1 /* 2 * Copyright (c) 1999-2005 Apple Computer, Inc. 3 * Copyright (c) 2006 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/condvar.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/filedesc.h> 38 #include <sys/fcntl.h> 39 #include <sys/ipc.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/namei.h> 45 #include <sys/proc.h> 46 #include <sys/queue.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/domain.h> 51 #include <sys/sysproto.h> 52 #include <sys/sysent.h> 53 #include <sys/systm.h> 54 #include <sys/ucred.h> 55 #include <sys/uio.h> 56 #include <sys/un.h> 57 #include <sys/unistd.h> 58 #include <sys/vnode.h> 59 60 #include <bsm/audit.h> 61 #include <bsm/audit_internal.h> 62 #include <bsm/audit_kevents.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 67 #include <security/audit/audit.h> 68 #include <security/audit/audit_private.h> 69 70 #include <vm/uma.h> 71 72 /* 73 * The AUDIT_EXCESSIVELY_VERBOSE define enables a number of 74 * gratuitously noisy printf's to the console. Due to the 75 * volume, it should be left off unless you want your system 76 * to churn a lot whenever the audit record flow gets high. 77 */ 78 //#define AUDIT_EXCESSIVELY_VERBOSE 79 #ifdef AUDIT_EXCESSIVELY_VERBOSE 80 #define AUDIT_PRINTF(x) printf x 81 #else 82 #define AUDIT_PRINTF(X) 83 #endif 84 85 static uma_zone_t audit_record_zone; 86 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage"); 87 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 88 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 89 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 90 91 /* 92 * Audit control settings that are set/read by system calls and are 93 * hence non-static. 94 */ 95 /* 96 * Define the audit control flags. 97 */ 98 int audit_enabled; 99 int audit_suspended; 100 101 /* 102 * Flags controlling behavior in low storage situations. 103 * Should we panic if a write fails? Should we fail stop 104 * if we're out of disk space? 105 */ 106 int audit_panic_on_write_fail; 107 int audit_fail_stop; 108 109 /* 110 * Are we currently "failing stop" due to out of disk space? 111 */ 112 static int audit_in_failure; 113 114 /* 115 * Global audit statistiscs. 116 */ 117 struct audit_fstat audit_fstat; 118 119 /* 120 * Preselection mask for non-attributable events. 121 */ 122 struct au_mask audit_nae_mask; 123 124 /* 125 * Mutex to protect global variables shared between various threads and 126 * processes. 127 */ 128 static struct mtx audit_mtx; 129 130 /* 131 * Queue of audit records ready for delivery to disk. We insert new 132 * records at the tail, and remove records from the head. Also, 133 * a count of the number of records used for checking queue depth. 134 * In addition, a counter of records that we have allocated but are 135 * not yet in the queue, which is needed to estimate the total 136 * size of the combined set of records outstanding in the system. 137 */ 138 static TAILQ_HEAD(, kaudit_record) audit_q; 139 static int audit_q_len; 140 static int audit_pre_q_len; 141 142 /* 143 * Audit queue control settings (minimum free, low/high water marks, etc.) 144 */ 145 struct au_qctrl audit_qctrl; 146 147 /* 148 * Condition variable to signal to the worker that it has work to do: 149 * either new records are in the queue, or a log replacement is taking 150 * place. 151 */ 152 static struct cv audit_cv; 153 154 /* 155 * Worker thread that will schedule disk I/O, etc. 156 */ 157 static struct proc *audit_thread; 158 159 /* 160 * When an audit log is rotated, the actual rotation must be performed 161 * by the audit worker thread, as it may have outstanding writes on the 162 * current audit log. audit_replacement_vp holds the vnode replacing 163 * the current vnode. We can't let more than one replacement occur 164 * at a time, so if more than one thread requests a replacement, only 165 * one can have the replacement "in progress" at any given moment. If 166 * a thread tries to replace the audit vnode and discovers a replacement 167 * is already in progress (i.e., audit_replacement_flag != 0), then it 168 * will sleep on audit_replacement_cv waiting its turn to perform a 169 * replacement. When a replacement is completed, this cv is signalled 170 * by the worker thread so a waiting thread can start another replacement. 171 * We also store a credential to perform audit log write operations with. 172 * 173 * The current credential and vnode are thread-local to audit_worker. 174 */ 175 static struct cv audit_replacement_cv; 176 177 static int audit_replacement_flag; 178 static struct vnode *audit_replacement_vp; 179 static struct ucred *audit_replacement_cred; 180 181 /* 182 * Condition variable to signal to the worker that it has work to do: 183 * either new records are in the queue, or a log replacement is taking 184 * place. 185 */ 186 static struct cv audit_commit_cv; 187 188 /* 189 * Condition variable for auditing threads wait on when in fail-stop mode. 190 * Threads wait on this CV forever (and ever), never seeing the light of 191 * day again. 192 */ 193 static struct cv audit_fail_cv; 194 195 /* 196 * Flags related to Kernel->user-space communication. 197 */ 198 static int audit_file_rotate_wait; 199 200 /* 201 * Construct an audit record for the passed thread. 202 */ 203 static int 204 audit_record_ctor(void *mem, int size, void *arg, int flags) 205 { 206 struct kaudit_record *ar; 207 struct thread *td; 208 209 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 210 211 td = arg; 212 ar = mem; 213 bzero(ar, sizeof(*ar)); 214 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 215 nanotime(&ar->k_ar.ar_starttime); 216 217 /* 218 * Export the subject credential. 219 * 220 * XXXAUDIT: td_ucred access is OK without proc lock, but some other 221 * fields here may require the proc lock. 222 */ 223 cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred); 224 ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid; 225 ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid; 226 ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0]; 227 ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid; 228 ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid; 229 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 230 ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask; 231 ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid; 232 bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); 233 234 return (0); 235 } 236 237 static void 238 audit_record_dtor(void *mem, int size, void *arg) 239 { 240 struct kaudit_record *ar; 241 242 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 243 244 ar = mem; 245 if (ar->k_ar.ar_arg_upath1 != NULL) 246 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 247 if (ar->k_ar.ar_arg_upath2 != NULL) 248 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 249 if (ar->k_ar.ar_arg_text != NULL) 250 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 251 if (ar->k_udata != NULL) 252 free(ar->k_udata, M_AUDITDATA); 253 } 254 255 /* 256 * XXXAUDIT: Should adjust comments below to make it clear that we get to 257 * this point only if we believe we have storage, so not having space here 258 * is a violation of invariants derived from administrative procedures. 259 * I.e., someone else has written to the audit partition, leaving less space 260 * than we accounted for. 261 */ 262 static int 263 audit_record_write(struct vnode *vp, struct kaudit_record *ar, 264 struct ucred *cred, struct thread *td) 265 { 266 int ret; 267 long temp; 268 struct au_record *bsm; 269 struct vattr vattr; 270 struct statfs *mnt_stat = &vp->v_mount->mnt_stat; 271 int vfslocked; 272 273 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 274 275 /* 276 * First, gather statistics on the audit log file and file system 277 * so that we know how we're doing on space. In both cases, 278 * if we're unable to perform the operation, we drop the record 279 * and return. However, this is arguably an assertion failure. 280 * XXX Need a FreeBSD equivalent. 281 */ 282 ret = VFS_STATFS(vp->v_mount, mnt_stat, td); 283 if (ret) 284 goto out; 285 286 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 287 ret = VOP_GETATTR(vp, &vattr, cred, td); 288 VOP_UNLOCK(vp, 0, td); 289 if (ret) 290 goto out; 291 292 /* update the global stats struct */ 293 audit_fstat.af_currsz = vattr.va_size; 294 295 /* 296 * XXX Need to decide what to do if the trigger to the audit daemon 297 * fails. 298 */ 299 300 /* 301 * If we fall below minimum free blocks (hard limit), tell the audit 302 * daemon to force a rotation off of the file system. We also stop 303 * writing, which means this audit record is probably lost. 304 * If we fall below the minimum percent free blocks (soft limit), 305 * then kindly suggest to the audit daemon to do something. 306 */ 307 if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) { 308 (void)send_trigger(AUDIT_TRIGGER_NO_SPACE); 309 /* Hopefully userspace did something about all the previous 310 * triggers that were sent prior to this critical condition. 311 * If fail-stop is set, then we're done; goodnight Gracie. 312 */ 313 if (audit_fail_stop) 314 panic("Audit log space exhausted and fail-stop set."); 315 else { 316 audit_suspended = 1; 317 ret = ENOSPC; 318 goto out; 319 } 320 } else 321 /* 322 * Send a message to the audit daemon that disk space 323 * is getting low. 324 * 325 * XXXAUDIT: Check math and block size calculation here. 326 */ 327 if (audit_qctrl.aq_minfree != 0) { 328 temp = mnt_stat->f_blocks / (100 / 329 audit_qctrl.aq_minfree); 330 if (mnt_stat->f_bfree < temp) 331 (void)send_trigger(AUDIT_TRIGGER_LOW_SPACE); 332 } 333 334 /* Check if the current log file is full; if so, call for 335 * a log rotate. This is not an exact comparison; we may 336 * write some records over the limit. If that's not 337 * acceptable, then add a fudge factor here. 338 */ 339 if ((audit_fstat.af_filesz != 0) && 340 (audit_file_rotate_wait == 0) && 341 (vattr.va_size >= audit_fstat.af_filesz)) { 342 audit_file_rotate_wait = 1; 343 (void)send_trigger(AUDIT_TRIGGER_OPEN_NEW); 344 } 345 346 /* 347 * If the estimated amount of audit data in the audit event queue 348 * (plus records allocated but not yet queued) has reached the 349 * amount of free space on the disk, then we need to go into an 350 * audit fail stop state, in which we do not permit the 351 * allocation/committing of any new audit records. We continue to 352 * process packets but don't allow any activities that might 353 * generate new records. In the future, we might want to detect 354 * when space is available again and allow operation to continue, 355 * but this behavior is sufficient to meet fail stop requirements 356 * in CAPP. 357 */ 358 if (audit_fail_stop && 359 (unsigned long) 360 ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) / 361 mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) { 362 printf("audit_record_write: free space below size of audit " 363 "queue, failing stop\n"); 364 audit_in_failure = 1; 365 } 366 367 /* 368 * If there is a user audit record attached to the kernel record, 369 * then write the user record. 370 */ 371 /* XXX Need to decide a few things here: IF the user audit 372 * record is written, but the write of the kernel record fails, 373 * what to do? Should the kernel record come before or after the 374 * user record? For now, we write the user record first, and 375 * we ignore errors. 376 */ 377 if (ar->k_ar_commit & AR_COMMIT_USER) { 378 /* 379 * Try submitting the record to any active audit pipes. 380 */ 381 audit_pipe_submit((void *)ar->k_udata, ar->k_ulen); 382 383 /* 384 * And to disk. 385 */ 386 ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen, 387 (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, 388 NULL, td); 389 if (ret) 390 goto out; 391 } 392 393 /* 394 * Convert the internal kernel record to BSM format and write it 395 * out if everything's OK. 396 */ 397 if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) { 398 ret = 0; 399 goto out; 400 } 401 402 /* 403 * XXXAUDIT: Should we actually allow this conversion to fail? With 404 * sleeping memory allocation and invariants checks, perhaps not. 405 */ 406 ret = kaudit_to_bsm(ar, &bsm); 407 if (ret == BSM_NOAUDIT) { 408 ret = 0; 409 goto out; 410 } 411 412 /* 413 * XXX: We drop the record on BSM conversion failure, but really 414 * this is an assertion failure. 415 */ 416 if (ret == BSM_FAILURE) { 417 AUDIT_PRINTF(("BSM conversion failure\n")); 418 ret = EINVAL; 419 goto out; 420 } 421 422 /* 423 * Try submitting the record to any active audit pipes. 424 */ 425 audit_pipe_submit((void *)bsm->data, bsm->len); 426 427 /* 428 * XXX 429 * We should break the write functionality away from the BSM record 430 * generation and have the BSM generation done before this function 431 * is called. This function will then take the BSM record as a 432 * parameter. 433 */ 434 ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, 435 (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, NULL, td)); 436 437 kau_free(bsm); 438 439 out: 440 /* 441 * When we're done processing the current record, we have to 442 * check to see if we're in a failure mode, and if so, whether 443 * this was the last record left to be drained. If we're done 444 * draining, then we fsync the vnode and panic. 445 */ 446 if (audit_in_failure && 447 audit_q_len == 0 && audit_pre_q_len == 0) { 448 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td); 449 (void)VOP_FSYNC(vp, MNT_WAIT, td); 450 VOP_UNLOCK(vp, 0, td); 451 panic("Audit store overflow; record queue drained."); 452 } 453 454 VFS_UNLOCK_GIANT(vfslocked); 455 456 return (ret); 457 } 458 459 /* 460 * The audit_worker thread is responsible for watching the event queue, 461 * dequeueing records, converting them to BSM format, and committing them to 462 * disk. In order to minimize lock thrashing, records are dequeued in sets 463 * to a thread-local work queue. In addition, the audit_work performs the 464 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local 465 * variable. 466 */ 467 static void 468 audit_worker(void *arg) 469 { 470 int do_replacement_signal, error; 471 TAILQ_HEAD(, kaudit_record) ar_worklist; 472 struct kaudit_record *ar; 473 struct vnode *audit_vp, *old_vp; 474 int vfslocked; 475 476 struct ucred *audit_cred, *old_cred; 477 struct thread *audit_td; 478 479 AUDIT_PRINTF(("audit_worker starting\n")); 480 481 /* 482 * These are thread-local variables requiring no synchronization. 483 */ 484 TAILQ_INIT(&ar_worklist); 485 audit_cred = NULL; 486 audit_td = curthread; 487 audit_vp = NULL; 488 489 mtx_lock(&audit_mtx); 490 while (1) { 491 /* 492 * First priority: replace the audit log target if requested. 493 * Accessing the vnode here requires dropping the audit_mtx; 494 * in case another replacement was scheduled while the mutex 495 * was released, we loop. 496 * 497 * XXX It could well be we should drain existing records 498 * first to ensure that the timestamps and ordering 499 * are right. 500 */ 501 do_replacement_signal = 0; 502 while (audit_replacement_flag != 0) { 503 old_cred = audit_cred; 504 old_vp = audit_vp; 505 audit_cred = audit_replacement_cred; 506 audit_vp = audit_replacement_vp; 507 audit_replacement_cred = NULL; 508 audit_replacement_vp = NULL; 509 audit_replacement_flag = 0; 510 511 audit_enabled = (audit_vp != NULL); 512 513 /* 514 * XXX: What to do about write failures here? 515 */ 516 if (old_vp != NULL) { 517 AUDIT_PRINTF(("Closing old audit file\n")); 518 mtx_unlock(&audit_mtx); 519 vfslocked = VFS_LOCK_GIANT(old_vp->v_mount); 520 vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred, 521 audit_td); 522 VFS_UNLOCK_GIANT(vfslocked); 523 crfree(old_cred); 524 mtx_lock(&audit_mtx); 525 old_cred = NULL; 526 old_vp = NULL; 527 AUDIT_PRINTF(("Audit file closed\n")); 528 } 529 if (audit_vp != NULL) { 530 AUDIT_PRINTF(("Opening new audit file\n")); 531 } 532 do_replacement_signal = 1; 533 } 534 /* 535 * Signal that replacement have occurred to wake up and 536 * start any other replacements started in parallel. We can 537 * continue about our business in the mean time. We 538 * broadcast so that both new replacements can be inserted, 539 * but also so that the source(s) of replacement can return 540 * successfully. 541 */ 542 if (do_replacement_signal) 543 cv_broadcast(&audit_replacement_cv); 544 545 /* 546 * Next, check to see if we have any records to drain into 547 * the vnode. If not, go back to waiting for an event. 548 */ 549 if (TAILQ_EMPTY(&audit_q)) { 550 AUDIT_PRINTF(("audit_worker waiting\n")); 551 cv_wait(&audit_cv, &audit_mtx); 552 AUDIT_PRINTF(("audit_worker woken up\n")); 553 AUDIT_PRINTF(("audit_worker: new vp = %p; value of flag %d\n", 554 audit_replacement_vp, audit_replacement_flag)); 555 continue; 556 } 557 558 /* 559 * If we have records, but there's no active vnode to write 560 * to, drain the record queue. Generally, we prevent the 561 * unnecessary allocation of records elsewhere, but we need 562 * to allow for races between conditional allocation and 563 * queueing. Go back to waiting when we're done. 564 */ 565 if (audit_vp == NULL) { 566 while ((ar = TAILQ_FIRST(&audit_q))) { 567 TAILQ_REMOVE(&audit_q, ar, k_q); 568 uma_zfree(audit_record_zone, ar); 569 audit_q_len--; 570 /* 571 * XXXRW: Why broadcast if we hold the 572 * mutex and know that audit_vp is NULL? 573 */ 574 if (audit_q_len <= audit_qctrl.aq_lowater) 575 cv_broadcast(&audit_commit_cv); 576 } 577 continue; 578 } 579 580 /* 581 * We have both records to write and an active vnode to write 582 * to. Dequeue a record, and start the write. Eventually, 583 * it might make sense to dequeue several records and perform 584 * our own clustering, if the lower layers aren't doing it 585 * automatically enough. 586 */ 587 while ((ar = TAILQ_FIRST(&audit_q))) { 588 TAILQ_REMOVE(&audit_q, ar, k_q); 589 audit_q_len--; 590 if (audit_q_len <= audit_qctrl.aq_lowater) 591 cv_broadcast(&audit_commit_cv); 592 TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); 593 } 594 595 mtx_unlock(&audit_mtx); 596 while ((ar = TAILQ_FIRST(&ar_worklist))) { 597 TAILQ_REMOVE(&ar_worklist, ar, k_q); 598 if (audit_vp != NULL) { 599 error = audit_record_write(audit_vp, ar, 600 audit_cred, audit_td); 601 if (error && audit_panic_on_write_fail) 602 panic("audit_worker: write error %d\n", 603 error); 604 else if (error) 605 printf("audit_worker: write error %d\n", 606 error); 607 } 608 uma_zfree(audit_record_zone, ar); 609 } 610 mtx_lock(&audit_mtx); 611 } 612 } 613 614 /* 615 * Initialize the Audit subsystem: configuration state, work queue, 616 * synchronization primitives, worker thread, and trigger device node. Also 617 * call into the BSM assembly code to initialize it. 618 */ 619 static void 620 audit_init(void) 621 { 622 int error; 623 624 printf("Security auditing service present\n"); 625 audit_enabled = 0; 626 audit_suspended = 0; 627 audit_panic_on_write_fail = 0; 628 audit_fail_stop = 0; 629 audit_in_failure = 0; 630 631 audit_replacement_vp = NULL; 632 audit_replacement_cred = NULL; 633 audit_replacement_flag = 0; 634 635 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ 636 audit_fstat.af_currsz = 0; 637 audit_nae_mask.am_success = AU_NULL; 638 audit_nae_mask.am_failure = AU_NULL; 639 640 TAILQ_INIT(&audit_q); 641 audit_q_len = 0; 642 audit_pre_q_len = 0; 643 audit_qctrl.aq_hiwater = AQ_HIWATER; 644 audit_qctrl.aq_lowater = AQ_LOWATER; 645 audit_qctrl.aq_bufsz = AQ_BUFSZ; 646 audit_qctrl.aq_minfree = AU_FS_MINFREE; 647 648 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 649 cv_init(&audit_cv, "audit_cv"); 650 cv_init(&audit_replacement_cv, "audit_replacement_cv"); 651 cv_init(&audit_commit_cv, "audit_commit_cv"); 652 cv_init(&audit_fail_cv, "audit_fail_cv"); 653 654 audit_record_zone = uma_zcreate("audit_record_zone", 655 sizeof(struct kaudit_record), audit_record_ctor, 656 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 657 658 /* Initialize the BSM audit subsystem. */ 659 kau_init(); 660 661 audit_file_rotate_wait = 0; 662 audit_trigger_init(); 663 664 /* Register shutdown handler. */ 665 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 666 SHUTDOWN_PRI_FIRST); 667 668 error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID, 669 0, "audit_worker"); 670 if (error != 0) 671 panic("audit_init: kthread_create returned %d", error); 672 } 673 674 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL) 675 676 /* 677 * audit_rotate_vnode() is called by a user or kernel thread to configure or 678 * de-configure auditing on a vnode. The arguments are the replacement 679 * credential and vnode to substitute for the current credential and vnode, 680 * if any. If either is set to NULL, both should be NULL, and this is used 681 * to indicate that audit is being disabled. The real work is done in the 682 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that 683 * to complete. 684 * 685 * The vnode should be referenced and opened by the caller. The credential 686 * should be referenced. audit_rotate_vnode() will own both references as of 687 * this call, so the caller should not release either. 688 * 689 * XXXAUDIT: Review synchronize communication logic. Really, this is a 690 * message queue of depth 1. 691 * 692 * XXXAUDIT: Enhance the comments below to indicate that we are basically 693 * acquiring ownership of the communications queue, inserting our message, 694 * and waiting for an acknowledgement. 695 */ 696 void 697 audit_rotate_vnode(struct ucred *cred, struct vnode *vp) 698 { 699 700 /* 701 * If other parallel log replacements have been requested, we wait 702 * until they've finished before continuing. 703 */ 704 mtx_lock(&audit_mtx); 705 while (audit_replacement_flag != 0) { 706 AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for " 707 "flag\n")); 708 cv_wait(&audit_replacement_cv, &audit_mtx); 709 AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n", 710 audit_replacement_flag)); 711 } 712 audit_replacement_cred = cred; 713 audit_replacement_flag = 1; 714 audit_replacement_vp = vp; 715 716 /* 717 * Wake up the audit worker to perform the exchange once we 718 * release the mutex. 719 */ 720 cv_signal(&audit_cv); 721 722 /* 723 * Wait for the audit_worker to broadcast that a replacement has 724 * taken place; we know that once this has happened, our vnode 725 * has been replaced in, so we can return successfully. 726 */ 727 AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of " 728 "replacement\n")); 729 cv_wait(&audit_replacement_cv, &audit_mtx); 730 AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by " 731 "audit_worker (flag " "now %d)\n", audit_replacement_flag)); 732 mtx_unlock(&audit_mtx); 733 734 audit_file_rotate_wait = 0; /* We can now request another rotation */ 735 } 736 737 /* 738 * Drain the audit queue and close the log at shutdown. Note that this can 739 * be called both from the system shutdown path and also from audit 740 * configuration syscalls, so 'arg' and 'howto' are ignored. 741 */ 742 void 743 audit_shutdown(void *arg, int howto) 744 { 745 746 audit_rotate_vnode(NULL, NULL); 747 } 748 749 /* 750 * Return the current thread's audit record, if any. 751 */ 752 __inline__ struct kaudit_record * 753 currecord(void) 754 { 755 756 return (curthread->td_ar); 757 } 758 759 /* 760 * MPSAFE 761 * 762 * XXXAUDIT: There are a number of races present in the code below due to 763 * release and re-grab of the mutex. The code should be revised to become 764 * slightly less racy. 765 * 766 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 767 * pre_q space, suspending the system call until there is room? 768 */ 769 struct kaudit_record * 770 audit_new(int event, struct thread *td) 771 { 772 struct kaudit_record *ar; 773 int no_record; 774 775 mtx_lock(&audit_mtx); 776 no_record = (audit_suspended || !audit_enabled); 777 mtx_unlock(&audit_mtx); 778 if (no_record) 779 return (NULL); 780 781 /* 782 * XXX: The number of outstanding uncommitted audit records is 783 * limited to the number of concurrent threads servicing system 784 * calls in the kernel. 785 */ 786 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 787 ar->k_ar.ar_event = event; 788 789 mtx_lock(&audit_mtx); 790 audit_pre_q_len++; 791 mtx_unlock(&audit_mtx); 792 793 return (ar); 794 } 795 796 /* 797 * MPSAFE 798 */ 799 void 800 audit_commit(struct kaudit_record *ar, int error, int retval) 801 { 802 int sorf; 803 struct au_mask *aumask; 804 805 if (ar == NULL) 806 return; 807 808 /* 809 * Decide whether to commit the audit record by checking the 810 * error value from the system call and using the appropriate 811 * audit mask. 812 * 813 * XXXAUDIT: Synchronize access to audit_nae_mask? 814 */ 815 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 816 aumask = &audit_nae_mask; 817 else 818 aumask = &ar->k_ar.ar_subj_amask; 819 820 if (error) 821 sorf = AU_PRS_FAILURE; 822 else 823 sorf = AU_PRS_SUCCESS; 824 825 switch(ar->k_ar.ar_event) { 826 827 case AUE_OPEN_RWTC: 828 /* The open syscall always writes a AUE_OPEN_RWTC event; change 829 * it to the proper type of event based on the flags and the 830 * error value. 831 */ 832 ar->k_ar.ar_event = flags_and_error_to_openevent( 833 ar->k_ar.ar_arg_fflags, error); 834 break; 835 836 case AUE_SYSCTL: 837 ar->k_ar.ar_event = ctlname_to_sysctlevent( 838 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 839 break; 840 841 case AUE_AUDITON: 842 /* Convert the auditon() command to an event */ 843 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 844 break; 845 } 846 847 if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0) 848 ar->k_ar_commit |= AR_COMMIT_KERNEL; 849 850 /* 851 * XXXRW: Why is this necessary? Should we ever accept a record that 852 * we're not willing to commit? 853 */ 854 if ((ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL)) == 0) { 855 mtx_lock(&audit_mtx); 856 audit_pre_q_len--; 857 mtx_unlock(&audit_mtx); 858 uma_zfree(audit_record_zone, ar); 859 return; 860 } 861 862 ar->k_ar.ar_errno = error; 863 ar->k_ar.ar_retval = retval; 864 865 /* 866 * We might want to do some system-wide post-filtering 867 * here at some point. 868 */ 869 870 /* 871 * Timestamp system call end. 872 */ 873 nanotime(&ar->k_ar.ar_endtime); 874 875 mtx_lock(&audit_mtx); 876 877 /* 878 * Note: it could be that some records initiated while audit was 879 * enabled should still be committed? 880 */ 881 if (audit_suspended || !audit_enabled) { 882 audit_pre_q_len--; 883 mtx_unlock(&audit_mtx); 884 uma_zfree(audit_record_zone, ar); 885 return; 886 } 887 888 /* 889 * Constrain the number of committed audit records based on 890 * the configurable parameter. 891 */ 892 while (audit_q_len >= audit_qctrl.aq_hiwater) { 893 AUDIT_PRINTF(("audit_commit: sleeping to wait for " 894 "audit queue to drain below high water mark\n")); 895 cv_wait(&audit_commit_cv, &audit_mtx); 896 AUDIT_PRINTF(("audit_commit: woke up waiting for " 897 "audit queue draining\n")); 898 } 899 900 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 901 audit_q_len++; 902 audit_pre_q_len--; 903 cv_signal(&audit_cv); 904 mtx_unlock(&audit_mtx); 905 } 906 907 /* 908 * audit_syscall_enter() is called on entry to each system call. It is 909 * responsible for deciding whether or not to audit the call (preselection), 910 * and if so, allocating a per-thread audit record. audit_new() will fill in 911 * basic thread/credential properties. 912 */ 913 void 914 audit_syscall_enter(unsigned short code, struct thread *td) 915 { 916 int audit_event; 917 struct au_mask *aumask; 918 919 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 920 921 /* 922 * In FreeBSD, each ABI has its own system call table, and hence 923 * mapping of system call codes to audit events. Convert the code to 924 * an audit event identifier using the process system call table 925 * reference. In Darwin, there's only one, so we use the global 926 * symbol for the system call table. 927 * 928 * XXXAUDIT: Should we audit that a bad system call was made, and if 929 * so, how? 930 */ 931 if (code >= td->td_proc->p_sysent->sv_size) 932 return; 933 934 audit_event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 935 if (audit_event == AUE_NULL) 936 return; 937 938 /* 939 * Check which audit mask to use; either the kernel non-attributable 940 * event mask or the process audit mask. 941 */ 942 if (td->td_proc->p_au->ai_auid == AU_DEFAUDITID) 943 aumask = &audit_nae_mask; 944 else 945 aumask = &td->td_proc->p_au->ai_mask; 946 947 /* 948 * Allocate an audit record, if preselection allows it, and store 949 * in the thread for later use. 950 */ 951 if (au_preselect(audit_event, aumask, 952 AU_PRS_FAILURE | AU_PRS_SUCCESS)) { 953 /* 954 * If we're out of space and need to suspend unprivileged 955 * processes, do that here rather than trying to allocate 956 * another audit record. 957 * 958 * XXXRW: We might wish to be able to continue here in the 959 * future, if the system recovers. That should be possible 960 * by means of checking the condition in a loop around 961 * cv_wait(). It might be desirable to reevaluate whether an 962 * audit record is still required for this event by 963 * re-calling au_preselect(). 964 */ 965 if (audit_in_failure && suser(td) != 0) { 966 cv_wait(&audit_fail_cv, &audit_mtx); 967 panic("audit_failing_stop: thread continued"); 968 } 969 td->td_ar = audit_new(audit_event, td); 970 } else 971 td->td_ar = NULL; 972 } 973 974 /* 975 * audit_syscall_exit() is called from the return of every system call, or in 976 * the event of exit1(), during the execution of exit1(). It is responsible 977 * for committing the audit record, if any, along with return condition. 978 */ 979 void 980 audit_syscall_exit(int error, struct thread *td) 981 { 982 int retval; 983 984 /* 985 * Commit the audit record as desired; once we pass the record 986 * into audit_commit(), the memory is owned by the audit 987 * subsystem. 988 * The return value from the system call is stored on the user 989 * thread. If there was an error, the return value is set to -1, 990 * imitating the behavior of the cerror routine. 991 */ 992 if (error) 993 retval = -1; 994 else 995 retval = td->td_retval[0]; 996 997 audit_commit(td->td_ar, error, retval); 998 if (td->td_ar != NULL) 999 AUDIT_PRINTF(("audit record committed by pid %d\n", 1000 td->td_proc->p_pid)); 1001 td->td_ar = NULL; 1002 1003 } 1004 1005 /* 1006 * Allocate storage for a new process (init, or otherwise). 1007 */ 1008 void 1009 audit_proc_alloc(struct proc *p) 1010 { 1011 1012 KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)", 1013 p->p_pid)); 1014 p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK); 1015 /* XXXAUDIT: Zero? Slab allocate? */ 1016 //printf("audit_proc_alloc: pid %d p_au %p\n", p->p_pid, p->p_au); 1017 } 1018 1019 /* 1020 * Allocate storage for a new thread. 1021 */ 1022 void 1023 audit_thread_alloc(struct thread *td) 1024 { 1025 1026 td->td_ar = NULL; 1027 } 1028 1029 /* 1030 * Thread destruction. 1031 */ 1032 void 1033 audit_thread_free(struct thread *td) 1034 { 1035 1036 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 1037 } 1038 1039 /* 1040 * Initialize the audit information for the a process, presumably the first 1041 * process in the system. 1042 * XXX It is not clear what the initial values should be for audit ID, 1043 * session ID, etc. 1044 */ 1045 void 1046 audit_proc_kproc0(struct proc *p) 1047 { 1048 1049 KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)", 1050 p->p_pid)); 1051 //printf("audit_proc_kproc0: pid %d p_au %p\n", p->p_pid, p->p_au); 1052 bzero(p->p_au, sizeof(*(p)->p_au)); 1053 } 1054 1055 void 1056 audit_proc_init(struct proc *p) 1057 { 1058 1059 KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)", 1060 p->p_pid)); 1061 //printf("audit_proc_init: pid %d p_au %p\n", p->p_pid, p->p_au); 1062 bzero(p->p_au, sizeof(*(p)->p_au)); 1063 p->p_au->ai_auid = AU_DEFAUDITID; 1064 } 1065 1066 /* 1067 * Copy the audit info from the parent process to the child process when 1068 * a fork takes place. 1069 */ 1070 void 1071 audit_proc_fork(struct proc *parent, struct proc *child) 1072 { 1073 1074 PROC_LOCK_ASSERT(parent, MA_OWNED); 1075 PROC_LOCK_ASSERT(child, MA_OWNED); 1076 KASSERT(parent->p_au != NULL, 1077 ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid)); 1078 KASSERT(child->p_au != NULL, 1079 ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid)); 1080 //printf("audit_proc_fork: parent pid %d p_au %p\n", parent->p_pid, 1081 // parent->p_au); 1082 //printf("audit_proc_fork: child pid %d p_au %p\n", child->p_pid, 1083 // child->p_au); 1084 bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); 1085 /* 1086 * XXXAUDIT: Zero pointers to external memory, or assert they are 1087 * zero? 1088 */ 1089 } 1090 1091 /* 1092 * Free the auditing structure for the process. 1093 */ 1094 void 1095 audit_proc_free(struct proc *p) 1096 { 1097 1098 KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid)); 1099 //printf("audit_proc_free: pid %d p_au %p\n", p->p_pid, p->p_au); 1100 /* 1101 * XXXAUDIT: Assert that external memory pointers are NULL? 1102 */ 1103 free(p->p_au, M_AUDITPROC); 1104 p->p_au = NULL; 1105 } 1106