1 /*- 2 * Copyright (c) 1999-2005 Apple Inc. 3 * Copyright (c) 2006-2007 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/condvar.h> 36 #include <sys/conf.h> 37 #include <sys/file.h> 38 #include <sys/filedesc.h> 39 #include <sys/fcntl.h> 40 #include <sys/ipc.h> 41 #include <sys/kernel.h> 42 #include <sys/kthread.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/queue.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/protosw.h> 52 #include <sys/domain.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysproto.h> 55 #include <sys/sysent.h> 56 #include <sys/systm.h> 57 #include <sys/ucred.h> 58 #include <sys/uio.h> 59 #include <sys/un.h> 60 #include <sys/unistd.h> 61 #include <sys/vnode.h> 62 63 #include <bsm/audit.h> 64 #include <bsm/audit_internal.h> 65 #include <bsm/audit_kevents.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 70 #include <security/audit/audit.h> 71 #include <security/audit/audit_private.h> 72 73 #include <vm/uma.h> 74 75 static uma_zone_t audit_record_zone; 76 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage"); 77 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 78 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 79 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 80 81 SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0, 82 "TrustedBSD audit controls"); 83 84 /* 85 * Audit control settings that are set/read by system calls and are hence 86 * non-static. 87 * 88 * Define the audit control flags. 89 */ 90 int audit_enabled; 91 int audit_suspended; 92 93 /* 94 * Flags controlling behavior in low storage situations. Should we panic if 95 * a write fails? Should we fail stop if we're out of disk space? 96 */ 97 int audit_panic_on_write_fail; 98 int audit_fail_stop; 99 int audit_argv; 100 int audit_arge; 101 102 /* 103 * Are we currently "failing stop" due to out of disk space? 104 */ 105 int audit_in_failure; 106 107 /* 108 * Global audit statistics. 109 */ 110 struct audit_fstat audit_fstat; 111 112 /* 113 * Preselection mask for non-attributable events. 114 */ 115 struct au_mask audit_nae_mask; 116 117 /* 118 * Mutex to protect global variables shared between various threads and 119 * processes. 120 */ 121 struct mtx audit_mtx; 122 123 /* 124 * Queue of audit records ready for delivery to disk. We insert new records 125 * at the tail, and remove records from the head. Also, a count of the 126 * number of records used for checking queue depth. In addition, a counter 127 * of records that we have allocated but are not yet in the queue, which is 128 * needed to estimate the total size of the combined set of records 129 * outstanding in the system. 130 */ 131 struct kaudit_queue audit_q; 132 int audit_q_len; 133 int audit_pre_q_len; 134 135 /* 136 * Audit queue control settings (minimum free, low/high water marks, etc.) 137 */ 138 struct au_qctrl audit_qctrl; 139 140 /* 141 * Condition variable to signal to the worker that it has work to do: either 142 * new records are in the queue, or a log replacement is taking place. 143 */ 144 struct cv audit_worker_cv; 145 146 /* 147 * Condition variable to flag when crossing the low watermark, meaning that 148 * threads blocked due to hitting the high watermark can wake up and continue 149 * to commit records. 150 */ 151 struct cv audit_watermark_cv; 152 153 /* 154 * Condition variable for auditing threads wait on when in fail-stop mode. 155 * Threads wait on this CV forever (and ever), never seeing the light of day 156 * again. 157 */ 158 static struct cv audit_fail_cv; 159 160 /* 161 * Kernel audit information. This will store the current audit address 162 * or host information that the kernel will use when it's generating 163 * audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2) 164 * command. 165 */ 166 static struct auditinfo_addr audit_kinfo; 167 static struct rwlock audit_kinfo_lock; 168 169 #define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \ 170 "audit_kinfo_lock") 171 #define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock) 172 #define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock) 173 #define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock) 174 #define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock) 175 176 void 177 audit_set_kinfo(struct auditinfo_addr *ak) 178 { 179 180 KASSERT(ak->ai_termid.at_type == AU_IPv4 || 181 ak->ai_termid.at_type == AU_IPv6, 182 ("audit_set_kinfo: invalid address type")); 183 184 KINFO_WLOCK(); 185 audit_kinfo = *ak; 186 KINFO_WUNLOCK(); 187 } 188 189 void 190 audit_get_kinfo(struct auditinfo_addr *ak) 191 { 192 193 KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 || 194 audit_kinfo.ai_termid.at_type == AU_IPv6, 195 ("audit_set_kinfo: invalid address type")); 196 197 KINFO_RLOCK(); 198 *ak = audit_kinfo; 199 KINFO_RUNLOCK(); 200 } 201 202 /* 203 * Construct an audit record for the passed thread. 204 */ 205 static int 206 audit_record_ctor(void *mem, int size, void *arg, int flags) 207 { 208 struct kaudit_record *ar; 209 struct thread *td; 210 struct ucred *cred; 211 212 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 213 214 td = arg; 215 ar = mem; 216 bzero(ar, sizeof(*ar)); 217 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 218 nanotime(&ar->k_ar.ar_starttime); 219 220 /* 221 * Export the subject credential. 222 */ 223 cred = td->td_ucred; 224 cru2x(cred, &ar->k_ar.ar_subj_cred); 225 ar->k_ar.ar_subj_ruid = cred->cr_ruid; 226 ar->k_ar.ar_subj_rgid = cred->cr_rgid; 227 ar->k_ar.ar_subj_egid = cred->cr_groups[0]; 228 ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid; 229 ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid; 230 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 231 ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask; 232 ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid; 233 return (0); 234 } 235 236 static void 237 audit_record_dtor(void *mem, int size, void *arg) 238 { 239 struct kaudit_record *ar; 240 241 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 242 243 ar = mem; 244 if (ar->k_ar.ar_arg_upath1 != NULL) 245 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 246 if (ar->k_ar.ar_arg_upath2 != NULL) 247 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 248 if (ar->k_ar.ar_arg_text != NULL) 249 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 250 if (ar->k_udata != NULL) 251 free(ar->k_udata, M_AUDITDATA); 252 if (ar->k_ar.ar_arg_argv != NULL) 253 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); 254 if (ar->k_ar.ar_arg_envv != NULL) 255 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); 256 } 257 258 /* 259 * Initialize the Audit subsystem: configuration state, work queue, 260 * synchronization primitives, worker thread, and trigger device node. Also 261 * call into the BSM assembly code to initialize it. 262 */ 263 static void 264 audit_init(void) 265 { 266 267 audit_enabled = 0; 268 audit_suspended = 0; 269 audit_panic_on_write_fail = 0; 270 audit_fail_stop = 0; 271 audit_in_failure = 0; 272 audit_argv = 0; 273 audit_arge = 0; 274 275 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */ 276 audit_fstat.af_currsz = 0; 277 audit_nae_mask.am_success = 0; 278 audit_nae_mask.am_failure = 0; 279 280 TAILQ_INIT(&audit_q); 281 audit_q_len = 0; 282 audit_pre_q_len = 0; 283 audit_qctrl.aq_hiwater = AQ_HIWATER; 284 audit_qctrl.aq_lowater = AQ_LOWATER; 285 audit_qctrl.aq_bufsz = AQ_BUFSZ; 286 audit_qctrl.aq_minfree = AU_FS_MINFREE; 287 288 audit_kinfo.ai_termid.at_type = AU_IPv4; 289 audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY; 290 291 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 292 KINFO_LOCK_INIT(); 293 cv_init(&audit_worker_cv, "audit_worker_cv"); 294 cv_init(&audit_watermark_cv, "audit_watermark_cv"); 295 cv_init(&audit_fail_cv, "audit_fail_cv"); 296 297 audit_record_zone = uma_zcreate("audit_record", 298 sizeof(struct kaudit_record), audit_record_ctor, 299 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 300 301 /* Initialize the BSM audit subsystem. */ 302 kau_init(); 303 304 audit_trigger_init(); 305 306 /* Register shutdown handler. */ 307 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 308 SHUTDOWN_PRI_FIRST); 309 310 /* Start audit worker thread. */ 311 audit_worker_init(); 312 } 313 314 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL); 315 316 /* 317 * Drain the audit queue and close the log at shutdown. Note that this can 318 * be called both from the system shutdown path and also from audit 319 * configuration syscalls, so 'arg' and 'howto' are ignored. 320 * 321 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to 322 * drain before returning, which could lead to lost records on shutdown. 323 */ 324 void 325 audit_shutdown(void *arg, int howto) 326 { 327 328 audit_rotate_vnode(NULL, NULL); 329 } 330 331 /* 332 * Return the current thread's audit record, if any. 333 */ 334 struct kaudit_record * 335 currecord(void) 336 { 337 338 return (curthread->td_ar); 339 } 340 341 /* 342 * XXXAUDIT: There are a number of races present in the code below due to 343 * release and re-grab of the mutex. The code should be revised to become 344 * slightly less racy. 345 * 346 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 347 * pre_q space, suspending the system call until there is room? 348 */ 349 struct kaudit_record * 350 audit_new(int event, struct thread *td) 351 { 352 struct kaudit_record *ar; 353 int no_record; 354 355 mtx_lock(&audit_mtx); 356 no_record = (audit_suspended || !audit_enabled); 357 mtx_unlock(&audit_mtx); 358 if (no_record) 359 return (NULL); 360 361 /* 362 * Note: the number of outstanding uncommitted audit records is 363 * limited to the number of concurrent threads servicing system calls 364 * in the kernel. 365 */ 366 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 367 ar->k_ar.ar_event = event; 368 369 mtx_lock(&audit_mtx); 370 audit_pre_q_len++; 371 mtx_unlock(&audit_mtx); 372 373 return (ar); 374 } 375 376 void 377 audit_free(struct kaudit_record *ar) 378 { 379 380 uma_zfree(audit_record_zone, ar); 381 } 382 383 void 384 audit_commit(struct kaudit_record *ar, int error, int retval) 385 { 386 au_event_t event; 387 au_class_t class; 388 au_id_t auid; 389 int sorf; 390 struct au_mask *aumask; 391 392 if (ar == NULL) 393 return; 394 395 /* 396 * Decide whether to commit the audit record by checking the error 397 * value from the system call and using the appropriate audit mask. 398 */ 399 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 400 aumask = &audit_nae_mask; 401 else 402 aumask = &ar->k_ar.ar_subj_amask; 403 404 if (error) 405 sorf = AU_PRS_FAILURE; 406 else 407 sorf = AU_PRS_SUCCESS; 408 409 switch(ar->k_ar.ar_event) { 410 case AUE_OPEN_RWTC: 411 /* 412 * The open syscall always writes a AUE_OPEN_RWTC event; 413 * change it to the proper type of event based on the flags 414 * and the error value. 415 */ 416 ar->k_ar.ar_event = audit_flags_and_error_to_openevent( 417 ar->k_ar.ar_arg_fflags, error); 418 break; 419 420 case AUE_SYSCTL: 421 ar->k_ar.ar_event = audit_ctlname_to_sysctlevent( 422 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 423 break; 424 425 case AUE_AUDITON: 426 /* Convert the auditon() command to an event. */ 427 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 428 break; 429 } 430 431 auid = ar->k_ar.ar_subj_auid; 432 event = ar->k_ar.ar_event; 433 class = au_event_class(event); 434 435 ar->k_ar_commit |= AR_COMMIT_KERNEL; 436 if (au_preselect(event, class, aumask, sorf) != 0) 437 ar->k_ar_commit |= AR_PRESELECT_TRAIL; 438 if (audit_pipe_preselect(auid, event, class, sorf, 439 ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) 440 ar->k_ar_commit |= AR_PRESELECT_PIPE; 441 if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | 442 AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) { 443 mtx_lock(&audit_mtx); 444 audit_pre_q_len--; 445 mtx_unlock(&audit_mtx); 446 audit_free(ar); 447 return; 448 } 449 450 ar->k_ar.ar_errno = error; 451 ar->k_ar.ar_retval = retval; 452 nanotime(&ar->k_ar.ar_endtime); 453 454 /* 455 * Note: it could be that some records initiated while audit was 456 * enabled should still be committed? 457 */ 458 mtx_lock(&audit_mtx); 459 if (audit_suspended || !audit_enabled) { 460 audit_pre_q_len--; 461 mtx_unlock(&audit_mtx); 462 audit_free(ar); 463 return; 464 } 465 466 /* 467 * Constrain the number of committed audit records based on the 468 * configurable parameter. 469 */ 470 while (audit_q_len >= audit_qctrl.aq_hiwater) 471 cv_wait(&audit_watermark_cv, &audit_mtx); 472 473 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 474 audit_q_len++; 475 audit_pre_q_len--; 476 cv_signal(&audit_worker_cv); 477 mtx_unlock(&audit_mtx); 478 } 479 480 /* 481 * audit_syscall_enter() is called on entry to each system call. It is 482 * responsible for deciding whether or not to audit the call (preselection), 483 * and if so, allocating a per-thread audit record. audit_new() will fill in 484 * basic thread/credential properties. 485 */ 486 void 487 audit_syscall_enter(unsigned short code, struct thread *td) 488 { 489 struct au_mask *aumask; 490 au_class_t class; 491 au_event_t event; 492 au_id_t auid; 493 494 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 495 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 496 ("audit_syscall_enter: TDP_AUDITREC set")); 497 498 /* 499 * In FreeBSD, each ABI has its own system call table, and hence 500 * mapping of system call codes to audit events. Convert the code to 501 * an audit event identifier using the process system call table 502 * reference. In Darwin, there's only one, so we use the global 503 * symbol for the system call table. No audit record is generated 504 * for bad system calls, as no operation has been performed. 505 */ 506 if (code >= td->td_proc->p_sysent->sv_size) 507 return; 508 509 event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 510 if (event == AUE_NULL) 511 return; 512 513 /* 514 * Check which audit mask to use; either the kernel non-attributable 515 * event mask or the process audit mask. 516 */ 517 auid = td->td_ucred->cr_audit.ai_auid; 518 if (auid == AU_DEFAUDITID) 519 aumask = &audit_nae_mask; 520 else 521 aumask = &td->td_ucred->cr_audit.ai_mask; 522 523 /* 524 * Allocate an audit record, if preselection allows it, and store in 525 * the thread for later use. 526 */ 527 class = au_event_class(event); 528 if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { 529 /* 530 * If we're out of space and need to suspend unprivileged 531 * processes, do that here rather than trying to allocate 532 * another audit record. 533 * 534 * Note: we might wish to be able to continue here in the 535 * future, if the system recovers. That should be possible 536 * by means of checking the condition in a loop around 537 * cv_wait(). It might be desirable to reevaluate whether an 538 * audit record is still required for this event by 539 * re-calling au_preselect(). 540 */ 541 if (audit_in_failure && 542 priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) { 543 cv_wait(&audit_fail_cv, &audit_mtx); 544 panic("audit_failing_stop: thread continued"); 545 } 546 td->td_ar = audit_new(event, td); 547 if (td->td_ar != NULL) 548 td->td_pflags |= TDP_AUDITREC; 549 } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) { 550 td->td_ar = audit_new(event, td); 551 if (td->td_ar != NULL) 552 td->td_pflags |= TDP_AUDITREC; 553 } else 554 td->td_ar = NULL; 555 } 556 557 /* 558 * audit_syscall_exit() is called from the return of every system call, or in 559 * the event of exit1(), during the execution of exit1(). It is responsible 560 * for committing the audit record, if any, along with return condition. 561 */ 562 void 563 audit_syscall_exit(int error, struct thread *td) 564 { 565 int retval; 566 567 /* 568 * Commit the audit record as desired; once we pass the record into 569 * audit_commit(), the memory is owned by the audit subsystem. The 570 * return value from the system call is stored on the user thread. 571 * If there was an error, the return value is set to -1, imitating 572 * the behavior of the cerror routine. 573 */ 574 if (error) 575 retval = -1; 576 else 577 retval = td->td_retval[0]; 578 579 audit_commit(td->td_ar, error, retval); 580 td->td_ar = NULL; 581 td->td_pflags &= ~TDP_AUDITREC; 582 } 583 584 void 585 audit_cred_copy(struct ucred *src, struct ucred *dest) 586 { 587 588 bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit)); 589 } 590 591 void 592 audit_cred_destroy(struct ucred *cred) 593 { 594 595 } 596 597 void 598 audit_cred_init(struct ucred *cred) 599 { 600 601 bzero(&cred->cr_audit, sizeof(cred->cr_audit)); 602 } 603 604 /* 605 * Initialize audit information for the first kernel process (proc 0) and for 606 * the first user process (init). 607 */ 608 void 609 audit_cred_kproc0(struct ucred *cred) 610 { 611 612 cred->cr_audit.ai_auid = AU_DEFAUDITID; 613 cred->cr_audit.ai_termid.at_type = AU_IPv4; 614 } 615 616 void 617 audit_cred_proc1(struct ucred *cred) 618 { 619 620 cred->cr_audit.ai_auid = AU_DEFAUDITID; 621 cred->cr_audit.ai_termid.at_type = AU_IPv4; 622 } 623 624 void 625 audit_thread_alloc(struct thread *td) 626 { 627 628 td->td_ar = NULL; 629 } 630 631 void 632 audit_thread_free(struct thread *td) 633 { 634 635 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 636 KASSERT((td->td_pflags & TDP_AUDITREC) == 0, 637 ("audit_thread_free: TDP_AUDITREC set")); 638 } 639 640 void 641 audit_proc_coredump(struct thread *td, char *path, int errcode) 642 { 643 struct kaudit_record *ar; 644 struct au_mask *aumask; 645 struct ucred *cred; 646 au_class_t class; 647 int ret, sorf; 648 char **pathp; 649 au_id_t auid; 650 651 ret = 0; 652 653 /* 654 * Make sure we are using the correct preselection mask. 655 */ 656 cred = td->td_ucred; 657 auid = cred->cr_audit.ai_auid; 658 if (auid == AU_DEFAUDITID) 659 aumask = &audit_nae_mask; 660 else 661 aumask = &cred->cr_audit.ai_mask; 662 /* 663 * It's possible for coredump(9) generation to fail. Make sure that 664 * we handle this case correctly for preselection. 665 */ 666 if (errcode != 0) 667 sorf = AU_PRS_FAILURE; 668 else 669 sorf = AU_PRS_SUCCESS; 670 class = au_event_class(AUE_CORE); 671 if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 && 672 audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) 673 return; 674 675 /* 676 * If we are interested in seeing this audit record, allocate it. 677 * Where possible coredump records should contain a pathname and arg32 678 * (signal) tokens. 679 */ 680 ar = audit_new(AUE_CORE, td); 681 if (path != NULL) { 682 pathp = &ar->k_ar.ar_arg_upath1; 683 *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); 684 audit_canon_path(td, path, *pathp); 685 ARG_SET_VALID(ar, ARG_UPATH1); 686 } 687 ar->k_ar.ar_arg_signum = td->td_proc->p_sig; 688 ARG_SET_VALID(ar, ARG_SIGNUM); 689 if (errcode != 0) 690 ret = 1; 691 audit_commit(ar, errcode, ret); 692 } 693