xref: /freebsd/sys/security/audit/audit.c (revision 8847579c57d6aff2b3371c707dce7a2cee8389aa)
1 /*
2  * Copyright (c) 1999-2005 Apple Computer, Inc.
3  * Copyright (c) 2006 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/condvar.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/filedesc.h>
38 #include <sys/fcntl.h>
39 #include <sys/ipc.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/protosw.h>
50 #include <sys/domain.h>
51 #include <sys/sysproto.h>
52 #include <sys/sysent.h>
53 #include <sys/systm.h>
54 #include <sys/ucred.h>
55 #include <sys/uio.h>
56 #include <sys/un.h>
57 #include <sys/unistd.h>
58 #include <sys/vnode.h>
59 
60 #include <bsm/audit.h>
61 #include <bsm/audit_internal.h>
62 #include <bsm/audit_kevents.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 
67 #include <security/audit/audit.h>
68 #include <security/audit/audit_private.h>
69 
70 #include <vm/uma.h>
71 
72 static uma_zone_t	audit_record_zone;
73 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage");
74 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
75 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
76 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
77 
78 /*
79  * Audit control settings that are set/read by system calls and are
80  * hence non-static.
81  */
82 /*
83  * Define the audit control flags.
84  */
85 int			audit_enabled;
86 int			audit_suspended;
87 
88 /*
89  * Flags controlling behavior in low storage situations.
90  * Should we panic if a write fails?  Should we fail stop
91  * if we're out of disk space?
92  */
93 int			audit_panic_on_write_fail;
94 int			audit_fail_stop;
95 
96 /*
97  * Are we currently "failing stop" due to out of disk space?
98  */
99 int			audit_in_failure;
100 
101 /*
102  * Global audit statistiscs.
103  */
104 struct audit_fstat	audit_fstat;
105 
106 /*
107  * Preselection mask for non-attributable events.
108  */
109 struct au_mask		audit_nae_mask;
110 
111 /*
112  * Mutex to protect global variables shared between various threads and
113  * processes.
114  */
115 struct mtx		audit_mtx;
116 
117 /*
118  * Queue of audit records ready for delivery to disk.  We insert new
119  * records at the tail, and remove records from the head.  Also,
120  * a count of the number of records used for checking queue depth.
121  * In addition, a counter of records that we have allocated but are
122  * not yet in the queue, which is needed to estimate the total
123  * size of the combined set of records outstanding in the system.
124  */
125 struct kaudit_queue	audit_q;
126 int			audit_q_len;
127 int			audit_pre_q_len;
128 
129 /*
130  * Audit queue control settings (minimum free, low/high water marks, etc.)
131  */
132 struct au_qctrl		audit_qctrl;
133 
134 /*
135  * Condition variable to signal to the worker that it has work to do:
136  * either new records are in the queue, or a log replacement is taking
137  * place.
138  */
139 struct cv		audit_worker_cv;
140 
141 /*
142  * Condition variable to flag when crossing the low watermark, meaning that
143  * threads blocked due to hitting the high watermark can wake up and continue
144  * to commit records.
145  */
146 struct cv		audit_watermark_cv;
147 
148 /*
149  * Condition variable for  auditing threads wait on when in fail-stop mode.
150  * Threads wait on this CV forever (and ever), never seeing the light of
151  * day again.
152  */
153 static struct cv	audit_fail_cv;
154 
155 /*
156  * Construct an audit record for the passed thread.
157  */
158 static int
159 audit_record_ctor(void *mem, int size, void *arg, int flags)
160 {
161 	struct kaudit_record *ar;
162 	struct thread *td;
163 
164 	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
165 
166 	td = arg;
167 	ar = mem;
168 	bzero(ar, sizeof(*ar));
169 	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
170 	nanotime(&ar->k_ar.ar_starttime);
171 
172 	/*
173 	 * Export the subject credential.
174 	 */
175 	cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred);
176 	ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid;
177 	ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid;
178 	ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0];
179 	PROC_LOCK(td->td_proc);
180 	ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid;
181 	ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid;
182 	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
183 	ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask;
184 	ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid;
185 	bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN);
186 	PROC_UNLOCK(td->td_proc);
187 
188 	return (0);
189 }
190 
191 static void
192 audit_record_dtor(void *mem, int size, void *arg)
193 {
194 	struct kaudit_record *ar;
195 
196 	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
197 
198 	ar = mem;
199 	if (ar->k_ar.ar_arg_upath1 != NULL)
200 		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
201 	if (ar->k_ar.ar_arg_upath2 != NULL)
202 		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
203 	if (ar->k_ar.ar_arg_text != NULL)
204 		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
205 	if (ar->k_udata != NULL)
206 		free(ar->k_udata, M_AUDITDATA);
207 }
208 
209 /*
210  * Initialize the Audit subsystem: configuration state, work queue,
211  * synchronization primitives, worker thread, and trigger device node.  Also
212  * call into the BSM assembly code to initialize it.
213  */
214 static void
215 audit_init(void)
216 {
217 
218 	printf("Security auditing service present\n");
219 	audit_enabled = 0;
220 	audit_suspended = 0;
221 	audit_panic_on_write_fail = 0;
222 	audit_fail_stop = 0;
223 	audit_in_failure = 0;
224 
225 	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded */
226 	audit_fstat.af_currsz = 0;
227 	audit_nae_mask.am_success = AU_NULL;
228 	audit_nae_mask.am_failure = AU_NULL;
229 
230 	TAILQ_INIT(&audit_q);
231 	audit_q_len = 0;
232 	audit_pre_q_len = 0;
233 	audit_qctrl.aq_hiwater = AQ_HIWATER;
234 	audit_qctrl.aq_lowater = AQ_LOWATER;
235 	audit_qctrl.aq_bufsz = AQ_BUFSZ;
236 	audit_qctrl.aq_minfree = AU_FS_MINFREE;
237 
238 	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
239 	cv_init(&audit_worker_cv, "audit_worker_cv");
240 	cv_init(&audit_watermark_cv, "audit_watermark_cv");
241 	cv_init(&audit_fail_cv, "audit_fail_cv");
242 
243 	audit_record_zone = uma_zcreate("audit_record",
244 	    sizeof(struct kaudit_record), audit_record_ctor,
245 	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
246 
247 	/* Initialize the BSM audit subsystem. */
248 	kau_init();
249 
250 	audit_trigger_init();
251 
252 	/* Register shutdown handler. */
253 	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
254 	    SHUTDOWN_PRI_FIRST);
255 
256 	/* Start audit worker thread. */
257 	audit_worker_init();
258 }
259 
260 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL)
261 
262 /*
263  * Drain the audit queue and close the log at shutdown.  Note that this can
264  * be called both from the system shutdown path and also from audit
265  * configuration syscalls, so 'arg' and 'howto' are ignored.
266  */
267 void
268 audit_shutdown(void *arg, int howto)
269 {
270 
271 	audit_rotate_vnode(NULL, NULL);
272 }
273 
274 /*
275  * Return the current thread's audit record, if any.
276  */
277 __inline__ struct kaudit_record *
278 currecord(void)
279 {
280 
281 	return (curthread->td_ar);
282 }
283 
284 /*
285  * MPSAFE
286  *
287  * XXXAUDIT: There are a number of races present in the code below due to
288  * release and re-grab of the mutex.  The code should be revised to become
289  * slightly less racy.
290  *
291  * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
292  * pre_q space, suspending the system call until there is room?
293  */
294 struct kaudit_record *
295 audit_new(int event, struct thread *td)
296 {
297 	struct kaudit_record *ar;
298 	int no_record;
299 
300 	mtx_lock(&audit_mtx);
301 	no_record = (audit_suspended || !audit_enabled);
302 	mtx_unlock(&audit_mtx);
303 	if (no_record)
304 		return (NULL);
305 
306 	/*
307 	 * XXX: The number of outstanding uncommitted audit records is
308 	 * limited to the number of concurrent threads servicing system
309 	 * calls in the kernel.
310 	 */
311 	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
312 	ar->k_ar.ar_event = event;
313 
314 	mtx_lock(&audit_mtx);
315 	audit_pre_q_len++;
316 	mtx_unlock(&audit_mtx);
317 
318 	return (ar);
319 }
320 
321 void
322 audit_free(struct kaudit_record *ar)
323 {
324 
325 	uma_zfree(audit_record_zone, ar);
326 }
327 
328 /*
329  * MPSAFE
330  */
331 void
332 audit_commit(struct kaudit_record *ar, int error, int retval)
333 {
334 	au_event_t event;
335 	au_class_t class;
336 	au_id_t auid;
337 	int sorf;
338 	struct au_mask *aumask;
339 
340 	if (ar == NULL)
341 		return;
342 
343 	/*
344 	 * Decide whether to commit the audit record by checking the
345 	 * error value from the system call and using the appropriate
346 	 * audit mask.
347 	 *
348 	 * XXXAUDIT: Synchronize access to audit_nae_mask?
349 	 */
350 	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
351 		aumask = &audit_nae_mask;
352 	else
353 		aumask = &ar->k_ar.ar_subj_amask;
354 
355 	if (error)
356 		sorf = AU_PRS_FAILURE;
357 	else
358 		sorf = AU_PRS_SUCCESS;
359 
360 	switch(ar->k_ar.ar_event) {
361 
362 	case AUE_OPEN_RWTC:
363 		/* The open syscall always writes a AUE_OPEN_RWTC event; change
364 		 * it to the proper type of event based on the flags and the
365 		 * error value.
366 		 */
367 		ar->k_ar.ar_event = flags_and_error_to_openevent(
368 		    ar->k_ar.ar_arg_fflags, error);
369 		break;
370 
371 	case AUE_SYSCTL:
372 		ar->k_ar.ar_event = ctlname_to_sysctlevent(
373 		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
374 		break;
375 
376 	case AUE_AUDITON:
377 		/* Convert the auditon() command to an event */
378 		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
379 		break;
380 	}
381 
382 	auid = ar->k_ar.ar_subj_auid;
383 	event = ar->k_ar.ar_event;
384 	class = au_event_class(event);
385 
386 	ar->k_ar_commit |= AR_COMMIT_KERNEL;
387 	if (au_preselect(event, class, aumask, sorf) != 0)
388 		ar->k_ar_commit |= AR_PRESELECT_TRAIL;
389 	if (audit_pipe_preselect(auid, event, class, sorf,
390 	    ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
391 		ar->k_ar_commit |= AR_PRESELECT_PIPE;
392 	if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE)) ==
393 	    0) {
394 		mtx_lock(&audit_mtx);
395 		audit_pre_q_len--;
396 		mtx_unlock(&audit_mtx);
397 		audit_free(ar);
398 		return;
399 	}
400 
401 	ar->k_ar.ar_errno = error;
402 	ar->k_ar.ar_retval = retval;
403 
404 	/*
405 	 * We might want to do some system-wide post-filtering
406 	 * here at some point.
407 	 */
408 
409 	/*
410 	 * Timestamp system call end.
411 	 */
412 	nanotime(&ar->k_ar.ar_endtime);
413 
414 	mtx_lock(&audit_mtx);
415 
416 	/*
417 	 * Note: it could be that some records initiated while audit was
418 	 * enabled should still be committed?
419 	 */
420 	if (audit_suspended || !audit_enabled) {
421 		audit_pre_q_len--;
422 		mtx_unlock(&audit_mtx);
423 		audit_free(ar);
424 		return;
425 	}
426 
427 	/*
428 	 * Constrain the number of committed audit records based on
429 	 * the configurable parameter.
430 	 */
431 	while (audit_q_len >= audit_qctrl.aq_hiwater) {
432 		AUDIT_PRINTF(("audit_commit: sleeping to wait for "
433 		   "audit queue to drain below high water mark\n"));
434 		cv_wait(&audit_watermark_cv, &audit_mtx);
435 		AUDIT_PRINTF(("audit_commit: woke up waiting for "
436 		   "audit queue draining\n"));
437 	}
438 
439 	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
440 	audit_q_len++;
441 	audit_pre_q_len--;
442 	cv_signal(&audit_worker_cv);
443 	mtx_unlock(&audit_mtx);
444 }
445 
446 /*
447  * audit_syscall_enter() is called on entry to each system call.  It is
448  * responsible for deciding whether or not to audit the call (preselection),
449  * and if so, allocating a per-thread audit record.  audit_new() will fill in
450  * basic thread/credential properties.
451  */
452 void
453 audit_syscall_enter(unsigned short code, struct thread *td)
454 {
455 	struct au_mask *aumask;
456 	au_class_t class;
457 	au_event_t event;
458 	au_id_t auid;
459 
460 	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
461 
462 	/*
463 	 * In FreeBSD, each ABI has its own system call table, and hence
464 	 * mapping of system call codes to audit events.  Convert the code to
465 	 * an audit event identifier using the process system call table
466 	 * reference.  In Darwin, there's only one, so we use the global
467 	 * symbol for the system call table.
468 	 *
469 	 * XXXAUDIT: Should we audit that a bad system call was made, and if
470 	 * so, how?
471 	 */
472 	if (code >= td->td_proc->p_sysent->sv_size)
473 		return;
474 
475 	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
476 	if (event == AUE_NULL)
477 		return;
478 
479 	/*
480 	 * Check which audit mask to use; either the kernel non-attributable
481 	 * event mask or the process audit mask.
482 	 */
483 	auid = td->td_proc->p_au->ai_auid;
484 	if (auid == AU_DEFAUDITID)
485 		aumask = &audit_nae_mask;
486 	else
487 		aumask = &td->td_proc->p_au->ai_mask;
488 
489 	/*
490 	 * Allocate an audit record, if preselection allows it, and store
491 	 * in the thread for later use.
492 	 */
493 	class = au_event_class(event);
494 	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
495 		/*
496 		 * If we're out of space and need to suspend unprivileged
497 		 * processes, do that here rather than trying to allocate
498 		 * another audit record.
499 		 *
500 		 * XXXRW: We might wish to be able to continue here in the
501 		 * future, if the system recovers.  That should be possible
502 		 * by means of checking the condition in a loop around
503 		 * cv_wait().  It might be desirable to reevaluate whether an
504 		 * audit record is still required for this event by
505 		 * re-calling au_preselect().
506 		 */
507 		if (audit_in_failure && suser(td) != 0) {
508 			cv_wait(&audit_fail_cv, &audit_mtx);
509 			panic("audit_failing_stop: thread continued");
510 		}
511 		td->td_ar = audit_new(event, td);
512 	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0))
513 		td->td_ar = audit_new(event, td);
514 	else
515 		td->td_ar = NULL;
516 }
517 
518 /*
519  * audit_syscall_exit() is called from the return of every system call, or in
520  * the event of exit1(), during the execution of exit1().  It is responsible
521  * for committing the audit record, if any, along with return condition.
522  */
523 void
524 audit_syscall_exit(int error, struct thread *td)
525 {
526 	int retval;
527 
528 	/*
529 	 * Commit the audit record as desired; once we pass the record
530 	 * into audit_commit(), the memory is owned by the audit
531 	 * subsystem.
532 	 * The return value from the system call is stored on the user
533 	 * thread. If there was an error, the return value is set to -1,
534 	 * imitating the behavior of the cerror routine.
535 	 */
536 	if (error)
537 		retval = -1;
538 	else
539 		retval = td->td_retval[0];
540 
541 	audit_commit(td->td_ar, error, retval);
542 	if (td->td_ar != NULL)
543 		AUDIT_PRINTF(("audit record committed by pid %d\n",
544 			td->td_proc->p_pid));
545 	td->td_ar = NULL;
546 
547 }
548 
549 /*
550  * Allocate storage for a new process (init, or otherwise).
551  */
552 void
553 audit_proc_alloc(struct proc *p)
554 {
555 
556 	KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)",
557 	    p->p_pid));
558 	p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK);
559 	/* XXXAUDIT: Zero?  Slab allocate? */
560 	//printf("audit_proc_alloc: pid %d p_au %p\n", p->p_pid, p->p_au);
561 }
562 
563 /*
564  * Allocate storage for a new thread.
565  */
566 void
567 audit_thread_alloc(struct thread *td)
568 {
569 
570 	td->td_ar = NULL;
571 }
572 
573 /*
574  * Thread destruction.
575  */
576 void
577 audit_thread_free(struct thread *td)
578 {
579 
580 	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
581 }
582 
583 /*
584  * Initialize the audit information for the a process, presumably the first
585  * process in the system.
586  * XXX It is not clear what the initial values should be for audit ID,
587  * session ID, etc.
588  */
589 void
590 audit_proc_kproc0(struct proc *p)
591 {
592 
593 	KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)",
594 	    p->p_pid));
595 	//printf("audit_proc_kproc0: pid %d p_au %p\n", p->p_pid, p->p_au);
596 	bzero(p->p_au, sizeof(*(p)->p_au));
597 }
598 
599 void
600 audit_proc_init(struct proc *p)
601 {
602 
603 	KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)",
604 	    p->p_pid));
605 	//printf("audit_proc_init: pid %d p_au %p\n", p->p_pid, p->p_au);
606 	bzero(p->p_au, sizeof(*(p)->p_au));
607 	p->p_au->ai_auid = AU_DEFAUDITID;
608 }
609 
610 /*
611  * Copy the audit info from the parent process to the child process when
612  * a fork takes place.
613  */
614 void
615 audit_proc_fork(struct proc *parent, struct proc *child)
616 {
617 
618 	PROC_LOCK_ASSERT(parent, MA_OWNED);
619 	PROC_LOCK_ASSERT(child, MA_OWNED);
620 	KASSERT(parent->p_au != NULL,
621 	    ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid));
622 	KASSERT(child->p_au != NULL,
623 	    ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid));
624 	//printf("audit_proc_fork: parent pid %d p_au %p\n", parent->p_pid,
625 	//    parent->p_au);
626 	//printf("audit_proc_fork: child pid %d p_au %p\n", child->p_pid,
627 	//    child->p_au);
628 	bcopy(parent->p_au, child->p_au, sizeof(*child->p_au));
629 	/*
630 	 * XXXAUDIT: Zero pointers to external memory, or assert they are
631 	 * zero?
632 	 */
633 }
634 
635 /*
636  * Free the auditing structure for the process.
637  */
638 void
639 audit_proc_free(struct proc *p)
640 {
641 
642 	KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid));
643 	//printf("audit_proc_free: pid %d p_au %p\n", p->p_pid, p->p_au);
644 	/*
645 	 * XXXAUDIT: Assert that external memory pointers are NULL?
646 	 */
647 	free(p->p_au, M_AUDITPROC);
648 	p->p_au = NULL;
649 }
650