xref: /freebsd/sys/rpc/svc_vc.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*	$NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 2009, Sun Microsystems, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are met:
11  * - Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  * - Redistributions in binary form must reproduce the above copyright notice,
14  *   this list of conditions and the following disclaimer in the documentation
15  *   and/or other materials provided with the distribution.
16  * - Neither the name of Sun Microsystems, Inc. nor the names of its
17  *   contributors may be used to endorse or promote products derived
18  *   from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #if defined(LIBC_SCCS) && !defined(lint)
34 static char *sccsid2 = "@(#)svc_tcp.c 1.21 87/08/11 Copyr 1984 Sun Micro";
35 static char *sccsid = "@(#)svc_tcp.c	2.2 88/08/01 4.0 RPCSRC";
36 #endif
37 #include <sys/cdefs.h>
38 /*
39  * svc_vc.c, Server side for Connection Oriented based RPC.
40  *
41  * Actually implements two flavors of transporter -
42  * a tcp rendezvouser (a listner and connection establisher)
43  * and a record/tcp stream.
44  */
45 
46 #include "opt_kern_tls.h"
47 
48 #include <sys/param.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/ktls.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/queue.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sx.h>
62 #include <sys/systm.h>
63 #include <sys/uio.h>
64 
65 #include <net/vnet.h>
66 
67 #include <netinet/tcp.h>
68 
69 #include <rpc/rpc.h>
70 #include <rpc/rpcsec_tls.h>
71 
72 #include <rpc/krpc.h>
73 #include <rpc/rpc_com.h>
74 
75 #include <security/mac/mac_framework.h>
76 
77 SYSCTL_NODE(_kern, OID_AUTO, rpc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
78     "RPC");
79 SYSCTL_NODE(_kern_rpc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
80     "TLS");
81 SYSCTL_NODE(_kern_rpc, OID_AUTO, unenc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
82     "unencrypted");
83 
84 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgbytes) = 0;
85 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
86     &KRPC_VNET_NAME(svc_vc_rx_msgbytes), 0, "Count of non-TLS rx bytes");
87 
88 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgcnt) = 0;
89 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
90     &KRPC_VNET_NAME(svc_vc_rx_msgcnt), 0, "Count of non-TLS rx messages");
91 
92 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgbytes) = 0;
93 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
94     &KRPC_VNET_NAME(svc_vc_tx_msgbytes), 0, "Count of non-TLS tx bytes");
95 
96 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgcnt) = 0;
97 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
98     &KRPC_VNET_NAME(svc_vc_tx_msgcnt), 0, "Count of non-TLS tx messages");
99 
100 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_alerts) = 0;
101 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, alerts,
102     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_alerts), 0,
103     "Count of TLS alert messages");
104 
105 KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_failed) = 0;
106 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_failed,
107     CTLFLAG_KRPC_VNET | CTLFLAG_RW,
108     &KRPC_VNET_NAME(svc_vc_tls_handshake_failed), 0,
109     "Count of TLS failed handshakes");
110 
111 KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_success) = 0;
112 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_success,
113     CTLFLAG_KRPC_VNET | CTLFLAG_RW,
114     &KRPC_VNET_NAME(svc_vc_tls_handshake_success), 0,
115     "Count of TLS successful handshakes");
116 
117 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgbytes) = 0;
118 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgbytes,
119     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgbytes), 0,
120     "Count of TLS rx bytes");
121 
122 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgcnt) = 0;
123 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgcnt,
124     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgcnt), 0,
125     "Count of TLS rx messages");
126 
127 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgbytes) = 0;
128 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgbytes,
129     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgbytes), 0,
130     "Count of TLS tx bytes");
131 
132 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgcnt) = 0;
133 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgcnt,
134     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgcnt), 0,
135     "Count of TLS tx messages");
136 
137 static bool_t svc_vc_rendezvous_recv(SVCXPRT *, struct rpc_msg *,
138     struct sockaddr **, struct mbuf **);
139 static enum xprt_stat svc_vc_rendezvous_stat(SVCXPRT *);
140 static void svc_vc_rendezvous_destroy(SVCXPRT *);
141 static bool_t svc_vc_null(void);
142 static void svc_vc_destroy(SVCXPRT *);
143 static enum xprt_stat svc_vc_stat(SVCXPRT *);
144 static bool_t svc_vc_ack(SVCXPRT *, uint32_t *);
145 static bool_t svc_vc_recv(SVCXPRT *, struct rpc_msg *,
146     struct sockaddr **, struct mbuf **);
147 static bool_t svc_vc_reply(SVCXPRT *, struct rpc_msg *,
148     struct sockaddr *, struct mbuf *, uint32_t *seq);
149 static bool_t svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in);
150 static bool_t svc_vc_rendezvous_control (SVCXPRT *xprt, const u_int rq,
151     void *in);
152 static void svc_vc_backchannel_destroy(SVCXPRT *);
153 static enum xprt_stat svc_vc_backchannel_stat(SVCXPRT *);
154 static bool_t svc_vc_backchannel_recv(SVCXPRT *, struct rpc_msg *,
155     struct sockaddr **, struct mbuf **);
156 static bool_t svc_vc_backchannel_reply(SVCXPRT *, struct rpc_msg *,
157     struct sockaddr *, struct mbuf *, uint32_t *);
158 static bool_t svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq,
159     void *in);
160 static SVCXPRT *svc_vc_create_conn(SVCPOOL *pool, struct socket *so,
161     struct sockaddr *raddr);
162 static int svc_vc_accept(struct socket *head, struct socket **sop);
163 static int svc_vc_soupcall(struct socket *so, void *arg, int waitflag);
164 static int svc_vc_rendezvous_soupcall(struct socket *, void *, int);
165 
166 static const struct xp_ops svc_vc_rendezvous_ops = {
167 	.xp_recv =	svc_vc_rendezvous_recv,
168 	.xp_stat =	svc_vc_rendezvous_stat,
169 	.xp_reply =	(bool_t (*)(SVCXPRT *, struct rpc_msg *,
170 		struct sockaddr *, struct mbuf *, uint32_t *))svc_vc_null,
171 	.xp_destroy =	svc_vc_rendezvous_destroy,
172 	.xp_control =	svc_vc_rendezvous_control
173 };
174 
175 static const struct xp_ops svc_vc_ops = {
176 	.xp_recv =	svc_vc_recv,
177 	.xp_stat =	svc_vc_stat,
178 	.xp_ack =	svc_vc_ack,
179 	.xp_reply =	svc_vc_reply,
180 	.xp_destroy =	svc_vc_destroy,
181 	.xp_control =	svc_vc_control
182 };
183 
184 static const struct xp_ops svc_vc_backchannel_ops = {
185 	.xp_recv =	svc_vc_backchannel_recv,
186 	.xp_stat =	svc_vc_backchannel_stat,
187 	.xp_reply =	svc_vc_backchannel_reply,
188 	.xp_destroy =	svc_vc_backchannel_destroy,
189 	.xp_control =	svc_vc_backchannel_control
190 };
191 
192 /*
193  * Usage:
194  *	xprt = svc_vc_create(sock, send_buf_size, recv_buf_size);
195  *
196  * Creates, registers, and returns a (rpc) tcp based transporter.
197  * Once *xprt is initialized, it is registered as a transporter
198  * see (svc.h, xprt_register).  This routine returns
199  * a NULL if a problem occurred.
200  *
201  * The filedescriptor passed in is expected to refer to a bound, but
202  * not yet connected socket.
203  *
204  * Since streams do buffered io similar to stdio, the caller can specify
205  * how big the send and receive buffers are via the second and third parms;
206  * 0 => use the system default.
207  */
208 SVCXPRT *
209 svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
210     size_t recvsize)
211 {
212 	SVCXPRT *xprt;
213 	struct sockaddr* sa;
214 	int error;
215 
216 	SOCK_LOCK(so);
217 	if (so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED)) {
218 		SOCK_UNLOCK(so);
219 		CURVNET_SET(so->so_vnet);
220 		error = so->so_proto->pr_peeraddr(so, &sa);
221 		CURVNET_RESTORE();
222 		if (error)
223 			return (NULL);
224 		xprt = svc_vc_create_conn(pool, so, sa);
225 		free(sa, M_SONAME);
226 		return (xprt);
227 	}
228 	SOCK_UNLOCK(so);
229 
230 	xprt = svc_xprt_alloc();
231 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
232 	xprt->xp_pool = pool;
233 	xprt->xp_socket = so;
234 	xprt->xp_p1 = NULL;
235 	xprt->xp_p2 = NULL;
236 	xprt->xp_ops = &svc_vc_rendezvous_ops;
237 
238 	CURVNET_SET(so->so_vnet);
239 	error = so->so_proto->pr_sockaddr(so, &sa);
240 	CURVNET_RESTORE();
241 	if (error) {
242 		goto cleanup_svc_vc_create;
243 	}
244 
245 	memcpy(&xprt->xp_ltaddr, sa, sa->sa_len);
246 	free(sa, M_SONAME);
247 
248 	xprt_register(xprt);
249 
250 	solisten(so, -1, curthread);
251 
252 	SOLISTEN_LOCK(so);
253 	xprt->xp_upcallset = 1;
254 	solisten_upcall_set(so, svc_vc_rendezvous_soupcall, xprt);
255 	SOLISTEN_UNLOCK(so);
256 
257 	return (xprt);
258 
259 cleanup_svc_vc_create:
260 	sx_destroy(&xprt->xp_lock);
261 	svc_xprt_free(xprt);
262 
263 	return (NULL);
264 }
265 
266 /*
267  * Create a new transport for a socket optained via soaccept().
268  */
269 SVCXPRT *
270 svc_vc_create_conn(SVCPOOL *pool, struct socket *so, struct sockaddr *raddr)
271 {
272 	SVCXPRT *xprt;
273 	struct cf_conn *cd;
274 	struct sockaddr* sa = NULL;
275 	struct sockopt opt;
276 	int one = 1;
277 	int error;
278 
279 	bzero(&opt, sizeof(struct sockopt));
280 	opt.sopt_dir = SOPT_SET;
281 	opt.sopt_level = SOL_SOCKET;
282 	opt.sopt_name = SO_KEEPALIVE;
283 	opt.sopt_val = &one;
284 	opt.sopt_valsize = sizeof(one);
285 	error = sosetopt(so, &opt);
286 	if (error) {
287 		return (NULL);
288 	}
289 
290 	if (so->so_proto->pr_protocol == IPPROTO_TCP) {
291 		bzero(&opt, sizeof(struct sockopt));
292 		opt.sopt_dir = SOPT_SET;
293 		opt.sopt_level = IPPROTO_TCP;
294 		opt.sopt_name = TCP_NODELAY;
295 		opt.sopt_val = &one;
296 		opt.sopt_valsize = sizeof(one);
297 		error = sosetopt(so, &opt);
298 		if (error) {
299 			return (NULL);
300 		}
301 	}
302 
303 	cd = mem_alloc(sizeof(*cd));
304 	cd->strm_stat = XPRT_IDLE;
305 
306 	xprt = svc_xprt_alloc();
307 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
308 	xprt->xp_pool = pool;
309 	xprt->xp_socket = so;
310 	xprt->xp_p1 = cd;
311 	xprt->xp_p2 = NULL;
312 	xprt->xp_ops = &svc_vc_ops;
313 
314 	/*
315 	 * See http://www.connectathon.org/talks96/nfstcp.pdf - client
316 	 * has a 5 minute timer, server has a 6 minute timer.
317 	 */
318 	xprt->xp_idletimeout = 6 * 60;
319 
320 	memcpy(&xprt->xp_rtaddr, raddr, raddr->sa_len);
321 
322 	CURVNET_SET(so->so_vnet);
323 	error = so->so_proto->pr_sockaddr(so, &sa);
324 	CURVNET_RESTORE();
325 	if (error)
326 		goto cleanup_svc_vc_create;
327 
328 	memcpy(&xprt->xp_ltaddr, sa, sa->sa_len);
329 	free(sa, M_SONAME);
330 
331 	xprt_register(xprt);
332 
333 	SOCKBUF_LOCK(&so->so_rcv);
334 	xprt->xp_upcallset = 1;
335 	soupcall_set(so, SO_RCV, svc_vc_soupcall, xprt);
336 	SOCKBUF_UNLOCK(&so->so_rcv);
337 
338 	/*
339 	 * Throw the transport into the active list in case it already
340 	 * has some data buffered.
341 	 */
342 	sx_xlock(&xprt->xp_lock);
343 	xprt_active(xprt);
344 	sx_xunlock(&xprt->xp_lock);
345 
346 	return (xprt);
347 cleanup_svc_vc_create:
348 	sx_destroy(&xprt->xp_lock);
349 	svc_xprt_free(xprt);
350 	mem_free(cd, sizeof(*cd));
351 
352 	return (NULL);
353 }
354 
355 /*
356  * Create a new transport for a backchannel on a clnt_vc socket.
357  */
358 SVCXPRT *
359 svc_vc_create_backchannel(SVCPOOL *pool)
360 {
361 	SVCXPRT *xprt = NULL;
362 	struct cf_conn *cd = NULL;
363 
364 	cd = mem_alloc(sizeof(*cd));
365 	cd->strm_stat = XPRT_IDLE;
366 
367 	xprt = svc_xprt_alloc();
368 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
369 	xprt->xp_pool = pool;
370 	xprt->xp_socket = NULL;
371 	xprt->xp_p1 = cd;
372 	xprt->xp_p2 = NULL;
373 	xprt->xp_ops = &svc_vc_backchannel_ops;
374 	return (xprt);
375 }
376 
377 /*
378  * This does all of the accept except the final call to soaccept. The
379  * caller will call soaccept after dropping its locks (soaccept may
380  * call malloc).
381  */
382 int
383 svc_vc_accept(struct socket *head, struct socket **sop)
384 {
385 	struct socket *so;
386 	int error = 0;
387 	short nbio;
388 
389 	KASSERT(SOLISTENING(head),
390 	    ("%s: socket %p is not listening", __func__, head));
391 
392 #ifdef MAC
393 	error = mac_socket_check_accept(curthread->td_ucred, head);
394 	if (error != 0)
395 		goto done;
396 #endif
397 	/*
398 	 * XXXGL: we want non-blocking semantics.  The socket could be a
399 	 * socket created by kernel as well as socket shared with userland,
400 	 * so we can't be sure about presense of SS_NBIO.  We also shall not
401 	 * toggle it on the socket, since that may surprise userland.  So we
402 	 * set SS_NBIO only temporarily.
403 	 */
404 	SOLISTEN_LOCK(head);
405 	nbio = head->so_state & SS_NBIO;
406 	head->so_state |= SS_NBIO;
407 	error = solisten_dequeue(head, &so, 0);
408 	head->so_state &= (nbio & ~SS_NBIO);
409 	if (error)
410 		goto done;
411 
412 	so->so_state |= nbio;
413 	*sop = so;
414 
415 	/* connection has been removed from the listen queue */
416 	KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0);
417 done:
418 	return (error);
419 }
420 
421 /*ARGSUSED*/
422 static bool_t
423 svc_vc_rendezvous_recv(SVCXPRT *xprt, struct rpc_msg *msg,
424     struct sockaddr **addrp, struct mbuf **mp)
425 {
426 	struct socket *so = NULL;
427 	struct sockaddr *sa = NULL;
428 	int error;
429 	SVCXPRT *new_xprt;
430 
431 	/*
432 	 * The socket upcall calls xprt_active() which will eventually
433 	 * cause the server to call us here. We attempt to accept a
434 	 * connection from the socket and turn it into a new
435 	 * transport. If the accept fails, we have drained all pending
436 	 * connections so we call xprt_inactive().
437 	 */
438 	sx_xlock(&xprt->xp_lock);
439 
440 	error = svc_vc_accept(xprt->xp_socket, &so);
441 
442 	if (error == EWOULDBLOCK) {
443 		/*
444 		 * We must re-test for new connections after taking
445 		 * the lock to protect us in the case where a new
446 		 * connection arrives after our call to accept fails
447 		 * with EWOULDBLOCK.
448 		 */
449 		SOLISTEN_LOCK(xprt->xp_socket);
450 		if (TAILQ_EMPTY(&xprt->xp_socket->sol_comp))
451 			xprt_inactive_self(xprt);
452 		SOLISTEN_UNLOCK(xprt->xp_socket);
453 		sx_xunlock(&xprt->xp_lock);
454 		return (FALSE);
455 	}
456 
457 	if (error) {
458 		SOLISTEN_LOCK(xprt->xp_socket);
459 		if (xprt->xp_upcallset) {
460 			xprt->xp_upcallset = 0;
461 			soupcall_clear(xprt->xp_socket, SO_RCV);
462 		}
463 		SOLISTEN_UNLOCK(xprt->xp_socket);
464 		xprt_inactive_self(xprt);
465 		sx_xunlock(&xprt->xp_lock);
466 		return (FALSE);
467 	}
468 
469 	sx_xunlock(&xprt->xp_lock);
470 
471 	sa = NULL;
472 	error = soaccept(so, &sa);
473 
474 	if (error) {
475 		/*
476 		 * XXX not sure if I need to call sofree or soclose here.
477 		 */
478 		if (sa)
479 			free(sa, M_SONAME);
480 		return (FALSE);
481 	}
482 
483 	/*
484 	 * svc_vc_create_conn will call xprt_register - we don't need
485 	 * to do anything with the new connection except derefence it.
486 	 */
487 	new_xprt = svc_vc_create_conn(xprt->xp_pool, so, sa);
488 	if (!new_xprt) {
489 		soclose(so);
490 	} else {
491 		SVC_RELEASE(new_xprt);
492 	}
493 
494 	free(sa, M_SONAME);
495 
496 	return (FALSE); /* there is never an rpc msg to be processed */
497 }
498 
499 /*ARGSUSED*/
500 static enum xprt_stat
501 svc_vc_rendezvous_stat(SVCXPRT *xprt)
502 {
503 
504 	return (XPRT_IDLE);
505 }
506 
507 static void
508 svc_vc_destroy_common(SVCXPRT *xprt)
509 {
510 	uint32_t reterr;
511 
512 	if (xprt->xp_socket) {
513 		if ((xprt->xp_tls & (RPCTLS_FLAGS_HANDSHAKE |
514 		    RPCTLS_FLAGS_HANDSHFAIL)) != 0) {
515 			if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
516 				/*
517 				 * If the upcall fails, the socket has
518 				 * probably been closed via the rpctlssd
519 				 * daemon having crashed or been
520 				 * restarted, so just ignore returned stat.
521 				 */
522 				rpctls_srv_disconnect(xprt->xp_sslsec,
523 				    xprt->xp_sslusec, xprt->xp_sslrefno,
524 				    xprt->xp_sslproc, &reterr);
525 			}
526 			/* Must sorele() to get rid of reference. */
527 			CURVNET_SET(xprt->xp_socket->so_vnet);
528 			sorele(xprt->xp_socket);
529 			CURVNET_RESTORE();
530 		} else
531 			(void)soclose(xprt->xp_socket);
532 	}
533 
534 	if (xprt->xp_netid)
535 		(void) mem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
536 	svc_xprt_free(xprt);
537 }
538 
539 static void
540 svc_vc_rendezvous_destroy(SVCXPRT *xprt)
541 {
542 
543 	SOLISTEN_LOCK(xprt->xp_socket);
544 	if (xprt->xp_upcallset) {
545 		xprt->xp_upcallset = 0;
546 		solisten_upcall_set(xprt->xp_socket, NULL, NULL);
547 	}
548 	SOLISTEN_UNLOCK(xprt->xp_socket);
549 
550 	svc_vc_destroy_common(xprt);
551 }
552 
553 static void
554 svc_vc_destroy(SVCXPRT *xprt)
555 {
556 	struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
557 	CLIENT *cl = (CLIENT *)xprt->xp_p2;
558 
559 	SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
560 	if (xprt->xp_upcallset) {
561 		xprt->xp_upcallset = 0;
562 		if (xprt->xp_socket->so_rcv.sb_upcall != NULL)
563 			soupcall_clear(xprt->xp_socket, SO_RCV);
564 	}
565 	SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
566 
567 	if (cl != NULL)
568 		CLNT_RELEASE(cl);
569 
570 	svc_vc_destroy_common(xprt);
571 
572 	if (cd->mreq)
573 		m_freem(cd->mreq);
574 	if (cd->mpending)
575 		m_freem(cd->mpending);
576 	mem_free(cd, sizeof(*cd));
577 }
578 
579 static void
580 svc_vc_backchannel_destroy(SVCXPRT *xprt)
581 {
582 	struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
583 	struct mbuf *m, *m2;
584 
585 	svc_xprt_free(xprt);
586 	m = cd->mreq;
587 	while (m != NULL) {
588 		m2 = m;
589 		m = m->m_nextpkt;
590 		m_freem(m2);
591 	}
592 	mem_free(cd, sizeof(*cd));
593 }
594 
595 /*ARGSUSED*/
596 static bool_t
597 svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in)
598 {
599 	return (FALSE);
600 }
601 
602 static bool_t
603 svc_vc_rendezvous_control(SVCXPRT *xprt, const u_int rq, void *in)
604 {
605 
606 	return (FALSE);
607 }
608 
609 static bool_t
610 svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq, void *in)
611 {
612 
613 	return (FALSE);
614 }
615 
616 static enum xprt_stat
617 svc_vc_stat(SVCXPRT *xprt)
618 {
619 	struct cf_conn *cd;
620 
621 	cd = (struct cf_conn *)(xprt->xp_p1);
622 
623 	if (cd->strm_stat == XPRT_DIED)
624 		return (XPRT_DIED);
625 
626 	if (cd->mreq != NULL && cd->resid == 0 && cd->eor)
627 		return (XPRT_MOREREQS);
628 
629 	if (soreadable(xprt->xp_socket))
630 		return (XPRT_MOREREQS);
631 
632 	return (XPRT_IDLE);
633 }
634 
635 static bool_t
636 svc_vc_ack(SVCXPRT *xprt, uint32_t *ack)
637 {
638 
639 	*ack = atomic_load_acq_32(&xprt->xp_snt_cnt);
640 	*ack -= sbused(&xprt->xp_socket->so_snd);
641 	return (TRUE);
642 }
643 
644 static enum xprt_stat
645 svc_vc_backchannel_stat(SVCXPRT *xprt)
646 {
647 	struct cf_conn *cd;
648 
649 	cd = (struct cf_conn *)(xprt->xp_p1);
650 
651 	if (cd->mreq != NULL)
652 		return (XPRT_MOREREQS);
653 
654 	return (XPRT_IDLE);
655 }
656 
657 /*
658  * If we have an mbuf chain in cd->mpending, try to parse a record from it,
659  * leaving the result in cd->mreq. If we don't have a complete record, leave
660  * the partial result in cd->mreq and try to read more from the socket.
661  */
662 static int
663 svc_vc_process_pending(SVCXPRT *xprt)
664 {
665 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
666 	struct socket *so = xprt->xp_socket;
667 	struct mbuf *m;
668 
669 	/*
670 	 * If cd->resid is non-zero, we have part of the
671 	 * record already, otherwise we are expecting a record
672 	 * marker.
673 	 */
674 	if (!cd->resid && cd->mpending) {
675 		/*
676 		 * See if there is enough data buffered to
677 		 * make up a record marker. Make sure we can
678 		 * handle the case where the record marker is
679 		 * split across more than one mbuf.
680 		 */
681 		size_t n = 0;
682 		uint32_t header;
683 
684 		m = cd->mpending;
685 		while (n < sizeof(uint32_t) && m) {
686 			n += m->m_len;
687 			m = m->m_next;
688 		}
689 		if (n < sizeof(uint32_t)) {
690 			so->so_rcv.sb_lowat = sizeof(uint32_t) - n;
691 			return (FALSE);
692 		}
693 		m_copydata(cd->mpending, 0, sizeof(header),
694 		    (char *)&header);
695 		header = ntohl(header);
696 		cd->eor = (header & 0x80000000) != 0;
697 		cd->resid = header & 0x7fffffff;
698 		m_adj(cd->mpending, sizeof(uint32_t));
699 	}
700 
701 	/*
702 	 * Start pulling off mbufs from cd->mpending
703 	 * until we either have a complete record or
704 	 * we run out of data. We use m_split to pull
705 	 * data - it will pull as much as possible and
706 	 * split the last mbuf if necessary.
707 	 */
708 	while (cd->mpending && cd->resid) {
709 		m = cd->mpending;
710 		if (cd->mpending->m_next
711 		    || cd->mpending->m_len > cd->resid)
712 			cd->mpending = m_split(cd->mpending,
713 			    cd->resid, M_WAITOK);
714 		else
715 			cd->mpending = NULL;
716 		if (cd->mreq)
717 			m_last(cd->mreq)->m_next = m;
718 		else
719 			cd->mreq = m;
720 		while (m) {
721 			cd->resid -= m->m_len;
722 			m = m->m_next;
723 		}
724 	}
725 
726 	/*
727 	 * Block receive upcalls if we have more data pending,
728 	 * otherwise report our need.
729 	 */
730 	if (cd->mpending)
731 		so->so_rcv.sb_lowat = INT_MAX;
732 	else
733 		so->so_rcv.sb_lowat =
734 		    imax(1, imin(cd->resid, so->so_rcv.sb_hiwat / 2));
735 	return (TRUE);
736 }
737 
738 static bool_t
739 svc_vc_recv(SVCXPRT *xprt, struct rpc_msg *msg,
740     struct sockaddr **addrp, struct mbuf **mp)
741 {
742 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
743 	struct uio uio;
744 	struct mbuf *m, *ctrl;
745 	struct socket* so = xprt->xp_socket;
746 	XDR xdrs;
747 	int error, rcvflag;
748 	uint32_t reterr, xid_plus_direction[2];
749 	struct cmsghdr *cmsg;
750 	struct tls_get_record tgr;
751 	enum clnt_stat ret;
752 
753 	/*
754 	 * Serialise access to the socket and our own record parsing
755 	 * state.
756 	 */
757 	sx_xlock(&xprt->xp_lock);
758 
759 	for (;;) {
760 		/* If we have no request ready, check pending queue. */
761 		while (cd->mpending &&
762 		    (cd->mreq == NULL || cd->resid != 0 || !cd->eor)) {
763 			if (!svc_vc_process_pending(xprt))
764 				break;
765 		}
766 
767 		/* Process and return complete request in cd->mreq. */
768 		if (cd->mreq != NULL && cd->resid == 0 && cd->eor) {
769 
770 			/*
771 			 * Now, check for a backchannel reply.
772 			 * The XID is in the first uint32_t of the reply
773 			 * and the message direction is the second one.
774 			 */
775 			if ((cd->mreq->m_len >= sizeof(xid_plus_direction) ||
776 			    m_length(cd->mreq, NULL) >=
777 			    sizeof(xid_plus_direction)) &&
778 			    xprt->xp_p2 != NULL) {
779 				m_copydata(cd->mreq, 0,
780 				    sizeof(xid_plus_direction),
781 				    (char *)xid_plus_direction);
782 				xid_plus_direction[0] =
783 				    ntohl(xid_plus_direction[0]);
784 				xid_plus_direction[1] =
785 				    ntohl(xid_plus_direction[1]);
786 				/* Check message direction. */
787 				if (xid_plus_direction[1] == REPLY) {
788 					clnt_bck_svccall(xprt->xp_p2,
789 					    cd->mreq,
790 					    xid_plus_direction[0]);
791 					cd->mreq = NULL;
792 					continue;
793 				}
794 			}
795 
796 			xdrmbuf_create(&xdrs, cd->mreq, XDR_DECODE);
797 			cd->mreq = NULL;
798 
799 			/* Check for next request in a pending queue. */
800 			svc_vc_process_pending(xprt);
801 			if (cd->mreq == NULL || cd->resid != 0) {
802 				SOCKBUF_LOCK(&so->so_rcv);
803 				if (!soreadable(so))
804 					xprt_inactive_self(xprt);
805 				SOCKBUF_UNLOCK(&so->so_rcv);
806 			}
807 
808 			sx_xunlock(&xprt->xp_lock);
809 
810 			if (! xdr_callmsg(&xdrs, msg)) {
811 				XDR_DESTROY(&xdrs);
812 				return (FALSE);
813 			}
814 
815 			*addrp = NULL;
816 			*mp = xdrmbuf_getall(&xdrs);
817 			XDR_DESTROY(&xdrs);
818 
819 			return (TRUE);
820 		}
821 
822 		/*
823 		 * If receiving is disabled so that a TLS handshake can be
824 		 * done by the rpctlssd daemon, return FALSE here.
825 		 */
826 		rcvflag = MSG_DONTWAIT;
827 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0)
828 			rcvflag |= MSG_TLSAPPDATA;
829 tryagain:
830 		if (xprt->xp_dontrcv) {
831 			sx_xunlock(&xprt->xp_lock);
832 			return (FALSE);
833 		}
834 
835 		/*
836 		 * The socket upcall calls xprt_active() which will eventually
837 		 * cause the server to call us here. We attempt to
838 		 * read as much as possible from the socket and put
839 		 * the result in cd->mpending. If the read fails,
840 		 * we have drained both cd->mpending and the socket so
841 		 * we can call xprt_inactive().
842 		 */
843 		uio.uio_resid = 1000000000;
844 		uio.uio_td = curthread;
845 		ctrl = m = NULL;
846 		error = soreceive(so, NULL, &uio, &m, &ctrl, &rcvflag);
847 
848 		if (error == EWOULDBLOCK) {
849 			/*
850 			 * We must re-test for readability after
851 			 * taking the lock to protect us in the case
852 			 * where a new packet arrives on the socket
853 			 * after our call to soreceive fails with
854 			 * EWOULDBLOCK.
855 			 */
856 			SOCKBUF_LOCK(&so->so_rcv);
857 			if (!soreadable(so))
858 				xprt_inactive_self(xprt);
859 			SOCKBUF_UNLOCK(&so->so_rcv);
860 			sx_xunlock(&xprt->xp_lock);
861 			return (FALSE);
862 		}
863 
864 		/*
865 		 * A return of ENXIO indicates that there is an
866 		 * alert record at the head of the
867 		 * socket's receive queue, for TLS connections.
868 		 * This record needs to be handled in userland
869 		 * via an SSL_read() call, so do an upcall to the daemon.
870 		 */
871 		KRPC_CURVNET_SET(so->so_vnet);
872 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0 &&
873 		    error == ENXIO) {
874 			KRPC_VNET(svc_vc_tls_alerts)++;
875 			KRPC_CURVNET_RESTORE();
876 			/* Disable reception. */
877 			xprt->xp_dontrcv = TRUE;
878 			sx_xunlock(&xprt->xp_lock);
879 			ret = rpctls_srv_handlerecord(xprt->xp_sslsec,
880 			    xprt->xp_sslusec, xprt->xp_sslrefno,
881 			    xprt->xp_sslproc, &reterr);
882 			sx_xlock(&xprt->xp_lock);
883 			xprt->xp_dontrcv = FALSE;
884 			if (ret != RPC_SUCCESS || reterr != RPCTLSERR_OK) {
885 				/*
886 				 * All we can do is soreceive() it and
887 				 * then toss it.
888 				 */
889 				rcvflag = MSG_DONTWAIT;
890 				goto tryagain;
891 			}
892 			sx_xunlock(&xprt->xp_lock);
893 			xprt_active(xprt);   /* Harmless if already active. */
894 			return (FALSE);
895 		}
896 
897 		if (error) {
898 			KRPC_CURVNET_RESTORE();
899 			SOCKBUF_LOCK(&so->so_rcv);
900 			if (xprt->xp_upcallset) {
901 				xprt->xp_upcallset = 0;
902 				soupcall_clear(so, SO_RCV);
903 			}
904 			SOCKBUF_UNLOCK(&so->so_rcv);
905 			xprt_inactive_self(xprt);
906 			cd->strm_stat = XPRT_DIED;
907 			sx_xunlock(&xprt->xp_lock);
908 			return (FALSE);
909 		}
910 
911 		if (!m) {
912 			KRPC_CURVNET_RESTORE();
913 			/*
914 			 * EOF - the other end has closed the socket.
915 			 */
916 			xprt_inactive_self(xprt);
917 			cd->strm_stat = XPRT_DIED;
918 			sx_xunlock(&xprt->xp_lock);
919 			return (FALSE);
920 		}
921 
922 		/* Process any record header(s). */
923 		if (ctrl != NULL) {
924 			cmsg = mtod(ctrl, struct cmsghdr *);
925 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
926 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
927 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
928 				/*
929 				 * TLS_RLTYPE_ALERT records should be handled
930 				 * since soreceive() would have returned
931 				 * ENXIO.  Just throw any other
932 				 * non-TLS_RLTYPE_APP records away.
933 				 */
934 				if (tgr.tls_type != TLS_RLTYPE_APP) {
935 					m_freem(m);
936 					m_free(ctrl);
937 					rcvflag = MSG_DONTWAIT | MSG_TLSAPPDATA;
938 					KRPC_CURVNET_RESTORE();
939 					goto tryagain;
940 				}
941 				KRPC_VNET(svc_vc_tls_rx_msgcnt)++;
942 				KRPC_VNET(svc_vc_tls_rx_msgbytes) +=
943 				    1000000000 - uio.uio_resid;
944 			}
945 			m_free(ctrl);
946 		} else {
947 			KRPC_VNET(svc_vc_rx_msgcnt)++;
948 			KRPC_VNET(svc_vc_rx_msgbytes) += 1000000000 -
949 			    uio.uio_resid;
950 		}
951 		KRPC_CURVNET_RESTORE();
952 
953 		if (cd->mpending)
954 			m_last(cd->mpending)->m_next = m;
955 		else
956 			cd->mpending = m;
957 	}
958 }
959 
960 static bool_t
961 svc_vc_backchannel_recv(SVCXPRT *xprt, struct rpc_msg *msg,
962     struct sockaddr **addrp, struct mbuf **mp)
963 {
964 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
965 	struct ct_data *ct;
966 	struct mbuf *m;
967 	XDR xdrs;
968 
969 	sx_xlock(&xprt->xp_lock);
970 	ct = (struct ct_data *)xprt->xp_p2;
971 	if (ct == NULL) {
972 		sx_xunlock(&xprt->xp_lock);
973 		return (FALSE);
974 	}
975 	mtx_lock(&ct->ct_lock);
976 	m = cd->mreq;
977 	if (m == NULL) {
978 		xprt_inactive_self(xprt);
979 		mtx_unlock(&ct->ct_lock);
980 		sx_xunlock(&xprt->xp_lock);
981 		return (FALSE);
982 	}
983 	cd->mreq = m->m_nextpkt;
984 	mtx_unlock(&ct->ct_lock);
985 	sx_xunlock(&xprt->xp_lock);
986 
987 	xdrmbuf_create(&xdrs, m, XDR_DECODE);
988 	if (! xdr_callmsg(&xdrs, msg)) {
989 		XDR_DESTROY(&xdrs);
990 		return (FALSE);
991 	}
992 	*addrp = NULL;
993 	*mp = xdrmbuf_getall(&xdrs);
994 	XDR_DESTROY(&xdrs);
995 	return (TRUE);
996 }
997 
998 static bool_t
999 svc_vc_reply(SVCXPRT *xprt, struct rpc_msg *msg,
1000     struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
1001 {
1002 	XDR xdrs;
1003 	struct mbuf *mrep;
1004 	bool_t stat = TRUE;
1005 	int error, len, maxextsiz;
1006 #ifdef KERN_TLS
1007 	u_int maxlen;
1008 #endif
1009 
1010 	/*
1011 	 * Leave space for record mark.
1012 	 */
1013 	mrep = m_gethdr(M_WAITOK, MT_DATA);
1014 	mrep->m_data += sizeof(uint32_t);
1015 
1016 	xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
1017 
1018 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
1019 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
1020 		if (!xdr_replymsg(&xdrs, msg))
1021 			stat = FALSE;
1022 		else
1023 			xdrmbuf_append(&xdrs, m);
1024 	} else {
1025 		stat = xdr_replymsg(&xdrs, msg);
1026 	}
1027 
1028 	if (stat) {
1029 		m_fixhdr(mrep);
1030 
1031 		/*
1032 		 * Prepend a record marker containing the reply length.
1033 		 */
1034 		M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1035 		len = mrep->m_pkthdr.len;
1036 		*mtod(mrep, uint32_t *) =
1037 			htonl(0x80000000 | (len - sizeof(uint32_t)));
1038 
1039 		/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1040 		KRPC_CURVNET_SET(xprt->xp_socket->so_vnet);
1041 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1042 			/*
1043 			 * Copy the mbuf chain to a chain of
1044 			 * ext_pgs mbuf(s) as required by KERN_TLS.
1045 			 */
1046 			maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1047 #ifdef KERN_TLS
1048 			if (rpctls_getinfo(&maxlen, false, false))
1049 				maxextsiz = min(maxextsiz, maxlen);
1050 #endif
1051 			mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1052 			KRPC_VNET(svc_vc_tls_tx_msgcnt)++;
1053 			KRPC_VNET(svc_vc_tls_tx_msgbytes) += len;
1054 		} else {
1055 			KRPC_VNET(svc_vc_tx_msgcnt)++;
1056 			KRPC_VNET(svc_vc_tx_msgbytes) += len;
1057 		}
1058 		KRPC_CURVNET_RESTORE();
1059 		atomic_add_32(&xprt->xp_snd_cnt, len);
1060 		/*
1061 		 * sosend consumes mreq.
1062 		 */
1063 		error = sosend(xprt->xp_socket, NULL, NULL, mrep, NULL,
1064 		    0, curthread);
1065 		if (!error) {
1066 			atomic_add_rel_32(&xprt->xp_snt_cnt, len);
1067 			if (seq)
1068 				*seq = xprt->xp_snd_cnt;
1069 			stat = TRUE;
1070 		} else
1071 			atomic_subtract_32(&xprt->xp_snd_cnt, len);
1072 	} else {
1073 		m_freem(mrep);
1074 	}
1075 
1076 	XDR_DESTROY(&xdrs);
1077 
1078 	return (stat);
1079 }
1080 
1081 static bool_t
1082 svc_vc_backchannel_reply(SVCXPRT *xprt, struct rpc_msg *msg,
1083     struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
1084 {
1085 	struct ct_data *ct;
1086 	XDR xdrs;
1087 	struct mbuf *mrep;
1088 	bool_t stat = TRUE;
1089 	int error, maxextsiz;
1090 #ifdef KERN_TLS
1091 	u_int maxlen;
1092 #endif
1093 
1094 	/*
1095 	 * Leave space for record mark.
1096 	 */
1097 	mrep = m_gethdr(M_WAITOK, MT_DATA);
1098 	mrep->m_data += sizeof(uint32_t);
1099 
1100 	xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
1101 
1102 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
1103 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
1104 		if (!xdr_replymsg(&xdrs, msg))
1105 			stat = FALSE;
1106 		else
1107 			xdrmbuf_append(&xdrs, m);
1108 	} else {
1109 		stat = xdr_replymsg(&xdrs, msg);
1110 	}
1111 
1112 	if (stat) {
1113 		m_fixhdr(mrep);
1114 
1115 		/*
1116 		 * Prepend a record marker containing the reply length.
1117 		 */
1118 		M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1119 		*mtod(mrep, uint32_t *) =
1120 			htonl(0x80000000 | (mrep->m_pkthdr.len
1121 				- sizeof(uint32_t)));
1122 
1123 		/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1124 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1125 			/*
1126 			 * Copy the mbuf chain to a chain of
1127 			 * ext_pgs mbuf(s) as required by KERN_TLS.
1128 			 */
1129 			maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1130 #ifdef KERN_TLS
1131 			if (rpctls_getinfo(&maxlen, false, false))
1132 				maxextsiz = min(maxextsiz, maxlen);
1133 #endif
1134 			mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1135 		}
1136 		sx_xlock(&xprt->xp_lock);
1137 		ct = (struct ct_data *)xprt->xp_p2;
1138 		if (ct != NULL)
1139 			error = sosend(ct->ct_socket, NULL, NULL, mrep, NULL,
1140 			    0, curthread);
1141 		else
1142 			error = EPIPE;
1143 		sx_xunlock(&xprt->xp_lock);
1144 		if (!error) {
1145 			stat = TRUE;
1146 		}
1147 	} else {
1148 		m_freem(mrep);
1149 	}
1150 
1151 	XDR_DESTROY(&xdrs);
1152 
1153 	return (stat);
1154 }
1155 
1156 static bool_t
1157 svc_vc_null(void)
1158 {
1159 
1160 	return (FALSE);
1161 }
1162 
1163 static int
1164 svc_vc_soupcall(struct socket *so, void *arg, int waitflag)
1165 {
1166 	SVCXPRT *xprt = (SVCXPRT *) arg;
1167 
1168 	if (soreadable(xprt->xp_socket))
1169 		xprt_active(xprt);
1170 	return (SU_OK);
1171 }
1172 
1173 static int
1174 svc_vc_rendezvous_soupcall(struct socket *head, void *arg, int waitflag)
1175 {
1176 	SVCXPRT *xprt = (SVCXPRT *) arg;
1177 
1178 	if (!TAILQ_EMPTY(&head->sol_comp))
1179 		xprt_active(xprt);
1180 	return (SU_OK);
1181 }
1182 
1183 #if 0
1184 /*
1185  * Get the effective UID of the sending process. Used by rpcbind, keyserv
1186  * and rpc.yppasswdd on AF_LOCAL.
1187  */
1188 int
1189 __rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) {
1190 	int sock, ret;
1191 	gid_t egid;
1192 	uid_t euid;
1193 	struct sockaddr *sa;
1194 
1195 	sock = transp->xp_fd;
1196 	sa = (struct sockaddr *)transp->xp_rtaddr;
1197 	if (sa->sa_family == AF_LOCAL) {
1198 		ret = getpeereid(sock, &euid, &egid);
1199 		if (ret == 0)
1200 			*uid = euid;
1201 		return (ret);
1202 	} else
1203 		return (-1);
1204 }
1205 #endif
1206