1 /* 2 * Copyright (c) 1999-2005 Apple Computer, Inc. 3 * Copyright (c) 2006 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/condvar.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/filedesc.h> 38 #include <sys/fcntl.h> 39 #include <sys/ipc.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/namei.h> 45 #include <sys/proc.h> 46 #include <sys/queue.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/domain.h> 51 #include <sys/sysproto.h> 52 #include <sys/sysent.h> 53 #include <sys/systm.h> 54 #include <sys/ucred.h> 55 #include <sys/uio.h> 56 #include <sys/un.h> 57 #include <sys/unistd.h> 58 #include <sys/vnode.h> 59 60 #include <bsm/audit.h> 61 #include <bsm/audit_internal.h> 62 #include <bsm/audit_kevents.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 67 #include <security/audit/audit.h> 68 #include <security/audit/audit_private.h> 69 70 #include <vm/uma.h> 71 72 static uma_zone_t audit_record_zone; 73 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage"); 74 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 75 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 76 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 77 78 /* 79 * Audit control settings that are set/read by system calls and are 80 * hence non-static. 81 */ 82 /* 83 * Define the audit control flags. 84 */ 85 int audit_enabled; 86 int audit_suspended; 87 88 /* 89 * Flags controlling behavior in low storage situations. 90 * Should we panic if a write fails? Should we fail stop 91 * if we're out of disk space? 92 */ 93 int audit_panic_on_write_fail; 94 int audit_fail_stop; 95 96 /* 97 * Are we currently "failing stop" due to out of disk space? 98 */ 99 int audit_in_failure; 100 101 /* 102 * Global audit statistiscs. 103 */ 104 struct audit_fstat audit_fstat; 105 106 /* 107 * Preselection mask for non-attributable events. 108 */ 109 struct au_mask audit_nae_mask; 110 111 /* 112 * Mutex to protect global variables shared between various threads and 113 * processes. 114 */ 115 struct mtx audit_mtx; 116 117 /* 118 * Queue of audit records ready for delivery to disk. We insert new 119 * records at the tail, and remove records from the head. Also, 120 * a count of the number of records used for checking queue depth. 121 * In addition, a counter of records that we have allocated but are 122 * not yet in the queue, which is needed to estimate the total 123 * size of the combined set of records outstanding in the system. 124 */ 125 struct kaudit_queue audit_q; 126 int audit_q_len; 127 int audit_pre_q_len; 128 129 /* 130 * Audit queue control settings (minimum free, low/high water marks, etc.) 131 */ 132 struct au_qctrl audit_qctrl; 133 134 /* 135 * Condition variable to signal to the worker that it has work to do: 136 * either new records are in the queue, or a log replacement is taking 137 * place. 138 */ 139 struct cv audit_worker_cv; 140 141 /* 142 * Condition variable to flag when crossing the low watermark, meaning that 143 * threads blocked due to hitting the high watermark can wake up and continue 144 * to commit records. 145 */ 146 struct cv audit_watermark_cv; 147 148 /* 149 * Condition variable for auditing threads wait on when in fail-stop mode. 150 * Threads wait on this CV forever (and ever), never seeing the light of 151 * day again. 152 */ 153 static struct cv audit_fail_cv; 154 155 /* 156 * Construct an audit record for the passed thread. 157 */ 158 static int 159 audit_record_ctor(void *mem, int size, void *arg, int flags) 160 { 161 struct kaudit_record *ar; 162 struct thread *td; 163 164 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 165 166 td = arg; 167 ar = mem; 168 bzero(ar, sizeof(*ar)); 169 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 170 nanotime(&ar->k_ar.ar_starttime); 171 172 /* 173 * Export the subject credential. 174 */ 175 cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred); 176 ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid; 177 ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid; 178 ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0]; 179 PROC_LOCK(td->td_proc); 180 ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid; 181 ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid; 182 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 183 ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask; 184 ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid; 185 bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); 186 PROC_UNLOCK(td->td_proc); 187 188 return (0); 189 } 190 191 static void 192 audit_record_dtor(void *mem, int size, void *arg) 193 { 194 struct kaudit_record *ar; 195 196 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 197 198 ar = mem; 199 if (ar->k_ar.ar_arg_upath1 != NULL) 200 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 201 if (ar->k_ar.ar_arg_upath2 != NULL) 202 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 203 if (ar->k_ar.ar_arg_text != NULL) 204 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 205 if (ar->k_udata != NULL) 206 free(ar->k_udata, M_AUDITDATA); 207 } 208 209 /* 210 * Initialize the Audit subsystem: configuration state, work queue, 211 * synchronization primitives, worker thread, and trigger device node. Also 212 * call into the BSM assembly code to initialize it. 213 */ 214 static void 215 audit_init(void) 216 { 217 218 printf("Security auditing service present\n"); 219 audit_enabled = 0; 220 audit_suspended = 0; 221 audit_panic_on_write_fail = 0; 222 audit_fail_stop = 0; 223 audit_in_failure = 0; 224 225 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ 226 audit_fstat.af_currsz = 0; 227 audit_nae_mask.am_success = AU_NULL; 228 audit_nae_mask.am_failure = AU_NULL; 229 230 TAILQ_INIT(&audit_q); 231 audit_q_len = 0; 232 audit_pre_q_len = 0; 233 audit_qctrl.aq_hiwater = AQ_HIWATER; 234 audit_qctrl.aq_lowater = AQ_LOWATER; 235 audit_qctrl.aq_bufsz = AQ_BUFSZ; 236 audit_qctrl.aq_minfree = AU_FS_MINFREE; 237 238 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 239 cv_init(&audit_worker_cv, "audit_worker_cv"); 240 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 241 cv_init(&audit_fail_cv, "audit_fail_cv"); 242 243 audit_record_zone = uma_zcreate("audit_record", 244 sizeof(struct kaudit_record), audit_record_ctor, 245 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 246 247 /* Initialize the BSM audit subsystem. */ 248 kau_init(); 249 250 audit_trigger_init(); 251 252 /* Register shutdown handler. */ 253 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 254 SHUTDOWN_PRI_FIRST); 255 256 /* Start audit worker thread. */ 257 audit_worker_init(); 258 } 259 260 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL) 261 262 /* 263 * Drain the audit queue and close the log at shutdown. Note that this can 264 * be called both from the system shutdown path and also from audit 265 * configuration syscalls, so 'arg' and 'howto' are ignored. 266 */ 267 void 268 audit_shutdown(void *arg, int howto) 269 { 270 271 audit_rotate_vnode(NULL, NULL); 272 } 273 274 /* 275 * Return the current thread's audit record, if any. 276 */ 277 __inline__ struct kaudit_record * 278 currecord(void) 279 { 280 281 return (curthread->td_ar); 282 } 283 284 /* 285 * MPSAFE 286 * 287 * XXXAUDIT: There are a number of races present in the code below due to 288 * release and re-grab of the mutex. The code should be revised to become 289 * slightly less racy. 290 * 291 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 292 * pre_q space, suspending the system call until there is room? 293 */ 294 struct kaudit_record * 295 audit_new(int event, struct thread *td) 296 { 297 struct kaudit_record *ar; 298 int no_record; 299 300 mtx_lock(&audit_mtx); 301 no_record = (audit_suspended || !audit_enabled); 302 mtx_unlock(&audit_mtx); 303 if (no_record) 304 return (NULL); 305 306 /* 307 * XXX: The number of outstanding uncommitted audit records is 308 * limited to the number of concurrent threads servicing system 309 * calls in the kernel. 310 */ 311 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 312 ar->k_ar.ar_event = event; 313 314 mtx_lock(&audit_mtx); 315 audit_pre_q_len++; 316 mtx_unlock(&audit_mtx); 317 318 return (ar); 319 } 320 321 void 322 audit_free(struct kaudit_record *ar) 323 { 324 325 uma_zfree(audit_record_zone, ar); 326 } 327 328 /* 329 * MPSAFE 330 */ 331 void 332 audit_commit(struct kaudit_record *ar, int error, int retval) 333 { 334 au_event_t event; 335 au_class_t class; 336 au_id_t auid; 337 int sorf; 338 struct au_mask *aumask; 339 340 if (ar == NULL) 341 return; 342 343 /* 344 * Decide whether to commit the audit record by checking the 345 * error value from the system call and using the appropriate 346 * audit mask. 347 * 348 * XXXAUDIT: Synchronize access to audit_nae_mask? 349 */ 350 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 351 aumask = &audit_nae_mask; 352 else 353 aumask = &ar->k_ar.ar_subj_amask; 354 355 if (error) 356 sorf = AU_PRS_FAILURE; 357 else 358 sorf = AU_PRS_SUCCESS; 359 360 switch(ar->k_ar.ar_event) { 361 362 case AUE_OPEN_RWTC: 363 /* The open syscall always writes a AUE_OPEN_RWTC event; change 364 * it to the proper type of event based on the flags and the 365 * error value. 366 */ 367 ar->k_ar.ar_event = flags_and_error_to_openevent( 368 ar->k_ar.ar_arg_fflags, error); 369 break; 370 371 case AUE_SYSCTL: 372 ar->k_ar.ar_event = ctlname_to_sysctlevent( 373 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 374 break; 375 376 case AUE_AUDITON: 377 /* Convert the auditon() command to an event */ 378 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 379 break; 380 } 381 382 auid = ar->k_ar.ar_subj_auid; 383 event = ar->k_ar.ar_event; 384 class = au_event_class(event); 385 386 ar->k_ar_commit |= AR_COMMIT_KERNEL; 387 if (au_preselect(event, class, aumask, sorf) != 0) 388 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 389 if (audit_pipe_preselect(auid, event, class, sorf, 390 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 391 ar->k_ar_commit |= AR_PRESELECT_PIPE; 392 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE)) == 393 0) { 394 mtx_lock(&audit_mtx); 395 audit_pre_q_len--; 396 mtx_unlock(&audit_mtx); 397 audit_free(ar); 398 return; 399 } 400 401 ar->k_ar.ar_errno = error; 402 ar->k_ar.ar_retval = retval; 403 404 /* 405 * We might want to do some system-wide post-filtering 406 * here at some point. 407 */ 408 409 /* 410 * Timestamp system call end. 411 */ 412 nanotime(&ar->k_ar.ar_endtime); 413 414 mtx_lock(&audit_mtx); 415 416 /* 417 * Note: it could be that some records initiated while audit was 418 * enabled should still be committed? 419 */ 420 if (audit_suspended || !audit_enabled) { 421 audit_pre_q_len--; 422 mtx_unlock(&audit_mtx); 423 audit_free(ar); 424 return; 425 } 426 427 /* 428 * Constrain the number of committed audit records based on 429 * the configurable parameter. 430 */ 431 while (audit_q_len >= audit_qctrl.aq_hiwater) { 432 AUDIT_PRINTF(("audit_commit: sleeping to wait for " 433 "audit queue to drain below high water mark\n")); 434 cv_wait(&audit_watermark_cv, &audit_mtx); 435 AUDIT_PRINTF(("audit_commit: woke up waiting for " 436 "audit queue draining\n")); 437 } 438 439 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 440 audit_q_len++; 441 audit_pre_q_len--; 442 cv_signal(&audit_worker_cv); 443 mtx_unlock(&audit_mtx); 444 } 445 446 /* 447 * audit_syscall_enter() is called on entry to each system call. It is 448 * responsible for deciding whether or not to audit the call (preselection), 449 * and if so, allocating a per-thread audit record. audit_new() will fill in 450 * basic thread/credential properties. 451 */ 452 void 453 audit_syscall_enter(unsigned short code, struct thread *td) 454 { 455 struct au_mask *aumask; 456 au_class_t class; 457 au_event_t event; 458 au_id_t auid; 459 460 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 461 462 /* 463 * In FreeBSD, each ABI has its own system call table, and hence 464 * mapping of system call codes to audit events. Convert the code to 465 * an audit event identifier using the process system call table 466 * reference. In Darwin, there's only one, so we use the global 467 * symbol for the system call table. 468 * 469 * XXXAUDIT: Should we audit that a bad system call was made, and if 470 * so, how? 471 */ 472 if (code >= td->td_proc->p_sysent->sv_size) 473 return; 474 475 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 476 if (event == AUE_NULL) 477 return; 478 479 /* 480 * Check which audit mask to use; either the kernel non-attributable 481 * event mask or the process audit mask. 482 */ 483 auid = td->td_proc->p_au->ai_auid; 484 if (auid == AU_DEFAUDITID) 485 aumask = &audit_nae_mask; 486 else 487 aumask = &td->td_proc->p_au->ai_mask; 488 489 /* 490 * Allocate an audit record, if preselection allows it, and store 491 * in the thread for later use. 492 */ 493 class = au_event_class(event); 494 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 495 /* 496 * If we're out of space and need to suspend unprivileged 497 * processes, do that here rather than trying to allocate 498 * another audit record. 499 * 500 * XXXRW: We might wish to be able to continue here in the 501 * future, if the system recovers. That should be possible 502 * by means of checking the condition in a loop around 503 * cv_wait(). It might be desirable to reevaluate whether an 504 * audit record is still required for this event by 505 * re-calling au_preselect(). 506 */ 507 if (audit_in_failure && suser(td) != 0) { 508 cv_wait(&audit_fail_cv, &audit_mtx); 509 panic("audit_failing_stop: thread continued"); 510 } 511 td->td_ar = audit_new(event, td); 512 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) 513 td->td_ar = audit_new(event, td); 514 else 515 td->td_ar = NULL; 516 } 517 518 /* 519 * audit_syscall_exit() is called from the return of every system call, or in 520 * the event of exit1(), during the execution of exit1(). It is responsible 521 * for committing the audit record, if any, along with return condition. 522 */ 523 void 524 audit_syscall_exit(int error, struct thread *td) 525 { 526 int retval; 527 528 /* 529 * Commit the audit record as desired; once we pass the record 530 * into audit_commit(), the memory is owned by the audit 531 * subsystem. 532 * The return value from the system call is stored on the user 533 * thread. If there was an error, the return value is set to -1, 534 * imitating the behavior of the cerror routine. 535 */ 536 if (error) 537 retval = -1; 538 else 539 retval = td->td_retval[0]; 540 541 audit_commit(td->td_ar, error, retval); 542 if (td->td_ar != NULL) 543 AUDIT_PRINTF(("audit record committed by pid %d\n", 544 td->td_proc->p_pid)); 545 td->td_ar = NULL; 546 547 } 548 549 /* 550 * Allocate storage for a new process (init, or otherwise). 551 */ 552 void 553 audit_proc_alloc(struct proc *p) 554 { 555 556 KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)", 557 p->p_pid)); 558 p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK); 559 /* XXXAUDIT: Zero? Slab allocate? */ 560 //printf("audit_proc_alloc: pid %d p_au %p\n", p->p_pid, p->p_au); 561 } 562 563 /* 564 * Allocate storage for a new thread. 565 */ 566 void 567 audit_thread_alloc(struct thread *td) 568 { 569 570 td->td_ar = NULL; 571 } 572 573 /* 574 * Thread destruction. 575 */ 576 void 577 audit_thread_free(struct thread *td) 578 { 579 580 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 581 } 582 583 /* 584 * Initialize the audit information for the a process, presumably the first 585 * process in the system. 586 * XXX It is not clear what the initial values should be for audit ID, 587 * session ID, etc. 588 */ 589 void 590 audit_proc_kproc0(struct proc *p) 591 { 592 593 KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)", 594 p->p_pid)); 595 //printf("audit_proc_kproc0: pid %d p_au %p\n", p->p_pid, p->p_au); 596 bzero(p->p_au, sizeof(*(p)->p_au)); 597 } 598 599 void 600 audit_proc_init(struct proc *p) 601 { 602 603 KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)", 604 p->p_pid)); 605 //printf("audit_proc_init: pid %d p_au %p\n", p->p_pid, p->p_au); 606 bzero(p->p_au, sizeof(*(p)->p_au)); 607 p->p_au->ai_auid = AU_DEFAUDITID; 608 } 609 610 /* 611 * Copy the audit info from the parent process to the child process when 612 * a fork takes place. 613 */ 614 void 615 audit_proc_fork(struct proc *parent, struct proc *child) 616 { 617 618 PROC_LOCK_ASSERT(parent, MA_OWNED); 619 PROC_LOCK_ASSERT(child, MA_OWNED); 620 KASSERT(parent->p_au != NULL, 621 ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid)); 622 KASSERT(child->p_au != NULL, 623 ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid)); 624 //printf("audit_proc_fork: parent pid %d p_au %p\n", parent->p_pid, 625 // parent->p_au); 626 //printf("audit_proc_fork: child pid %d p_au %p\n", child->p_pid, 627 // child->p_au); 628 bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); 629 /* 630 * XXXAUDIT: Zero pointers to external memory, or assert they are 631 * zero? 632 */ 633 } 634 635 /* 636 * Free the auditing structure for the process. 637 */ 638 void 639 audit_proc_free(struct proc *p) 640 { 641 642 KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid)); 643 //printf("audit_proc_free: pid %d p_au %p\n", p->p_pid, p->p_au); 644 /* 645 * XXXAUDIT: Assert that external memory pointers are NULL? 646 */ 647 free(p->p_au, M_AUDITPROC); 648 p->p_au = NULL; 649 } 650