NULL) 258 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); 259 if (ar->k_ar.ar_arg_groups.gidset != NULL) 260 free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET); 261 } 262 263 /* 264 * Initialize the Audit subsystem: configuration state, work queue, 265 * synchronization primitives, worker thread, and trigger device node. Also 266 * call into the BSM assembly code to initialize it. 267 */ 268 static void 269 audit_init(void) 270 { 271 272 audit_enabled = 0; 273 audit_suspended = 0; 274 audit_panic_on_write_fail = 0; 275 audit_fail_stop = 0; 276 audit_in_failure = 0; 277 audit_argv = 0; 278 audit_arge = 0; 279 280 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */ 281 audit_fstat.af_currsz = 0; 282 audit_nae_mask.am_success = 0; 283 audit_nae_mask.am_failure = 0; 284 285 TAILQ_INIT(&audit_q); 286 audit_q_len = 0; 287 audit_pre_q_len = 0; 288 audit_qctrl.aq_hiwater = AQ_HIWATER; 289 audit_qctrl.aq_lowater = AQ_LOWATER; 290 audit_qctrl.aq_bufsz = AQ_BUFSZ; 291 audit_qctrl.aq_minfree = AU_FS_MINFREE; 292 293 audit_kinfo.ai_termid.at_type = AU_IPv4; 294 audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY; 295 296 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 297 KINFO_LOCK_INIT(); 298 cv_init(&audit_worker_cv, "audit_worker_cv"); 299 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 300 cv_init(&audit_fail_cv, "audit_fail_cv"); 301 302 audit_record_zone = uma_zcreate("audit_record", 303 sizeof(struct kaudit_record), audit_record_ctor, 304 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 305 306 /* Initialize the BSM audit subsystem. */ 307 kau_init(); 308 309 audit_trigger_init(); 310 311 /* Register shutdown handler. */ 312 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 313 SHUTDOWN_PRI_FIRST); 314 315 /* Start audit worker thread. */ 316 audit_worker_init(); 317 } 318 319 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL); 320 321 /* 322 * Drain the audit queue and close the log at shutdown. Note that this can 323 * be called both from the system shutdown path and also from audit 324 * configuration syscalls, so 'arg' and 'howto' are ignored. 325 * 326 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to 327 * drain before returning, which could lead to lost records on shutdown. 328 */ 329 void 330 audit_shutdown(void *arg, int howto) 331 { 332 333 audit_rotate_vnode(NULL, NULL); 334 } 335 336 /* 337 * Return the current thread's audit record, if any. 338 */ 339 struct kaudit_record * 340 currecord(void) 341 { 342 343 return (curthread->td_ar); 344 } 345 346 /* 347 * XXXAUDIT: There are a number of races present in the code below due to 348 * release and re-grab of the mutex. The code should be revised to become 349 * slightly less racy. 350 * 351 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 352 * pre_q space, suspending the system call until there is room? 353 */ 354 struct kaudit_record * 355 audit_new(int event, struct thread *td) 356 { 357 struct kaudit_record *ar; 358 int no_record; 359 360 mtx_lock(&audit_mtx); 361 no_record = (audit_suspended || !audit_enabled); 362 mtx_unlock(&audit_mtx); 363 if (no_record) 364 return (NULL); 365 366 /* 367 * Note: the number of outstanding uncommitted audit records is 368 * limited to the number of concurrent threads servicing system calls 369 * in the kernel. 370 */ 371 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 372 ar->k_ar.ar_event = event; 373 374 mtx_lock(&audit_mtx); 375 audit_pre_q_len++; 376 mtx_unlock(&audit_mtx); 377 378 return (ar); 379 } 380 381 void 382 audit_free(struct kaudit_record *ar) 383 { 384 385 uma_zfree(audit_record_zone, ar); 386 } 387 388 void 389 audit_commit(struct kaudit_record *ar, int error, int retval) 390 { 391 au_event_t event; 392 au_class_t class; 393 au_id_t auid; 394 int sorf; 395 struct au_mask *aumask; 396 397 if (ar == NULL) 398 return; 399 400 /* 401 * Decide whether to commit the audit record by checking the error 402 * value from the system call and using the appropriate audit mask. 403 */ 404 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 405 aumask = &audit_nae_mask; 406 else 407 aumask = &ar->k_ar.ar_subj_amask; 408 409 if (error) 410 sorf = AU_PRS_FAILURE; 411 else 412 sorf = AU_PRS_SUCCESS; 413 414 /* 415 * syscalls.master sometimes contains a prototype event number, which 416 * we will transform into a more specific event number now that we 417 * have more complete information gathered during the system call. 418 */ 419 switch(ar->k_ar.ar_event) { 420 case AUE_OPEN_RWTC: 421 ar->k_ar.ar_event = audit_flags_and_error_to_openevent( 422 ar->k_ar.ar_arg_fflags, error); 423 break; 424 425 case AUE_OPENAT_RWTC: 426 ar->k_ar.ar_event = audit_flags_and_error_to_openatevent( 427 ar->k_ar.ar_arg_fflags, error); 428 break; 429 430 case AUE_SYSCTL: 431 ar->k_ar.ar_event = audit_ctlname_to_sysctlevent( 432 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 433 break; 434 435 case AUE_AUDITON: 436 /* Convert the auditon() command to an event. */ 437 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 438 break; 439 } 440 441 auid = ar->k_ar.ar_subj_auid; 442 event = ar->k_ar.ar_event; 443 class = au_event_class(event); 444 445 ar->k_ar_commit |= AR_COMMIT_KERNEL; 446 if (au_preselect(event, class, aumask, sorf) != 0) 447 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 448 if (audit_pipe_preselect(auid, event, class, sorf, 449 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 450 ar->k_ar_commit |= AR_PRESELECT_PIPE; 451 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | 452 AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { 453 mtx_lock(&audit_mtx); 454 audit_pre_q_len--; 455 mtx_unlock(&audit_mtx); 456 audit_free(ar); 457 return; 458 } 459 460 ar->k_ar.ar_errno = error; 461 ar->k_ar.ar_retval = retval; 462 nanotime(&ar->k_ar.ar_endtime); 463 464 /* 465 * Note: it could be that some records initiated while audit was 466 * enabled should still be committed? 467 */ 468 mtx_lock(&audit_mtx); 469 if (audit_suspended || !audit_enabled) { 470 audit_pre_q_len--; 471 mtx_unlock(&audit_mtx); 472 audit_free(ar); 473 return; 474 } 475 476 /* 477 * Constrain the number of committed audit records based on the 478 * configurable parameter. 479 */ 480 while (audit_q_len >= audit_qctrl.aq_hiwater) 481 cv_wait(&audit_watermark_cv, &audit_mtx); 482 483 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 484 audit_q_len++; 485 audit_pre_q_len--; 486 cv_signal(&audit_worker_cv); 487 mtx_unlock(&audit_mtx); 488 } 489 490 /* 491 * audit_syscall_enter() is called on entry to each system call. It is 492 * responsible for deciding whether or not to audit the call (preselection), 493 * and if so, allocating a per-thread audit record. audit_new() will fill in 494 * basic thread/credential properties. 495 */ 496 void 497 audit_syscall_enter(unsigned short code, struct thread *td) 498 { 499 struct au_mask *aumask; 500 au_class_t class; 501 au_event_t event; 502 au_id_t auid; 503 504 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 505 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 506 ("audit_syscall_enter: TDP_AUDITREC set")); 507 508 /* 509 * In FreeBSD, each ABI has its own system call table, and hence 510 * mapping of system call codes to audit events. Convert the code to 511 * an audit event identifier using the process system call table 512 * reference. In Darwin, there's only one, so we use the global 513 * symbol for the system call table. No audit record is generated 514 * for bad system calls, as no operation has been performed. 515 */ 516 if (code >= td->td_proc->p_sysent->sv_size) 517 return; 518 519 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 520 if (event == AUE_NULL) 521 return; 522 523 /* 524 * Check which audit mask to use; either the kernel non-attributable 525 * event mask or the process audit mask. 526 */ 527 auid = td->td_ucred->cr_audit.ai_auid; 528 if (auid == AU_DEFAUDITID) 529 aumask = &audit_nae_mask; 530 else 531 aumask = &td->td_ucred->cr_audit.ai_mask; 532 533 /* 534 * Allocate an audit record, if preselection allows it, and store in 535 * the thread for later use. 536 */ 537 class = au_event_class(event); 538 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 539 /* 540 * If we're out of space and need to suspend unprivileged 541 * processes, do that here rather than trying to allocate 542 * another audit record. 543 * 544 * Note: we might wish to be able to continue here in the 545 * future, if the system recovers. That should be possible 546 * by means of checking the condition in a loop around 547 * cv_wait(). It might be desirable to reevaluate whether an 548 * audit record is still required for this event by 549 * re-calling au_preselect(). 550 */ 551 if (audit_in_failure && 552 priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { 553 cv_wait(&audit_fail_cv, &audit_mtx); 554 panic("audit_failing_stop: thread continued"); 555 } 556 td->td_ar = audit_new(event, td); 557 if (td->td_ar != NULL) 558 td->td_pflags |= TDP_AUDITREC; 559 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) { 560 td->td_ar = audit_new(event, td); 561 if (td->td_ar != NULL) 562 td->td_pflags |= TDP_AUDITREC; 563 } else 564 td->td_ar = NULL; 565 } 566 567 /* 568 * audit_syscall_exit() is called from the return of every system call, or in 569 * the event of exit1(), during the execution of exit1(). It is responsible 570 * for committing the audit record, if any, along with return condition. 571 */ 572 void 573 audit_syscall_exit(int error, struct thread *td) 574 { 575 int retval; 576 577 /* 578 * Commit the audit record as desired; once we pass the record into 579 * audit_commit(), the memory is owned by the audit subsystem. The 580 * return value from the system call is stored on the user thread. 581 * If there was an error, the return value is set to -1, imitating 582 * the behavior of the cerror routine. 583 */ 584 if (error) 585 retval = -1; 586 else 587 retval = td->td_retval[0]; 588 589 audit_commit(td->td_ar, error, retval); 590 td->td_ar = NULL; 591 td->td_pflags &= ~TDP_AUDITREC; 592 } 593 594 void 595 audit_cred_copy(struct ucred *src, struct ucred *dest) 596 { 597 598 bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit)); 599 } 600 601 void 602 audit_cred_destroy(struct ucred *cred) 603 { 604 605 } 606 607 void 608 audit_cred_init(struct ucred *cred) 609 { 610 611 bzero(&cred->cr_audit, sizeof(cred->cr_audit)); 612 } 613 614 /* 615 * Initialize audit information for the first kernel process (proc 0) and for 616 * the first user process (init). 617 */ 618 void 619 audit_cred_kproc0(struct ucred *cred) 620 { 621 622 cred->cr_audit.ai_auid = AU_DEFAUDITID; 623 cred->cr_audit.ai_termid.at_type = AU_IPv4; 624 } 625 626 void 627 audit_cred_proc1(struct ucred *cred) 628 { 629 630 cred->cr_audit.ai_auid = AU_DEFAUDITID; 631 cred->cr_audit.ai_termid.at_type = AU_IPv4; 632 } 633 634 void 635 audit_thread_alloc(struct thread *td) 636 { 637 638 td->td_ar = NULL; 639 } 640 641 void 642 audit_thread_free(struct thread *td) 643 { 644 645 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 646 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 647 ("audit_thread_free: TDP_AUDITREC set")); 648 } 649 650 void 651 audit_proc_coredump(struct thread *td, char *path, int errcode) 652 { 653 struct kaudit_record *ar; 654 struct au_mask *aumask; 655 struct ucred *cred; 656 au_class_t class; 657 int ret, sorf; 658 char **pathp; 659 au_id_t auid; 660 661 ret = 0; 662 663 /* 664 * Make sure we are using the correct preselection mask. 665 */ 666 cred = td->td_ucred; 667 auid = cred->cr_audit.ai_auid; 668 if (auid == AU_DEFAUDITID) 669 aumask = &audit_nae_mask; 670 else 671 aumask = &cred->cr_audit.ai_mask; 672 /* 673 * It's possible for coredump(9) generation to fail. Make sure that 674 * we handle this case correctly for preselection. 675 */ 676 if (errcode != 0) 677 sorf = AU_PRS_FAILURE; 678 else 679 sorf = AU_PRS_SUCCESS; 680 class = au_event_class(AUE_CORE); 681 if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 && 682 audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) 683 return; 684 685 /* 686 * If we are interested in seeing this audit record, allocate it. 687 * Where possible coredump records should contain a pathname and arg32 688 * (signal) tokens. 689 */ 690 ar = audit_new(AUE_CORE, td); 691 if (path != NULL) { 692 pathp = &ar->k_ar.ar_arg_upath1; 693 *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); 694 audit_canon_path(td, path, *pathp); 695 ARG_SET_VALID(ar, ARG_UPATH1); 696 } 697 ar->k_ar.ar_arg_signum = td->td_proc->p_sig; 698 ARG_SET_VALID(ar, ARG_SIGNUM); 699 if (errcode != 0) 700 ret = 1; 701 audit_commit(ar, errcode, ret); 702 } 703