xref: /freebsd/sys/rpc/svc_vc.c (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 /*	$NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 2009, Sun Microsystems, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are met:
11  * - Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  * - Redistributions in binary form must reproduce the above copyright notice,
14  *   this list of conditions and the following disclaimer in the documentation
15  *   and/or other materials provided with the distribution.
16  * - Neither the name of Sun Microsystems, Inc. nor the names of its
17  *   contributors may be used to endorse or promote products derived
18  *   from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * svc_vc.c, Server side for Connection Oriented based RPC.
36  *
37  * Actually implements two flavors of transporter -
38  * a tcp rendezvouser (a listner and connection establisher)
39  * and a record/tcp stream.
40  */
41 
42 #include "opt_kern_tls.h"
43 
44 #include <sys/param.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/kernel.h>
48 #include <sys/ktls.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/protosw.h>
54 #include <sys/queue.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sx.h>
58 #include <sys/systm.h>
59 #include <sys/uio.h>
60 
61 #include <net/vnet.h>
62 
63 #include <netinet/tcp.h>
64 
65 #include <rpc/rpc.h>
66 #include <rpc/rpcsec_tls.h>
67 
68 #include <rpc/krpc.h>
69 #include <rpc/rpc_com.h>
70 
71 #include <security/mac/mac_framework.h>
72 
73 SYSCTL_NODE(_kern, OID_AUTO, rpc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
74     "RPC");
75 SYSCTL_NODE(_kern_rpc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
76     "TLS");
77 SYSCTL_NODE(_kern_rpc, OID_AUTO, unenc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
78     "unencrypted");
79 
80 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgbytes) = 0;
81 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
82     &KRPC_VNET_NAME(svc_vc_rx_msgbytes), 0, "Count of non-TLS rx bytes");
83 
84 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgcnt) = 0;
85 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
86     &KRPC_VNET_NAME(svc_vc_rx_msgcnt), 0, "Count of non-TLS rx messages");
87 
88 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgbytes) = 0;
89 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
90     &KRPC_VNET_NAME(svc_vc_tx_msgbytes), 0, "Count of non-TLS tx bytes");
91 
92 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgcnt) = 0;
93 SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
94     &KRPC_VNET_NAME(svc_vc_tx_msgcnt), 0, "Count of non-TLS tx messages");
95 
96 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_alerts) = 0;
97 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, alerts,
98     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_alerts), 0,
99     "Count of TLS alert messages");
100 
101 KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_failed) = 0;
102 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_failed,
103     CTLFLAG_KRPC_VNET | CTLFLAG_RW,
104     &KRPC_VNET_NAME(svc_vc_tls_handshake_failed), 0,
105     "Count of TLS failed handshakes");
106 
107 KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_success) = 0;
108 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_success,
109     CTLFLAG_KRPC_VNET | CTLFLAG_RW,
110     &KRPC_VNET_NAME(svc_vc_tls_handshake_success), 0,
111     "Count of TLS successful handshakes");
112 
113 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgbytes) = 0;
114 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgbytes,
115     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgbytes), 0,
116     "Count of TLS rx bytes");
117 
118 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgcnt) = 0;
119 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgcnt,
120     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgcnt), 0,
121     "Count of TLS rx messages");
122 
123 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgbytes) = 0;
124 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgbytes,
125     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgbytes), 0,
126     "Count of TLS tx bytes");
127 
128 KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgcnt) = 0;
129 SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgcnt,
130     CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgcnt), 0,
131     "Count of TLS tx messages");
132 
133 static bool_t svc_vc_rendezvous_recv(SVCXPRT *, struct rpc_msg *,
134     struct sockaddr **, struct mbuf **);
135 static enum xprt_stat svc_vc_rendezvous_stat(SVCXPRT *);
136 static void svc_vc_rendezvous_destroy(SVCXPRT *);
137 static bool_t svc_vc_null(void);
138 static void svc_vc_destroy(SVCXPRT *);
139 static enum xprt_stat svc_vc_stat(SVCXPRT *);
140 static bool_t svc_vc_ack(SVCXPRT *, uint32_t *);
141 static bool_t svc_vc_recv(SVCXPRT *, struct rpc_msg *,
142     struct sockaddr **, struct mbuf **);
143 static bool_t svc_vc_reply(SVCXPRT *, struct rpc_msg *,
144     struct sockaddr *, struct mbuf *, uint32_t *seq);
145 static bool_t svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in);
146 static bool_t svc_vc_rendezvous_control (SVCXPRT *xprt, const u_int rq,
147     void *in);
148 static void svc_vc_backchannel_destroy(SVCXPRT *);
149 static enum xprt_stat svc_vc_backchannel_stat(SVCXPRT *);
150 static bool_t svc_vc_backchannel_recv(SVCXPRT *, struct rpc_msg *,
151     struct sockaddr **, struct mbuf **);
152 static bool_t svc_vc_backchannel_reply(SVCXPRT *, struct rpc_msg *,
153     struct sockaddr *, struct mbuf *, uint32_t *);
154 static bool_t svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq,
155     void *in);
156 static SVCXPRT *svc_vc_create_conn(SVCPOOL *pool, struct socket *so,
157     struct sockaddr *raddr);
158 static int svc_vc_accept(struct socket *head, struct socket **sop);
159 static int svc_vc_soupcall(struct socket *so, void *arg, int waitflag);
160 static int svc_vc_rendezvous_soupcall(struct socket *, void *, int);
161 
162 static const struct xp_ops svc_vc_rendezvous_ops = {
163 	.xp_recv =	svc_vc_rendezvous_recv,
164 	.xp_stat =	svc_vc_rendezvous_stat,
165 	.xp_reply =	(bool_t (*)(SVCXPRT *, struct rpc_msg *,
166 		struct sockaddr *, struct mbuf *, uint32_t *))svc_vc_null,
167 	.xp_destroy =	svc_vc_rendezvous_destroy,
168 	.xp_control =	svc_vc_rendezvous_control
169 };
170 
171 static const struct xp_ops svc_vc_ops = {
172 	.xp_recv =	svc_vc_recv,
173 	.xp_stat =	svc_vc_stat,
174 	.xp_ack =	svc_vc_ack,
175 	.xp_reply =	svc_vc_reply,
176 	.xp_destroy =	svc_vc_destroy,
177 	.xp_control =	svc_vc_control
178 };
179 
180 static const struct xp_ops svc_vc_backchannel_ops = {
181 	.xp_recv =	svc_vc_backchannel_recv,
182 	.xp_stat =	svc_vc_backchannel_stat,
183 	.xp_reply =	svc_vc_backchannel_reply,
184 	.xp_destroy =	svc_vc_backchannel_destroy,
185 	.xp_control =	svc_vc_backchannel_control
186 };
187 
188 /*
189  * Usage:
190  *	xprt = svc_vc_create(sock, send_buf_size, recv_buf_size);
191  *
192  * Creates, registers, and returns a (rpc) tcp based transporter.
193  * Once *xprt is initialized, it is registered as a transporter
194  * see (svc.h, xprt_register).  This routine returns
195  * a NULL if a problem occurred.
196  *
197  * The filedescriptor passed in is expected to refer to a bound, but
198  * not yet connected socket.
199  *
200  * Since streams do buffered io similar to stdio, the caller can specify
201  * how big the send and receive buffers are via the second and third parms;
202  * 0 => use the system default.
203  */
204 SVCXPRT *
205 svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
206     size_t recvsize)
207 {
208 	SVCXPRT *xprt;
209 	int error;
210 
211 	SOCK_LOCK(so);
212 	if (so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED)) {
213 		struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
214 
215 		SOCK_UNLOCK(so);
216 		error = sopeeraddr(so, (struct sockaddr *)&ss);
217 		if (error)
218 			return (NULL);
219 		xprt = svc_vc_create_conn(pool, so, (struct sockaddr *)&ss);
220 		return (xprt);
221 	}
222 	SOCK_UNLOCK(so);
223 
224 	xprt = svc_xprt_alloc();
225 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
226 	xprt->xp_pool = pool;
227 	xprt->xp_socket = so;
228 	xprt->xp_p1 = NULL;
229 	xprt->xp_p2 = NULL;
230 	xprt->xp_ops = &svc_vc_rendezvous_ops;
231 
232 	xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
233 	error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
234 	if (error) {
235 		goto cleanup_svc_vc_create;
236 	}
237 
238 	xprt_register(xprt);
239 
240 	solisten(so, -1, curthread);
241 
242 	SOLISTEN_LOCK(so);
243 	xprt->xp_upcallset = 1;
244 	solisten_upcall_set(so, svc_vc_rendezvous_soupcall, xprt);
245 	SOLISTEN_UNLOCK(so);
246 
247 	return (xprt);
248 
249 cleanup_svc_vc_create:
250 	sx_destroy(&xprt->xp_lock);
251 	svc_xprt_free(xprt);
252 
253 	return (NULL);
254 }
255 
256 /*
257  * Create a new transport for a socket optained via soaccept().
258  */
259 SVCXPRT *
260 svc_vc_create_conn(SVCPOOL *pool, struct socket *so, struct sockaddr *raddr)
261 {
262 	SVCXPRT *xprt;
263 	struct cf_conn *cd;
264 	struct sockopt opt;
265 	int one = 1;
266 	int error;
267 
268 	bzero(&opt, sizeof(struct sockopt));
269 	opt.sopt_dir = SOPT_SET;
270 	opt.sopt_level = SOL_SOCKET;
271 	opt.sopt_name = SO_KEEPALIVE;
272 	opt.sopt_val = &one;
273 	opt.sopt_valsize = sizeof(one);
274 	error = sosetopt(so, &opt);
275 	if (error) {
276 		return (NULL);
277 	}
278 
279 	if (so->so_proto->pr_protocol == IPPROTO_TCP) {
280 		bzero(&opt, sizeof(struct sockopt));
281 		opt.sopt_dir = SOPT_SET;
282 		opt.sopt_level = IPPROTO_TCP;
283 		opt.sopt_name = TCP_NODELAY;
284 		opt.sopt_val = &one;
285 		opt.sopt_valsize = sizeof(one);
286 		error = sosetopt(so, &opt);
287 		if (error) {
288 			return (NULL);
289 		}
290 	}
291 
292 	cd = mem_alloc(sizeof(*cd));
293 	cd->strm_stat = XPRT_IDLE;
294 
295 	xprt = svc_xprt_alloc();
296 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
297 	xprt->xp_pool = pool;
298 	xprt->xp_socket = so;
299 	xprt->xp_p1 = cd;
300 	xprt->xp_p2 = NULL;
301 	xprt->xp_ops = &svc_vc_ops;
302 
303 	/*
304 	 * See http://www.connectathon.org/talks96/nfstcp.pdf - client
305 	 * has a 5 minute timer, server has a 6 minute timer.
306 	 */
307 	xprt->xp_idletimeout = 6 * 60;
308 
309 	memcpy(&xprt->xp_rtaddr, raddr, raddr->sa_len);
310 
311 	xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
312 	error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
313 	if (error)
314 		goto cleanup_svc_vc_create;
315 
316 	xprt_register(xprt);
317 
318 	SOCKBUF_LOCK(&so->so_rcv);
319 	xprt->xp_upcallset = 1;
320 	soupcall_set(so, SO_RCV, svc_vc_soupcall, xprt);
321 	SOCKBUF_UNLOCK(&so->so_rcv);
322 
323 	/*
324 	 * Throw the transport into the active list in case it already
325 	 * has some data buffered.
326 	 */
327 	sx_xlock(&xprt->xp_lock);
328 	xprt_active(xprt);
329 	sx_xunlock(&xprt->xp_lock);
330 
331 	return (xprt);
332 cleanup_svc_vc_create:
333 	sx_destroy(&xprt->xp_lock);
334 	svc_xprt_free(xprt);
335 	mem_free(cd, sizeof(*cd));
336 
337 	return (NULL);
338 }
339 
340 /*
341  * Create a new transport for a backchannel on a clnt_vc socket.
342  */
343 SVCXPRT *
344 svc_vc_create_backchannel(SVCPOOL *pool)
345 {
346 	SVCXPRT *xprt = NULL;
347 	struct cf_conn *cd = NULL;
348 
349 	cd = mem_alloc(sizeof(*cd));
350 	cd->strm_stat = XPRT_IDLE;
351 
352 	xprt = svc_xprt_alloc();
353 	sx_init(&xprt->xp_lock, "xprt->xp_lock");
354 	xprt->xp_pool = pool;
355 	xprt->xp_socket = NULL;
356 	xprt->xp_p1 = cd;
357 	xprt->xp_p2 = NULL;
358 	xprt->xp_ops = &svc_vc_backchannel_ops;
359 	return (xprt);
360 }
361 
362 /*
363  * This does all of the accept except the final call to soaccept. The
364  * caller will call soaccept after dropping its locks (soaccept may
365  * call malloc).
366  */
367 int
368 svc_vc_accept(struct socket *head, struct socket **sop)
369 {
370 	struct socket *so;
371 	int error = 0;
372 	short nbio;
373 
374 	KASSERT(SOLISTENING(head),
375 	    ("%s: socket %p is not listening", __func__, head));
376 
377 #ifdef MAC
378 	error = mac_socket_check_accept(curthread->td_ucred, head);
379 	if (error != 0)
380 		goto done;
381 #endif
382 	/*
383 	 * XXXGL: we want non-blocking semantics.  The socket could be a
384 	 * socket created by kernel as well as socket shared with userland,
385 	 * so we can't be sure about presense of SS_NBIO.  We also shall not
386 	 * toggle it on the socket, since that may surprise userland.  So we
387 	 * set SS_NBIO only temporarily.
388 	 */
389 	SOLISTEN_LOCK(head);
390 	nbio = head->so_state & SS_NBIO;
391 	head->so_state |= SS_NBIO;
392 	error = solisten_dequeue(head, &so, 0);
393 	head->so_state &= (nbio & ~SS_NBIO);
394 	if (error)
395 		goto done;
396 
397 	so->so_state |= nbio;
398 	*sop = so;
399 
400 	/* connection has been removed from the listen queue */
401 	KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0);
402 done:
403 	return (error);
404 }
405 
406 /*ARGSUSED*/
407 static bool_t
408 svc_vc_rendezvous_recv(SVCXPRT *xprt, struct rpc_msg *msg,
409     struct sockaddr **addrp, struct mbuf **mp)
410 {
411 	struct socket *so = NULL;
412 	struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
413 	int error;
414 	SVCXPRT *new_xprt;
415 
416 	/*
417 	 * The socket upcall calls xprt_active() which will eventually
418 	 * cause the server to call us here. We attempt to accept a
419 	 * connection from the socket and turn it into a new
420 	 * transport. If the accept fails, we have drained all pending
421 	 * connections so we call xprt_inactive().
422 	 */
423 	sx_xlock(&xprt->xp_lock);
424 
425 	error = svc_vc_accept(xprt->xp_socket, &so);
426 
427 	if (error == EWOULDBLOCK) {
428 		/*
429 		 * We must re-test for new connections after taking
430 		 * the lock to protect us in the case where a new
431 		 * connection arrives after our call to accept fails
432 		 * with EWOULDBLOCK.
433 		 */
434 		SOLISTEN_LOCK(xprt->xp_socket);
435 		if (TAILQ_EMPTY(&xprt->xp_socket->sol_comp))
436 			xprt_inactive_self(xprt);
437 		SOLISTEN_UNLOCK(xprt->xp_socket);
438 		sx_xunlock(&xprt->xp_lock);
439 		return (FALSE);
440 	}
441 
442 	if (error) {
443 		SOLISTEN_LOCK(xprt->xp_socket);
444 		if (xprt->xp_upcallset) {
445 			xprt->xp_upcallset = 0;
446 			soupcall_clear(xprt->xp_socket, SO_RCV);
447 		}
448 		SOLISTEN_UNLOCK(xprt->xp_socket);
449 		xprt_inactive_self(xprt);
450 		sx_xunlock(&xprt->xp_lock);
451 		return (FALSE);
452 	}
453 
454 	sx_xunlock(&xprt->xp_lock);
455 
456 	error = soaccept(so, (struct sockaddr *)&ss);
457 
458 	if (error) {
459 		/*
460 		 * XXX not sure if I need to call sofree or soclose here.
461 		 */
462 		return (FALSE);
463 	}
464 
465 	/*
466 	 * svc_vc_create_conn will call xprt_register - we don't need
467 	 * to do anything with the new connection except derefence it.
468 	 */
469 	new_xprt = svc_vc_create_conn(xprt->xp_pool, so,
470 	    (struct sockaddr *)&ss);
471 	if (!new_xprt) {
472 		soclose(so);
473 	} else {
474 		SVC_RELEASE(new_xprt);
475 	}
476 
477 	return (FALSE); /* there is never an rpc msg to be processed */
478 }
479 
480 /*ARGSUSED*/
481 static enum xprt_stat
482 svc_vc_rendezvous_stat(SVCXPRT *xprt)
483 {
484 
485 	return (XPRT_IDLE);
486 }
487 
488 static void
489 svc_vc_destroy_common(SVCXPRT *xprt)
490 {
491 	uint32_t reterr;
492 
493 	if (xprt->xp_socket) {
494 		if ((xprt->xp_tls & (RPCTLS_FLAGS_HANDSHAKE |
495 		    RPCTLS_FLAGS_HANDSHFAIL)) != 0) {
496 			if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
497 				/*
498 				 * If the upcall fails, the socket has
499 				 * probably been closed via the rpctlssd
500 				 * daemon having crashed or been
501 				 * restarted, so just ignore returned stat.
502 				 */
503 				rpctls_srv_disconnect(xprt->xp_sslsec,
504 				    xprt->xp_sslusec, xprt->xp_sslrefno,
505 				    xprt->xp_sslproc, &reterr);
506 			}
507 			/* Must sorele() to get rid of reference. */
508 			CURVNET_SET(xprt->xp_socket->so_vnet);
509 			sorele(xprt->xp_socket);
510 			CURVNET_RESTORE();
511 		} else
512 			(void)soclose(xprt->xp_socket);
513 	}
514 
515 	if (xprt->xp_netid)
516 		(void) mem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
517 	svc_xprt_free(xprt);
518 }
519 
520 static void
521 svc_vc_rendezvous_destroy(SVCXPRT *xprt)
522 {
523 
524 	SOLISTEN_LOCK(xprt->xp_socket);
525 	if (xprt->xp_upcallset) {
526 		xprt->xp_upcallset = 0;
527 		solisten_upcall_set(xprt->xp_socket, NULL, NULL);
528 	}
529 	SOLISTEN_UNLOCK(xprt->xp_socket);
530 
531 	svc_vc_destroy_common(xprt);
532 }
533 
534 static void
535 svc_vc_destroy(SVCXPRT *xprt)
536 {
537 	struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
538 	CLIENT *cl = (CLIENT *)xprt->xp_p2;
539 
540 	SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
541 	if (xprt->xp_upcallset) {
542 		xprt->xp_upcallset = 0;
543 		if (xprt->xp_socket->so_rcv.sb_upcall != NULL)
544 			soupcall_clear(xprt->xp_socket, SO_RCV);
545 	}
546 	SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
547 
548 	if (cl != NULL)
549 		CLNT_RELEASE(cl);
550 
551 	svc_vc_destroy_common(xprt);
552 
553 	if (cd->mreq)
554 		m_freem(cd->mreq);
555 	if (cd->mpending)
556 		m_freem(cd->mpending);
557 	mem_free(cd, sizeof(*cd));
558 }
559 
560 static void
561 svc_vc_backchannel_destroy(SVCXPRT *xprt)
562 {
563 	struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
564 	struct mbuf *m, *m2;
565 
566 	svc_xprt_free(xprt);
567 	m = cd->mreq;
568 	while (m != NULL) {
569 		m2 = m;
570 		m = m->m_nextpkt;
571 		m_freem(m2);
572 	}
573 	mem_free(cd, sizeof(*cd));
574 }
575 
576 /*ARGSUSED*/
577 static bool_t
578 svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in)
579 {
580 	return (FALSE);
581 }
582 
583 static bool_t
584 svc_vc_rendezvous_control(SVCXPRT *xprt, const u_int rq, void *in)
585 {
586 
587 	return (FALSE);
588 }
589 
590 static bool_t
591 svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq, void *in)
592 {
593 
594 	return (FALSE);
595 }
596 
597 static enum xprt_stat
598 svc_vc_stat(SVCXPRT *xprt)
599 {
600 	struct cf_conn *cd;
601 
602 	cd = (struct cf_conn *)(xprt->xp_p1);
603 
604 	if (cd->strm_stat == XPRT_DIED)
605 		return (XPRT_DIED);
606 
607 	if (cd->mreq != NULL && cd->resid == 0 && cd->eor)
608 		return (XPRT_MOREREQS);
609 
610 	if (soreadable(xprt->xp_socket))
611 		return (XPRT_MOREREQS);
612 
613 	return (XPRT_IDLE);
614 }
615 
616 static bool_t
617 svc_vc_ack(SVCXPRT *xprt, uint32_t *ack)
618 {
619 
620 	*ack = atomic_load_acq_32(&xprt->xp_snt_cnt);
621 	*ack -= sbused(&xprt->xp_socket->so_snd);
622 	return (TRUE);
623 }
624 
625 static enum xprt_stat
626 svc_vc_backchannel_stat(SVCXPRT *xprt)
627 {
628 	struct cf_conn *cd;
629 
630 	cd = (struct cf_conn *)(xprt->xp_p1);
631 
632 	if (cd->mreq != NULL)
633 		return (XPRT_MOREREQS);
634 
635 	return (XPRT_IDLE);
636 }
637 
638 /*
639  * If we have an mbuf chain in cd->mpending, try to parse a record from it,
640  * leaving the result in cd->mreq. If we don't have a complete record, leave
641  * the partial result in cd->mreq and try to read more from the socket.
642  */
643 static int
644 svc_vc_process_pending(SVCXPRT *xprt)
645 {
646 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
647 	struct socket *so = xprt->xp_socket;
648 	struct mbuf *m;
649 
650 	/*
651 	 * If cd->resid is non-zero, we have part of the
652 	 * record already, otherwise we are expecting a record
653 	 * marker.
654 	 */
655 	if (!cd->resid && cd->mpending) {
656 		/*
657 		 * See if there is enough data buffered to
658 		 * make up a record marker. Make sure we can
659 		 * handle the case where the record marker is
660 		 * split across more than one mbuf.
661 		 */
662 		size_t n = 0;
663 		uint32_t header;
664 
665 		m = cd->mpending;
666 		while (n < sizeof(uint32_t) && m) {
667 			n += m->m_len;
668 			m = m->m_next;
669 		}
670 		if (n < sizeof(uint32_t)) {
671 			so->so_rcv.sb_lowat = sizeof(uint32_t) - n;
672 			return (FALSE);
673 		}
674 		m_copydata(cd->mpending, 0, sizeof(header),
675 		    (char *)&header);
676 		header = ntohl(header);
677 		cd->eor = (header & 0x80000000) != 0;
678 		cd->resid = header & 0x7fffffff;
679 		m_adj(cd->mpending, sizeof(uint32_t));
680 	}
681 
682 	/*
683 	 * Start pulling off mbufs from cd->mpending
684 	 * until we either have a complete record or
685 	 * we run out of data. We use m_split to pull
686 	 * data - it will pull as much as possible and
687 	 * split the last mbuf if necessary.
688 	 */
689 	while (cd->mpending && cd->resid) {
690 		m = cd->mpending;
691 		if (cd->mpending->m_next
692 		    || cd->mpending->m_len > cd->resid)
693 			cd->mpending = m_split(cd->mpending,
694 			    cd->resid, M_WAITOK);
695 		else
696 			cd->mpending = NULL;
697 		if (cd->mreq)
698 			m_last(cd->mreq)->m_next = m;
699 		else
700 			cd->mreq = m;
701 		while (m) {
702 			cd->resid -= m->m_len;
703 			m = m->m_next;
704 		}
705 	}
706 
707 	/*
708 	 * Block receive upcalls if we have more data pending,
709 	 * otherwise report our need.
710 	 */
711 	if (cd->mpending)
712 		so->so_rcv.sb_lowat = INT_MAX;
713 	else
714 		so->so_rcv.sb_lowat =
715 		    imax(1, imin(cd->resid, so->so_rcv.sb_hiwat / 2));
716 	return (TRUE);
717 }
718 
719 static bool_t
720 svc_vc_recv(SVCXPRT *xprt, struct rpc_msg *msg,
721     struct sockaddr **addrp, struct mbuf **mp)
722 {
723 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
724 	struct uio uio;
725 	struct mbuf *m, *ctrl;
726 	struct socket* so = xprt->xp_socket;
727 	XDR xdrs;
728 	int error, rcvflag;
729 	uint32_t reterr, xid_plus_direction[2];
730 	struct cmsghdr *cmsg;
731 	struct tls_get_record tgr;
732 	enum clnt_stat ret;
733 
734 	/*
735 	 * Serialise access to the socket and our own record parsing
736 	 * state.
737 	 */
738 	sx_xlock(&xprt->xp_lock);
739 
740 	for (;;) {
741 		/* If we have no request ready, check pending queue. */
742 		while (cd->mpending &&
743 		    (cd->mreq == NULL || cd->resid != 0 || !cd->eor)) {
744 			if (!svc_vc_process_pending(xprt))
745 				break;
746 		}
747 
748 		/* Process and return complete request in cd->mreq. */
749 		if (cd->mreq != NULL && cd->resid == 0 && cd->eor) {
750 
751 			/*
752 			 * Now, check for a backchannel reply.
753 			 * The XID is in the first uint32_t of the reply
754 			 * and the message direction is the second one.
755 			 */
756 			if ((cd->mreq->m_len >= sizeof(xid_plus_direction) ||
757 			    m_length(cd->mreq, NULL) >=
758 			    sizeof(xid_plus_direction)) &&
759 			    xprt->xp_p2 != NULL) {
760 				m_copydata(cd->mreq, 0,
761 				    sizeof(xid_plus_direction),
762 				    (char *)xid_plus_direction);
763 				xid_plus_direction[0] =
764 				    ntohl(xid_plus_direction[0]);
765 				xid_plus_direction[1] =
766 				    ntohl(xid_plus_direction[1]);
767 				/* Check message direction. */
768 				if (xid_plus_direction[1] == REPLY) {
769 					clnt_bck_svccall(xprt->xp_p2,
770 					    cd->mreq,
771 					    xid_plus_direction[0]);
772 					cd->mreq = NULL;
773 					continue;
774 				}
775 			}
776 
777 			xdrmbuf_create(&xdrs, cd->mreq, XDR_DECODE);
778 			cd->mreq = NULL;
779 
780 			/* Check for next request in a pending queue. */
781 			svc_vc_process_pending(xprt);
782 			if (cd->mreq == NULL || cd->resid != 0) {
783 				SOCKBUF_LOCK(&so->so_rcv);
784 				if (!soreadable(so))
785 					xprt_inactive_self(xprt);
786 				SOCKBUF_UNLOCK(&so->so_rcv);
787 			}
788 
789 			sx_xunlock(&xprt->xp_lock);
790 
791 			if (! xdr_callmsg(&xdrs, msg)) {
792 				XDR_DESTROY(&xdrs);
793 				return (FALSE);
794 			}
795 
796 			*addrp = NULL;
797 			*mp = xdrmbuf_getall(&xdrs);
798 			XDR_DESTROY(&xdrs);
799 
800 			return (TRUE);
801 		}
802 
803 		/*
804 		 * If receiving is disabled so that a TLS handshake can be
805 		 * done by the rpctlssd daemon, return FALSE here.
806 		 */
807 		rcvflag = MSG_DONTWAIT;
808 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0)
809 			rcvflag |= MSG_TLSAPPDATA;
810 tryagain:
811 		if (xprt->xp_dontrcv) {
812 			sx_xunlock(&xprt->xp_lock);
813 			return (FALSE);
814 		}
815 
816 		/*
817 		 * The socket upcall calls xprt_active() which will eventually
818 		 * cause the server to call us here. We attempt to
819 		 * read as much as possible from the socket and put
820 		 * the result in cd->mpending. If the read fails,
821 		 * we have drained both cd->mpending and the socket so
822 		 * we can call xprt_inactive().
823 		 */
824 		uio.uio_resid = 1000000000;
825 		uio.uio_td = curthread;
826 		ctrl = m = NULL;
827 		error = soreceive(so, NULL, &uio, &m, &ctrl, &rcvflag);
828 
829 		if (error == EWOULDBLOCK) {
830 			/*
831 			 * We must re-test for readability after
832 			 * taking the lock to protect us in the case
833 			 * where a new packet arrives on the socket
834 			 * after our call to soreceive fails with
835 			 * EWOULDBLOCK.
836 			 */
837 			SOCKBUF_LOCK(&so->so_rcv);
838 			if (!soreadable(so))
839 				xprt_inactive_self(xprt);
840 			SOCKBUF_UNLOCK(&so->so_rcv);
841 			sx_xunlock(&xprt->xp_lock);
842 			return (FALSE);
843 		}
844 
845 		/*
846 		 * A return of ENXIO indicates that there is an
847 		 * alert record at the head of the
848 		 * socket's receive queue, for TLS connections.
849 		 * This record needs to be handled in userland
850 		 * via an SSL_read() call, so do an upcall to the daemon.
851 		 */
852 		KRPC_CURVNET_SET(so->so_vnet);
853 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0 &&
854 		    error == ENXIO) {
855 			KRPC_VNET(svc_vc_tls_alerts)++;
856 			KRPC_CURVNET_RESTORE();
857 			/* Disable reception. */
858 			xprt->xp_dontrcv = TRUE;
859 			sx_xunlock(&xprt->xp_lock);
860 			ret = rpctls_srv_handlerecord(xprt->xp_sslsec,
861 			    xprt->xp_sslusec, xprt->xp_sslrefno,
862 			    xprt->xp_sslproc, &reterr);
863 			sx_xlock(&xprt->xp_lock);
864 			xprt->xp_dontrcv = FALSE;
865 			if (ret != RPC_SUCCESS || reterr != RPCTLSERR_OK) {
866 				/*
867 				 * All we can do is soreceive() it and
868 				 * then toss it.
869 				 */
870 				rcvflag = MSG_DONTWAIT;
871 				goto tryagain;
872 			}
873 			sx_xunlock(&xprt->xp_lock);
874 			xprt_active(xprt);   /* Harmless if already active. */
875 			return (FALSE);
876 		}
877 
878 		if (error) {
879 			KRPC_CURVNET_RESTORE();
880 			SOCKBUF_LOCK(&so->so_rcv);
881 			if (xprt->xp_upcallset) {
882 				xprt->xp_upcallset = 0;
883 				soupcall_clear(so, SO_RCV);
884 			}
885 			SOCKBUF_UNLOCK(&so->so_rcv);
886 			xprt_inactive_self(xprt);
887 			cd->strm_stat = XPRT_DIED;
888 			sx_xunlock(&xprt->xp_lock);
889 			return (FALSE);
890 		}
891 
892 		if (!m) {
893 			KRPC_CURVNET_RESTORE();
894 			/*
895 			 * EOF - the other end has closed the socket.
896 			 */
897 			xprt_inactive_self(xprt);
898 			cd->strm_stat = XPRT_DIED;
899 			sx_xunlock(&xprt->xp_lock);
900 			return (FALSE);
901 		}
902 
903 		/* Process any record header(s). */
904 		if (ctrl != NULL) {
905 			cmsg = mtod(ctrl, struct cmsghdr *);
906 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
907 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
908 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
909 				/*
910 				 * TLS_RLTYPE_ALERT records should be handled
911 				 * since soreceive() would have returned
912 				 * ENXIO.  Just throw any other
913 				 * non-TLS_RLTYPE_APP records away.
914 				 */
915 				if (tgr.tls_type != TLS_RLTYPE_APP) {
916 					m_freem(m);
917 					m_free(ctrl);
918 					rcvflag = MSG_DONTWAIT | MSG_TLSAPPDATA;
919 					KRPC_CURVNET_RESTORE();
920 					goto tryagain;
921 				}
922 				KRPC_VNET(svc_vc_tls_rx_msgcnt)++;
923 				KRPC_VNET(svc_vc_tls_rx_msgbytes) +=
924 				    1000000000 - uio.uio_resid;
925 			}
926 			m_free(ctrl);
927 		} else {
928 			KRPC_VNET(svc_vc_rx_msgcnt)++;
929 			KRPC_VNET(svc_vc_rx_msgbytes) += 1000000000 -
930 			    uio.uio_resid;
931 		}
932 		KRPC_CURVNET_RESTORE();
933 
934 		if (cd->mpending)
935 			m_last(cd->mpending)->m_next = m;
936 		else
937 			cd->mpending = m;
938 	}
939 }
940 
941 static bool_t
942 svc_vc_backchannel_recv(SVCXPRT *xprt, struct rpc_msg *msg,
943     struct sockaddr **addrp, struct mbuf **mp)
944 {
945 	struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
946 	struct ct_data *ct;
947 	struct mbuf *m;
948 	XDR xdrs;
949 
950 	sx_xlock(&xprt->xp_lock);
951 	ct = (struct ct_data *)xprt->xp_p2;
952 	if (ct == NULL) {
953 		sx_xunlock(&xprt->xp_lock);
954 		return (FALSE);
955 	}
956 	mtx_lock(&ct->ct_lock);
957 	m = cd->mreq;
958 	if (m == NULL) {
959 		xprt_inactive_self(xprt);
960 		mtx_unlock(&ct->ct_lock);
961 		sx_xunlock(&xprt->xp_lock);
962 		return (FALSE);
963 	}
964 	cd->mreq = m->m_nextpkt;
965 	mtx_unlock(&ct->ct_lock);
966 	sx_xunlock(&xprt->xp_lock);
967 
968 	xdrmbuf_create(&xdrs, m, XDR_DECODE);
969 	if (! xdr_callmsg(&xdrs, msg)) {
970 		XDR_DESTROY(&xdrs);
971 		return (FALSE);
972 	}
973 	*addrp = NULL;
974 	*mp = xdrmbuf_getall(&xdrs);
975 	XDR_DESTROY(&xdrs);
976 	return (TRUE);
977 }
978 
979 static bool_t
980 svc_vc_reply(SVCXPRT *xprt, struct rpc_msg *msg,
981     struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
982 {
983 	XDR xdrs;
984 	struct mbuf *mrep;
985 	bool_t stat = TRUE;
986 	int error, len, maxextsiz;
987 #ifdef KERN_TLS
988 	u_int maxlen;
989 #endif
990 
991 	/*
992 	 * Leave space for record mark.
993 	 */
994 	mrep = m_gethdr(M_WAITOK, MT_DATA);
995 	mrep->m_data += sizeof(uint32_t);
996 
997 	xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
998 
999 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
1000 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
1001 		if (!xdr_replymsg(&xdrs, msg))
1002 			stat = FALSE;
1003 		else
1004 			xdrmbuf_append(&xdrs, m);
1005 	} else {
1006 		stat = xdr_replymsg(&xdrs, msg);
1007 	}
1008 
1009 	if (stat) {
1010 		m_fixhdr(mrep);
1011 
1012 		/*
1013 		 * Prepend a record marker containing the reply length.
1014 		 */
1015 		M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1016 		len = mrep->m_pkthdr.len;
1017 		*mtod(mrep, uint32_t *) =
1018 			htonl(0x80000000 | (len - sizeof(uint32_t)));
1019 
1020 		/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1021 		KRPC_CURVNET_SET(xprt->xp_socket->so_vnet);
1022 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1023 			/*
1024 			 * Copy the mbuf chain to a chain of
1025 			 * ext_pgs mbuf(s) as required by KERN_TLS.
1026 			 */
1027 			maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1028 #ifdef KERN_TLS
1029 			if (rpctls_getinfo(&maxlen, false, false))
1030 				maxextsiz = min(maxextsiz, maxlen);
1031 #endif
1032 			mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1033 			KRPC_VNET(svc_vc_tls_tx_msgcnt)++;
1034 			KRPC_VNET(svc_vc_tls_tx_msgbytes) += len;
1035 		} else {
1036 			KRPC_VNET(svc_vc_tx_msgcnt)++;
1037 			KRPC_VNET(svc_vc_tx_msgbytes) += len;
1038 		}
1039 		KRPC_CURVNET_RESTORE();
1040 		atomic_add_32(&xprt->xp_snd_cnt, len);
1041 		/*
1042 		 * sosend consumes mreq.
1043 		 */
1044 		error = sosend(xprt->xp_socket, NULL, NULL, mrep, NULL,
1045 		    0, curthread);
1046 		if (!error) {
1047 			atomic_add_rel_32(&xprt->xp_snt_cnt, len);
1048 			if (seq)
1049 				*seq = xprt->xp_snd_cnt;
1050 			stat = TRUE;
1051 		} else
1052 			atomic_subtract_32(&xprt->xp_snd_cnt, len);
1053 	} else {
1054 		m_freem(mrep);
1055 	}
1056 
1057 	XDR_DESTROY(&xdrs);
1058 
1059 	return (stat);
1060 }
1061 
1062 static bool_t
1063 svc_vc_backchannel_reply(SVCXPRT *xprt, struct rpc_msg *msg,
1064     struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
1065 {
1066 	struct ct_data *ct;
1067 	XDR xdrs;
1068 	struct mbuf *mrep;
1069 	bool_t stat = TRUE;
1070 	int error, maxextsiz;
1071 #ifdef KERN_TLS
1072 	u_int maxlen;
1073 #endif
1074 
1075 	/*
1076 	 * Leave space for record mark.
1077 	 */
1078 	mrep = m_gethdr(M_WAITOK, MT_DATA);
1079 	mrep->m_data += sizeof(uint32_t);
1080 
1081 	xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
1082 
1083 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
1084 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
1085 		if (!xdr_replymsg(&xdrs, msg))
1086 			stat = FALSE;
1087 		else
1088 			xdrmbuf_append(&xdrs, m);
1089 	} else {
1090 		stat = xdr_replymsg(&xdrs, msg);
1091 	}
1092 
1093 	if (stat) {
1094 		m_fixhdr(mrep);
1095 
1096 		/*
1097 		 * Prepend a record marker containing the reply length.
1098 		 */
1099 		M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1100 		*mtod(mrep, uint32_t *) =
1101 			htonl(0x80000000 | (mrep->m_pkthdr.len
1102 				- sizeof(uint32_t)));
1103 
1104 		/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1105 		if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1106 			/*
1107 			 * Copy the mbuf chain to a chain of
1108 			 * ext_pgs mbuf(s) as required by KERN_TLS.
1109 			 */
1110 			maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1111 #ifdef KERN_TLS
1112 			if (rpctls_getinfo(&maxlen, false, false))
1113 				maxextsiz = min(maxextsiz, maxlen);
1114 #endif
1115 			mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1116 		}
1117 		sx_xlock(&xprt->xp_lock);
1118 		ct = (struct ct_data *)xprt->xp_p2;
1119 		if (ct != NULL)
1120 			error = sosend(ct->ct_socket, NULL, NULL, mrep, NULL,
1121 			    0, curthread);
1122 		else
1123 			error = EPIPE;
1124 		sx_xunlock(&xprt->xp_lock);
1125 		if (!error) {
1126 			stat = TRUE;
1127 		}
1128 	} else {
1129 		m_freem(mrep);
1130 	}
1131 
1132 	XDR_DESTROY(&xdrs);
1133 
1134 	return (stat);
1135 }
1136 
1137 static bool_t
1138 svc_vc_null(void)
1139 {
1140 
1141 	return (FALSE);
1142 }
1143 
1144 static int
1145 svc_vc_soupcall(struct socket *so, void *arg, int waitflag)
1146 {
1147 	SVCXPRT *xprt = (SVCXPRT *) arg;
1148 
1149 	if (soreadable(xprt->xp_socket))
1150 		xprt_active(xprt);
1151 	return (SU_OK);
1152 }
1153 
1154 static int
1155 svc_vc_rendezvous_soupcall(struct socket *head, void *arg, int waitflag)
1156 {
1157 	SVCXPRT *xprt = (SVCXPRT *) arg;
1158 
1159 	if (!TAILQ_EMPTY(&head->sol_comp))
1160 		xprt_active(xprt);
1161 	return (SU_OK);
1162 }
1163 
1164 #if 0
1165 /*
1166  * Get the effective UID of the sending process. Used by rpcbind, keyserv
1167  * and rpc.yppasswdd on AF_LOCAL.
1168  */
1169 int
1170 __rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) {
1171 	int sock, ret;
1172 	gid_t egid;
1173 	uid_t euid;
1174 	struct sockaddr *sa;
1175 
1176 	sock = transp->xp_fd;
1177 	sa = (struct sockaddr *)transp->xp_rtaddr;
1178 	if (sa->sa_family == AF_LOCAL) {
1179 		ret = getpeereid(sock, &euid, &egid);
1180 		if (ret == 0)
1181 			*uid = euid;
1182 		return (ret);
1183 	} else
1184 		return (-1);
1185 }
1186 #endif
1187