1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2015 Mihai Carabas <mihai.carabas@gmail.com> 5 * Copyright (c) 2024 Ruslan Bukin <br@bsdpad.com> 6 * 7 * This software was developed by the University of Cambridge Computer 8 * Laboratory (Department of Computer Science and Technology) under Innovate 9 * UK project 105694, "Digital Security by Design (DSbD) Technology Platform 10 * Prototype". 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/cpuset.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 59 #include <machine/riscvreg.h> 60 #include <machine/cpu.h> 61 #include <machine/fpe.h> 62 #include <machine/machdep.h> 63 #include <machine/pcb.h> 64 #include <machine/smp.h> 65 #include <machine/vm.h> 66 #include <machine/vmparam.h> 67 #include <machine/vmm.h> 68 #include <machine/vmm_instruction_emul.h> 69 70 #include <dev/pci/pcireg.h> 71 72 #include <dev/vmm/vmm_dev.h> 73 #include <dev/vmm/vmm_ktr.h> 74 75 #include "vmm_stat.h" 76 #include "riscv.h" 77 78 #include "vmm_aplic.h" 79 80 struct vcpu { 81 int flags; 82 enum vcpu_state state; 83 struct mtx mtx; 84 int hostcpu; /* host cpuid this vcpu last ran on */ 85 int vcpuid; 86 void *stats; 87 struct vm_exit exitinfo; 88 uint64_t nextpc; /* (x) next instruction to execute */ 89 struct vm *vm; /* (o) */ 90 void *cookie; /* (i) cpu-specific data */ 91 struct fpreg *guestfpu; /* (a,i) guest fpu state */ 92 }; 93 94 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 95 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 96 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 97 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 98 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 99 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 100 101 struct mem_seg { 102 uint64_t gpa; 103 size_t len; 104 bool wired; 105 bool sysmem; 106 vm_object_t object; 107 }; 108 #define VM_MAX_MEMSEGS 3 109 110 struct mem_map { 111 vm_paddr_t gpa; 112 size_t len; 113 vm_ooffset_t segoff; 114 int segid; 115 int prot; 116 int flags; 117 }; 118 #define VM_MAX_MEMMAPS 4 119 120 struct vmm_mmio_region { 121 uint64_t start; 122 uint64_t end; 123 mem_region_read_t read; 124 mem_region_write_t write; 125 }; 126 #define VM_MAX_MMIO_REGIONS 4 127 128 /* 129 * Initialization: 130 * (o) initialized the first time the VM is created 131 * (i) initialized when VM is created and when it is reinitialized 132 * (x) initialized before use 133 */ 134 struct vm { 135 void *cookie; /* (i) cpu-specific data */ 136 volatile cpuset_t active_cpus; /* (i) active vcpus */ 137 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug*/ 138 int suspend; /* (i) stop VM execution */ 139 bool dying; /* (o) is dying */ 140 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 141 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 142 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 143 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 144 struct vmspace *vmspace; /* (o) guest's address space */ 145 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 146 struct vcpu **vcpu; /* (i) guest vcpus */ 147 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS]; 148 /* (o) guest MMIO regions */ 149 /* The following describe the vm cpu topology */ 150 uint16_t sockets; /* (o) num of sockets */ 151 uint16_t cores; /* (o) num of cores/socket */ 152 uint16_t threads; /* (o) num of threads/core */ 153 uint16_t maxcpus; /* (o) max pluggable cpus */ 154 struct sx mem_segs_lock; /* (o) */ 155 struct sx vcpus_init_lock; /* (o) */ 156 }; 157 158 static bool vmm_initialized = false; 159 160 static MALLOC_DEFINE(M_VMM, "vmm", "vmm"); 161 162 /* statistics */ 163 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 164 165 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 166 167 static int vmm_ipinum; 168 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 169 "IPI vector used for vcpu notifications"); 170 171 u_int vm_maxcpu; 172 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 173 &vm_maxcpu, 0, "Maximum number of vCPUs"); 174 175 static void vm_free_memmap(struct vm *vm, int ident); 176 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 177 static void vcpu_notify_event_locked(struct vcpu *vcpu); 178 179 /* global statistics */ 180 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 181 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq"); 182 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception"); 183 184 /* 185 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this 186 * is a safe value for now. 187 */ 188 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 189 190 static void 191 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 192 { 193 vmmops_vcpu_cleanup(vcpu->cookie); 194 vcpu->cookie = NULL; 195 if (destroy) { 196 vmm_stat_free(vcpu->stats); 197 fpu_save_area_free(vcpu->guestfpu); 198 vcpu_lock_destroy(vcpu); 199 } 200 } 201 202 static struct vcpu * 203 vcpu_alloc(struct vm *vm, int vcpu_id) 204 { 205 struct vcpu *vcpu; 206 207 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 208 ("vcpu_alloc: invalid vcpu %d", vcpu_id)); 209 210 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO); 211 vcpu_lock_init(vcpu); 212 vcpu->state = VCPU_IDLE; 213 vcpu->hostcpu = NOCPU; 214 vcpu->vcpuid = vcpu_id; 215 vcpu->vm = vm; 216 vcpu->guestfpu = fpu_save_area_alloc(); 217 vcpu->stats = vmm_stat_alloc(); 218 return (vcpu); 219 } 220 221 static void 222 vcpu_init(struct vcpu *vcpu) 223 { 224 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 225 MPASS(vcpu->cookie != NULL); 226 fpu_save_area_reset(vcpu->guestfpu); 227 vmm_stat_init(vcpu->stats); 228 } 229 230 struct vm_exit * 231 vm_exitinfo(struct vcpu *vcpu) 232 { 233 return (&vcpu->exitinfo); 234 } 235 236 static int 237 vmm_init(void) 238 { 239 240 vm_maxcpu = mp_ncpus; 241 242 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 243 244 if (vm_maxcpu > VM_MAXCPU) { 245 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 246 vm_maxcpu = VM_MAXCPU; 247 } 248 249 if (vm_maxcpu == 0) 250 vm_maxcpu = 1; 251 252 return (vmmops_modinit()); 253 } 254 255 static int 256 vmm_handler(module_t mod, int what, void *arg) 257 { 258 int error; 259 260 switch (what) { 261 case MOD_LOAD: 262 error = vmmdev_init(); 263 if (error != 0) 264 break; 265 error = vmm_init(); 266 if (error == 0) 267 vmm_initialized = true; 268 else 269 (void)vmmdev_cleanup(); 270 break; 271 case MOD_UNLOAD: 272 error = vmmdev_cleanup(); 273 if (error == 0 && vmm_initialized) { 274 error = vmmops_modcleanup(); 275 if (error) { 276 /* 277 * Something bad happened - prevent new 278 * VMs from being created 279 */ 280 vmm_initialized = false; 281 } 282 } 283 break; 284 default: 285 error = 0; 286 break; 287 } 288 return (error); 289 } 290 291 static moduledata_t vmm_kmod = { 292 "vmm", 293 vmm_handler, 294 NULL 295 }; 296 297 /* 298 * vmm initialization has the following dependencies: 299 * 300 * - vmm device initialization requires an initialized devfs. 301 */ 302 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_DEVFS + 1, SI_ORDER_ANY); 303 MODULE_VERSION(vmm, 1); 304 305 static void 306 vm_init(struct vm *vm, bool create) 307 { 308 int i; 309 310 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 311 MPASS(vm->cookie != NULL); 312 313 CPU_ZERO(&vm->active_cpus); 314 CPU_ZERO(&vm->debug_cpus); 315 316 vm->suspend = 0; 317 CPU_ZERO(&vm->suspended_cpus); 318 319 memset(vm->mmio_region, 0, sizeof(vm->mmio_region)); 320 321 if (!create) { 322 for (i = 0; i < vm->maxcpus; i++) { 323 if (vm->vcpu[i] != NULL) 324 vcpu_init(vm->vcpu[i]); 325 } 326 } 327 } 328 329 void 330 vm_disable_vcpu_creation(struct vm *vm) 331 { 332 sx_xlock(&vm->vcpus_init_lock); 333 vm->dying = true; 334 sx_xunlock(&vm->vcpus_init_lock); 335 } 336 337 struct vcpu * 338 vm_alloc_vcpu(struct vm *vm, int vcpuid) 339 { 340 struct vcpu *vcpu; 341 342 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 343 return (NULL); 344 345 /* Some interrupt controllers may have a CPU limit */ 346 if (vcpuid >= aplic_max_cpu_count(vm->cookie)) 347 return (NULL); 348 349 vcpu = (struct vcpu *) 350 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 351 if (__predict_true(vcpu != NULL)) 352 return (vcpu); 353 354 sx_xlock(&vm->vcpus_init_lock); 355 vcpu = vm->vcpu[vcpuid]; 356 if (vcpu == NULL && !vm->dying) { 357 vcpu = vcpu_alloc(vm, vcpuid); 358 vcpu_init(vcpu); 359 360 /* 361 * Ensure vCPU is fully created before updating pointer 362 * to permit unlocked reads above. 363 */ 364 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 365 (uintptr_t)vcpu); 366 } 367 sx_xunlock(&vm->vcpus_init_lock); 368 return (vcpu); 369 } 370 371 void 372 vm_slock_vcpus(struct vm *vm) 373 { 374 sx_slock(&vm->vcpus_init_lock); 375 } 376 377 void 378 vm_unlock_vcpus(struct vm *vm) 379 { 380 sx_unlock(&vm->vcpus_init_lock); 381 } 382 383 int 384 vm_create(const char *name, struct vm **retvm) 385 { 386 struct vm *vm; 387 struct vmspace *vmspace; 388 389 /* 390 * If vmm.ko could not be successfully initialized then don't attempt 391 * to create the virtual machine. 392 */ 393 if (!vmm_initialized) 394 return (ENXIO); 395 396 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 397 return (EINVAL); 398 399 vmspace = vmmops_vmspace_alloc(0, 1ul << 39); 400 if (vmspace == NULL) 401 return (ENOMEM); 402 403 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO); 404 strcpy(vm->name, name); 405 vm->vmspace = vmspace; 406 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 407 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 408 409 vm->sockets = 1; 410 vm->cores = 1; /* XXX backwards compatibility */ 411 vm->threads = 1; /* XXX backwards compatibility */ 412 vm->maxcpus = vm_maxcpu; 413 414 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM, 415 M_WAITOK | M_ZERO); 416 417 vm_init(vm, true); 418 419 *retvm = vm; 420 return (0); 421 } 422 423 void 424 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 425 uint16_t *threads, uint16_t *maxcpus) 426 { 427 *sockets = vm->sockets; 428 *cores = vm->cores; 429 *threads = vm->threads; 430 *maxcpus = vm->maxcpus; 431 } 432 433 uint16_t 434 vm_get_maxcpus(struct vm *vm) 435 { 436 return (vm->maxcpus); 437 } 438 439 int 440 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 441 uint16_t threads, uint16_t maxcpus) 442 { 443 /* Ignore maxcpus. */ 444 if ((sockets * cores * threads) > vm->maxcpus) 445 return (EINVAL); 446 vm->sockets = sockets; 447 vm->cores = cores; 448 vm->threads = threads; 449 return(0); 450 } 451 452 static void 453 vm_cleanup(struct vm *vm, bool destroy) 454 { 455 struct mem_map *mm; 456 int i; 457 458 aplic_detach_from_vm(vm->cookie); 459 460 for (i = 0; i < vm->maxcpus; i++) { 461 if (vm->vcpu[i] != NULL) 462 vcpu_cleanup(vm->vcpu[i], destroy); 463 } 464 465 vmmops_cleanup(vm->cookie); 466 467 /* 468 * System memory is removed from the guest address space only when 469 * the VM is destroyed. This is because the mapping remains the same 470 * across VM reset. 471 * 472 * Device memory can be relocated by the guest (e.g. using PCI BARs) 473 * so those mappings are removed on a VM reset. 474 */ 475 if (!destroy) { 476 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 477 mm = &vm->mem_maps[i]; 478 if (destroy || !sysmem_mapping(vm, mm)) 479 vm_free_memmap(vm, i); 480 } 481 } 482 483 if (destroy) { 484 for (i = 0; i < VM_MAX_MEMSEGS; i++) 485 vm_free_memseg(vm, i); 486 487 vmmops_vmspace_free(vm->vmspace); 488 vm->vmspace = NULL; 489 490 for (i = 0; i < vm->maxcpus; i++) 491 free(vm->vcpu[i], M_VMM); 492 free(vm->vcpu, M_VMM); 493 sx_destroy(&vm->vcpus_init_lock); 494 sx_destroy(&vm->mem_segs_lock); 495 } 496 } 497 498 void 499 vm_destroy(struct vm *vm) 500 { 501 502 vm_cleanup(vm, true); 503 504 free(vm, M_VMM); 505 } 506 507 int 508 vm_reinit(struct vm *vm) 509 { 510 int error; 511 512 /* 513 * A virtual machine can be reset only if all vcpus are suspended. 514 */ 515 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 516 vm_cleanup(vm, false); 517 vm_init(vm, false); 518 error = 0; 519 } else { 520 error = EBUSY; 521 } 522 523 return (error); 524 } 525 526 const char * 527 vm_name(struct vm *vm) 528 { 529 return (vm->name); 530 } 531 532 void 533 vm_slock_memsegs(struct vm *vm) 534 { 535 sx_slock(&vm->mem_segs_lock); 536 } 537 538 void 539 vm_xlock_memsegs(struct vm *vm) 540 { 541 sx_xlock(&vm->mem_segs_lock); 542 } 543 544 void 545 vm_unlock_memsegs(struct vm *vm) 546 { 547 sx_unlock(&vm->mem_segs_lock); 548 } 549 550 /* 551 * Return 'true' if 'gpa' is allocated in the guest address space. 552 * 553 * This function is called in the context of a running vcpu which acts as 554 * an implicit lock on 'vm->mem_maps[]'. 555 */ 556 bool 557 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 558 { 559 struct vm *vm = vcpu->vm; 560 struct mem_map *mm; 561 int i; 562 563 #ifdef INVARIANTS 564 int hostcpu, state; 565 state = vcpu_get_state(vcpu, &hostcpu); 566 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 567 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 568 #endif 569 570 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 571 mm = &vm->mem_maps[i]; 572 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 573 return (true); /* 'gpa' is sysmem or devmem */ 574 } 575 576 return (false); 577 } 578 579 int 580 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 581 { 582 struct mem_seg *seg; 583 vm_object_t obj; 584 585 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 586 587 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 588 return (EINVAL); 589 590 if (len == 0 || (len & PAGE_MASK)) 591 return (EINVAL); 592 593 seg = &vm->mem_segs[ident]; 594 if (seg->object != NULL) { 595 if (seg->len == len && seg->sysmem == sysmem) 596 return (EEXIST); 597 else 598 return (EINVAL); 599 } 600 601 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 602 if (obj == NULL) 603 return (ENOMEM); 604 605 seg->len = len; 606 seg->object = obj; 607 seg->sysmem = sysmem; 608 return (0); 609 } 610 611 int 612 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 613 vm_object_t *objptr) 614 { 615 struct mem_seg *seg; 616 617 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 618 619 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 620 return (EINVAL); 621 622 seg = &vm->mem_segs[ident]; 623 if (len) 624 *len = seg->len; 625 if (sysmem) 626 *sysmem = seg->sysmem; 627 if (objptr) 628 *objptr = seg->object; 629 return (0); 630 } 631 632 void 633 vm_free_memseg(struct vm *vm, int ident) 634 { 635 struct mem_seg *seg; 636 637 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 638 ("%s: invalid memseg ident %d", __func__, ident)); 639 640 seg = &vm->mem_segs[ident]; 641 if (seg->object != NULL) { 642 vm_object_deallocate(seg->object); 643 bzero(seg, sizeof(struct mem_seg)); 644 } 645 } 646 647 int 648 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 649 size_t len, int prot, int flags) 650 { 651 struct mem_seg *seg; 652 struct mem_map *m, *map; 653 vm_ooffset_t last; 654 int i, error; 655 656 dprintf("%s: gpa %lx first %lx len %lx\n", __func__, gpa, first, len); 657 658 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 659 return (EINVAL); 660 661 if (flags & ~VM_MEMMAP_F_WIRED) 662 return (EINVAL); 663 664 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 665 return (EINVAL); 666 667 seg = &vm->mem_segs[segid]; 668 if (seg->object == NULL) 669 return (EINVAL); 670 671 last = first + len; 672 if (first < 0 || first >= last || last > seg->len) 673 return (EINVAL); 674 675 if ((gpa | first | last) & PAGE_MASK) 676 return (EINVAL); 677 678 map = NULL; 679 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 680 m = &vm->mem_maps[i]; 681 if (m->len == 0) { 682 map = m; 683 break; 684 } 685 } 686 687 if (map == NULL) 688 return (ENOSPC); 689 690 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 691 len, 0, VMFS_NO_SPACE, prot, prot, 0); 692 if (error != KERN_SUCCESS) 693 return (EFAULT); 694 695 vm_object_reference(seg->object); 696 697 if (flags & VM_MEMMAP_F_WIRED) { 698 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 699 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 700 if (error != KERN_SUCCESS) { 701 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 702 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 703 EFAULT); 704 } 705 } 706 707 map->gpa = gpa; 708 map->len = len; 709 map->segoff = first; 710 map->segid = segid; 711 map->prot = prot; 712 map->flags = flags; 713 return (0); 714 } 715 716 int 717 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 718 { 719 struct mem_map *m; 720 int i; 721 722 dprintf("%s: gpa %lx len %lx\n", __func__, gpa, len); 723 724 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 725 m = &vm->mem_maps[i]; 726 if (m->gpa == gpa && m->len == len) { 727 vm_free_memmap(vm, i); 728 return (0); 729 } 730 } 731 732 return (EINVAL); 733 } 734 735 int 736 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 737 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 738 { 739 struct mem_map *mm, *mmnext; 740 int i; 741 742 mmnext = NULL; 743 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 744 mm = &vm->mem_maps[i]; 745 if (mm->len == 0 || mm->gpa < *gpa) 746 continue; 747 if (mmnext == NULL || mm->gpa < mmnext->gpa) 748 mmnext = mm; 749 } 750 751 if (mmnext != NULL) { 752 *gpa = mmnext->gpa; 753 if (segid) 754 *segid = mmnext->segid; 755 if (segoff) 756 *segoff = mmnext->segoff; 757 if (len) 758 *len = mmnext->len; 759 if (prot) 760 *prot = mmnext->prot; 761 if (flags) 762 *flags = mmnext->flags; 763 return (0); 764 } else { 765 return (ENOENT); 766 } 767 } 768 769 static void 770 vm_free_memmap(struct vm *vm, int ident) 771 { 772 struct mem_map *mm; 773 int error __diagused; 774 775 mm = &vm->mem_maps[ident]; 776 if (mm->len) { 777 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 778 mm->gpa + mm->len); 779 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 780 __func__, error)); 781 bzero(mm, sizeof(struct mem_map)); 782 } 783 } 784 785 static __inline bool 786 sysmem_mapping(struct vm *vm, struct mem_map *mm) 787 { 788 789 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 790 return (true); 791 else 792 return (false); 793 } 794 795 vm_paddr_t 796 vmm_sysmem_maxaddr(struct vm *vm) 797 { 798 struct mem_map *mm; 799 vm_paddr_t maxaddr; 800 int i; 801 802 maxaddr = 0; 803 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 804 mm = &vm->mem_maps[i]; 805 if (sysmem_mapping(vm, mm)) { 806 if (maxaddr < mm->gpa + mm->len) 807 maxaddr = mm->gpa + mm->len; 808 } 809 } 810 return (maxaddr); 811 } 812 813 int 814 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, 815 uint64_t gla, int prot, uint64_t *gpa, int *is_fault) 816 { 817 int error; 818 819 error = vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault); 820 821 return (error); 822 } 823 824 void 825 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size, 826 mem_region_read_t mmio_read, mem_region_write_t mmio_write) 827 { 828 int i; 829 830 for (i = 0; i < nitems(vm->mmio_region); i++) { 831 if (vm->mmio_region[i].start == 0 && 832 vm->mmio_region[i].end == 0) { 833 vm->mmio_region[i].start = start; 834 vm->mmio_region[i].end = start + size; 835 vm->mmio_region[i].read = mmio_read; 836 vm->mmio_region[i].write = mmio_write; 837 return; 838 } 839 } 840 841 panic("%s: No free MMIO region", __func__); 842 } 843 844 void 845 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size) 846 { 847 int i; 848 849 for (i = 0; i < nitems(vm->mmio_region); i++) { 850 if (vm->mmio_region[i].start == start && 851 vm->mmio_region[i].end == start + size) { 852 memset(&vm->mmio_region[i], 0, 853 sizeof(vm->mmio_region[i])); 854 return; 855 } 856 } 857 858 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start, 859 start + size); 860 } 861 862 static int 863 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 864 { 865 struct vm *vm; 866 struct vm_exit *vme; 867 struct vie *vie; 868 struct hyp *hyp; 869 uint64_t fault_ipa; 870 struct vm_guest_paging *paging; 871 struct vmm_mmio_region *vmr; 872 int error, i; 873 874 vm = vcpu->vm; 875 hyp = vm->cookie; 876 if (!hyp->aplic_attached) 877 goto out_user; 878 879 vme = &vcpu->exitinfo; 880 vie = &vme->u.inst_emul.vie; 881 paging = &vme->u.inst_emul.paging; 882 883 fault_ipa = vme->u.inst_emul.gpa; 884 885 vmr = NULL; 886 for (i = 0; i < nitems(vm->mmio_region); i++) { 887 if (vm->mmio_region[i].start <= fault_ipa && 888 vm->mmio_region[i].end > fault_ipa) { 889 vmr = &vm->mmio_region[i]; 890 break; 891 } 892 } 893 if (vmr == NULL) 894 goto out_user; 895 896 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging, 897 vmr->read, vmr->write, retu); 898 return (error); 899 900 out_user: 901 *retu = true; 902 return (0); 903 } 904 905 int 906 vm_suspend(struct vm *vm, enum vm_suspend_how how) 907 { 908 int i; 909 910 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 911 return (EINVAL); 912 913 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 914 VM_CTR2(vm, "virtual machine already suspended %d/%d", 915 vm->suspend, how); 916 return (EALREADY); 917 } 918 919 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 920 921 /* 922 * Notify all active vcpus that they are now suspended. 923 */ 924 for (i = 0; i < vm->maxcpus; i++) { 925 if (CPU_ISSET(i, &vm->active_cpus)) 926 vcpu_notify_event(vm_vcpu(vm, i)); 927 } 928 929 return (0); 930 } 931 932 void 933 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc) 934 { 935 struct vm *vm = vcpu->vm; 936 struct vm_exit *vmexit; 937 938 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 939 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 940 941 vmexit = vm_exitinfo(vcpu); 942 vmexit->pc = pc; 943 vmexit->inst_length = 4; 944 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 945 vmexit->u.suspended.how = vm->suspend; 946 } 947 948 void 949 vm_exit_debug(struct vcpu *vcpu, uint64_t pc) 950 { 951 struct vm_exit *vmexit; 952 953 vmexit = vm_exitinfo(vcpu); 954 vmexit->pc = pc; 955 vmexit->inst_length = 4; 956 vmexit->exitcode = VM_EXITCODE_DEBUG; 957 } 958 959 int 960 vm_activate_cpu(struct vcpu *vcpu) 961 { 962 struct vm *vm = vcpu->vm; 963 964 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 965 return (EBUSY); 966 967 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 968 return (0); 969 970 } 971 972 int 973 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 974 { 975 if (vcpu == NULL) { 976 vm->debug_cpus = vm->active_cpus; 977 for (int i = 0; i < vm->maxcpus; i++) { 978 if (CPU_ISSET(i, &vm->active_cpus)) 979 vcpu_notify_event(vm_vcpu(vm, i)); 980 } 981 } else { 982 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 983 return (EINVAL); 984 985 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 986 vcpu_notify_event(vcpu); 987 } 988 return (0); 989 } 990 991 int 992 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 993 { 994 995 if (vcpu == NULL) { 996 CPU_ZERO(&vm->debug_cpus); 997 } else { 998 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 999 return (EINVAL); 1000 1001 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 1002 } 1003 return (0); 1004 } 1005 1006 int 1007 vcpu_debugged(struct vcpu *vcpu) 1008 { 1009 1010 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 1011 } 1012 1013 cpuset_t 1014 vm_active_cpus(struct vm *vm) 1015 { 1016 1017 return (vm->active_cpus); 1018 } 1019 1020 cpuset_t 1021 vm_debug_cpus(struct vm *vm) 1022 { 1023 1024 return (vm->debug_cpus); 1025 } 1026 1027 cpuset_t 1028 vm_suspended_cpus(struct vm *vm) 1029 { 1030 1031 return (vm->suspended_cpus); 1032 } 1033 1034 1035 void * 1036 vcpu_stats(struct vcpu *vcpu) 1037 { 1038 1039 return (vcpu->stats); 1040 } 1041 1042 /* 1043 * This function is called to ensure that a vcpu "sees" a pending event 1044 * as soon as possible: 1045 * - If the vcpu thread is sleeping then it is woken up. 1046 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1047 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1048 */ 1049 static void 1050 vcpu_notify_event_locked(struct vcpu *vcpu) 1051 { 1052 int hostcpu; 1053 1054 hostcpu = vcpu->hostcpu; 1055 if (vcpu->state == VCPU_RUNNING) { 1056 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1057 if (hostcpu != curcpu) { 1058 ipi_cpu(hostcpu, vmm_ipinum); 1059 } else { 1060 /* 1061 * If the 'vcpu' is running on 'curcpu' then it must 1062 * be sending a notification to itself (e.g. SELF_IPI). 1063 * The pending event will be picked up when the vcpu 1064 * transitions back to guest context. 1065 */ 1066 } 1067 } else { 1068 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1069 "with hostcpu %d", vcpu->state, hostcpu)); 1070 if (vcpu->state == VCPU_SLEEPING) 1071 wakeup_one(vcpu); 1072 } 1073 } 1074 1075 void 1076 vcpu_notify_event(struct vcpu *vcpu) 1077 { 1078 vcpu_lock(vcpu); 1079 vcpu_notify_event_locked(vcpu); 1080 vcpu_unlock(vcpu); 1081 } 1082 1083 static void 1084 restore_guest_fpustate(struct vcpu *vcpu) 1085 { 1086 1087 /* Flush host state to the pcb. */ 1088 fpe_state_save(curthread); 1089 1090 /* Ensure the VFP state will be re-loaded when exiting the guest. */ 1091 PCPU_SET(fpcurthread, NULL); 1092 1093 /* restore guest FPU state */ 1094 fpe_enable(); 1095 fpe_restore(vcpu->guestfpu); 1096 1097 /* 1098 * The FPU is now "dirty" with the guest's state so turn on emulation 1099 * to trap any access to the FPU by the host. 1100 */ 1101 fpe_disable(); 1102 } 1103 1104 static void 1105 save_guest_fpustate(struct vcpu *vcpu) 1106 { 1107 1108 /* Save guest FPE state. */ 1109 fpe_enable(); 1110 fpe_store(vcpu->guestfpu); 1111 fpe_disable(); 1112 1113 KASSERT(PCPU_GET(fpcurthread) == NULL, 1114 ("%s: fpcurthread set with guest registers", __func__)); 1115 } 1116 1117 static int 1118 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1119 bool from_idle) 1120 { 1121 int error; 1122 1123 vcpu_assert_locked(vcpu); 1124 1125 /* 1126 * State transitions from the vmmdev_ioctl() must always begin from 1127 * the VCPU_IDLE state. This guarantees that there is only a single 1128 * ioctl() operating on a vcpu at any point. 1129 */ 1130 if (from_idle) { 1131 while (vcpu->state != VCPU_IDLE) { 1132 vcpu_notify_event_locked(vcpu); 1133 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1134 } 1135 } else { 1136 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1137 "vcpu idle state")); 1138 } 1139 1140 if (vcpu->state == VCPU_RUNNING) { 1141 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1142 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1143 } else { 1144 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1145 "vcpu that is not running", vcpu->hostcpu)); 1146 } 1147 1148 /* 1149 * The following state transitions are allowed: 1150 * IDLE -> FROZEN -> IDLE 1151 * FROZEN -> RUNNING -> FROZEN 1152 * FROZEN -> SLEEPING -> FROZEN 1153 */ 1154 switch (vcpu->state) { 1155 case VCPU_IDLE: 1156 case VCPU_RUNNING: 1157 case VCPU_SLEEPING: 1158 error = (newstate != VCPU_FROZEN); 1159 break; 1160 case VCPU_FROZEN: 1161 error = (newstate == VCPU_FROZEN); 1162 break; 1163 default: 1164 error = 1; 1165 break; 1166 } 1167 1168 if (error) 1169 return (EBUSY); 1170 1171 vcpu->state = newstate; 1172 if (newstate == VCPU_RUNNING) 1173 vcpu->hostcpu = curcpu; 1174 else 1175 vcpu->hostcpu = NOCPU; 1176 1177 if (newstate == VCPU_IDLE) 1178 wakeup(&vcpu->state); 1179 1180 return (0); 1181 } 1182 1183 static void 1184 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1185 { 1186 int error; 1187 1188 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1189 panic("Error %d setting state to %d\n", error, newstate); 1190 } 1191 1192 static void 1193 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1194 { 1195 int error; 1196 1197 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1198 panic("Error %d setting state to %d", error, newstate); 1199 } 1200 1201 int 1202 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 1203 { 1204 1205 if (type < 0 || type >= VM_CAP_MAX) 1206 return (EINVAL); 1207 1208 return (vmmops_getcap(vcpu->cookie, type, retval)); 1209 } 1210 1211 int 1212 vm_set_capability(struct vcpu *vcpu, int type, int val) 1213 { 1214 1215 if (type < 0 || type >= VM_CAP_MAX) 1216 return (EINVAL); 1217 1218 return (vmmops_setcap(vcpu->cookie, type, val)); 1219 } 1220 1221 struct vm * 1222 vcpu_vm(struct vcpu *vcpu) 1223 { 1224 1225 return (vcpu->vm); 1226 } 1227 1228 int 1229 vcpu_vcpuid(struct vcpu *vcpu) 1230 { 1231 1232 return (vcpu->vcpuid); 1233 } 1234 1235 void * 1236 vcpu_get_cookie(struct vcpu *vcpu) 1237 { 1238 1239 return (vcpu->cookie); 1240 } 1241 1242 struct vcpu * 1243 vm_vcpu(struct vm *vm, int vcpuid) 1244 { 1245 1246 return (vm->vcpu[vcpuid]); 1247 } 1248 1249 int 1250 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 1251 { 1252 int error; 1253 1254 vcpu_lock(vcpu); 1255 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1256 vcpu_unlock(vcpu); 1257 1258 return (error); 1259 } 1260 1261 enum vcpu_state 1262 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 1263 { 1264 enum vcpu_state state; 1265 1266 vcpu_lock(vcpu); 1267 state = vcpu->state; 1268 if (hostcpu != NULL) 1269 *hostcpu = vcpu->hostcpu; 1270 vcpu_unlock(vcpu); 1271 1272 return (state); 1273 } 1274 1275 static void * 1276 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1277 void **cookie) 1278 { 1279 int i, count, pageoff; 1280 struct mem_map *mm; 1281 vm_page_t m; 1282 1283 pageoff = gpa & PAGE_MASK; 1284 if (len > PAGE_SIZE - pageoff) 1285 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1286 1287 count = 0; 1288 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1289 mm = &vm->mem_maps[i]; 1290 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 1291 gpa < mm->gpa + mm->len) { 1292 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1293 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1294 break; 1295 } 1296 } 1297 1298 if (count == 1) { 1299 *cookie = m; 1300 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1301 } else { 1302 *cookie = NULL; 1303 return (NULL); 1304 } 1305 } 1306 1307 void * 1308 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1309 void **cookie) 1310 { 1311 #ifdef INVARIANTS 1312 /* 1313 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1314 * stability. 1315 */ 1316 int state = vcpu_get_state(vcpu, NULL); 1317 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1318 __func__, state)); 1319 #endif 1320 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1321 } 1322 1323 void * 1324 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1325 void **cookie) 1326 { 1327 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1328 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1329 } 1330 1331 void 1332 vm_gpa_release(void *cookie) 1333 { 1334 vm_page_t m = cookie; 1335 1336 vm_page_unwire(m, PQ_ACTIVE); 1337 } 1338 1339 int 1340 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1341 { 1342 1343 if (reg >= VM_REG_LAST) 1344 return (EINVAL); 1345 1346 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1347 } 1348 1349 int 1350 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1351 { 1352 int error; 1353 1354 if (reg >= VM_REG_LAST) 1355 return (EINVAL); 1356 error = vmmops_setreg(vcpu->cookie, reg, val); 1357 if (error || reg != VM_REG_GUEST_SEPC) 1358 return (error); 1359 1360 vcpu->nextpc = val; 1361 1362 return (0); 1363 } 1364 1365 void * 1366 vm_get_cookie(struct vm *vm) 1367 { 1368 1369 return (vm->cookie); 1370 } 1371 1372 int 1373 vm_inject_exception(struct vcpu *vcpu, uint64_t scause) 1374 { 1375 1376 return (vmmops_exception(vcpu->cookie, scause)); 1377 } 1378 1379 int 1380 vm_attach_aplic(struct vm *vm, struct vm_aplic_descr *descr) 1381 { 1382 1383 return (aplic_attach_to_vm(vm->cookie, descr)); 1384 } 1385 1386 int 1387 vm_assert_irq(struct vm *vm, uint32_t irq) 1388 { 1389 1390 return (aplic_inject_irq(vm->cookie, -1, irq, true)); 1391 } 1392 1393 int 1394 vm_deassert_irq(struct vm *vm, uint32_t irq) 1395 { 1396 1397 return (aplic_inject_irq(vm->cookie, -1, irq, false)); 1398 } 1399 1400 int 1401 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot, 1402 int func) 1403 { 1404 1405 return (aplic_inject_msi(vm->cookie, msg, addr)); 1406 } 1407 1408 static int 1409 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1410 { 1411 1412 vcpu_lock(vcpu); 1413 1414 while (1) { 1415 if (aplic_check_pending(vcpu->cookie)) 1416 break; 1417 1418 if (riscv_check_ipi(vcpu->cookie, false)) 1419 break; 1420 1421 if (riscv_check_interrupts_pending(vcpu->cookie)) 1422 break; 1423 1424 if (vcpu_should_yield(vcpu)) 1425 break; 1426 1427 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1428 /* 1429 * XXX msleep_spin() cannot be interrupted by signals so 1430 * wake up periodically to check pending signals. 1431 */ 1432 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz); 1433 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1434 } 1435 vcpu_unlock(vcpu); 1436 1437 *retu = false; 1438 1439 return (0); 1440 } 1441 1442 static int 1443 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1444 { 1445 struct vm *vm; 1446 struct vm_exit *vme; 1447 struct vm_map *map; 1448 uint64_t addr; 1449 pmap_t pmap; 1450 int ftype, rv; 1451 1452 vm = vcpu->vm; 1453 vme = &vcpu->exitinfo; 1454 1455 pmap = vmspace_pmap(vm->vmspace); 1456 addr = (vme->htval << 2) & ~(PAGE_SIZE - 1); 1457 1458 dprintf("%s: %lx\n", __func__, addr); 1459 1460 switch (vme->scause) { 1461 case SCAUSE_STORE_GUEST_PAGE_FAULT: 1462 ftype = VM_PROT_WRITE; 1463 break; 1464 case SCAUSE_FETCH_GUEST_PAGE_FAULT: 1465 ftype = VM_PROT_EXECUTE; 1466 break; 1467 case SCAUSE_LOAD_GUEST_PAGE_FAULT: 1468 ftype = VM_PROT_READ; 1469 break; 1470 default: 1471 panic("unknown page trap: %lu", vme->scause); 1472 } 1473 1474 /* The page exists, but the page table needs to be updated. */ 1475 if (pmap_fault(pmap, addr, ftype)) 1476 return (0); 1477 1478 map = &vm->vmspace->vm_map; 1479 rv = vm_fault(map, addr, ftype, VM_FAULT_NORMAL, NULL); 1480 if (rv != KERN_SUCCESS) { 1481 printf("%s: vm_fault failed, addr %lx, ftype %d, err %d\n", 1482 __func__, addr, ftype, rv); 1483 return (EFAULT); 1484 } 1485 1486 return (0); 1487 } 1488 1489 static int 1490 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1491 { 1492 struct vm *vm = vcpu->vm; 1493 int error, i; 1494 struct thread *td; 1495 1496 error = 0; 1497 td = curthread; 1498 1499 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1500 1501 /* 1502 * Wait until all 'active_cpus' have suspended themselves. 1503 * 1504 * Since a VM may be suspended at any time including when one or 1505 * more vcpus are doing a rendezvous we need to call the rendezvous 1506 * handler while we are waiting to prevent a deadlock. 1507 */ 1508 vcpu_lock(vcpu); 1509 while (error == 0) { 1510 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) 1511 break; 1512 1513 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1514 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1515 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1516 if (td_ast_pending(td, TDA_SUSPEND)) { 1517 vcpu_unlock(vcpu); 1518 error = thread_check_susp(td, false); 1519 vcpu_lock(vcpu); 1520 } 1521 } 1522 vcpu_unlock(vcpu); 1523 1524 /* 1525 * Wakeup the other sleeping vcpus and return to userspace. 1526 */ 1527 for (i = 0; i < vm->maxcpus; i++) { 1528 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1529 vcpu_notify_event(vm_vcpu(vm, i)); 1530 } 1531 } 1532 1533 *retu = true; 1534 return (error); 1535 } 1536 1537 int 1538 vm_run(struct vcpu *vcpu) 1539 { 1540 struct vm_eventinfo evinfo; 1541 struct vm_exit *vme; 1542 struct vm *vm; 1543 pmap_t pmap; 1544 int error; 1545 int vcpuid; 1546 bool retu; 1547 1548 vm = vcpu->vm; 1549 1550 dprintf("%s\n", __func__); 1551 1552 vcpuid = vcpu->vcpuid; 1553 1554 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1555 return (EINVAL); 1556 1557 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1558 return (EINVAL); 1559 1560 pmap = vmspace_pmap(vm->vmspace); 1561 vme = &vcpu->exitinfo; 1562 evinfo.rptr = NULL; 1563 evinfo.sptr = &vm->suspend; 1564 evinfo.iptr = NULL; 1565 restart: 1566 critical_enter(); 1567 1568 restore_guest_fpustate(vcpu); 1569 1570 vcpu_require_state(vcpu, VCPU_RUNNING); 1571 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo); 1572 vcpu_require_state(vcpu, VCPU_FROZEN); 1573 1574 save_guest_fpustate(vcpu); 1575 1576 critical_exit(); 1577 1578 if (error == 0) { 1579 retu = false; 1580 switch (vme->exitcode) { 1581 case VM_EXITCODE_INST_EMUL: 1582 vcpu->nextpc = vme->pc + vme->inst_length; 1583 error = vm_handle_inst_emul(vcpu, &retu); 1584 break; 1585 case VM_EXITCODE_WFI: 1586 vcpu->nextpc = vme->pc + vme->inst_length; 1587 error = vm_handle_wfi(vcpu, vme, &retu); 1588 break; 1589 case VM_EXITCODE_ECALL: 1590 /* Handle in userland. */ 1591 vcpu->nextpc = vme->pc + vme->inst_length; 1592 retu = true; 1593 break; 1594 case VM_EXITCODE_PAGING: 1595 vcpu->nextpc = vme->pc; 1596 error = vm_handle_paging(vcpu, &retu); 1597 break; 1598 case VM_EXITCODE_BOGUS: 1599 vcpu->nextpc = vme->pc; 1600 retu = false; 1601 error = 0; 1602 break; 1603 case VM_EXITCODE_SUSPENDED: 1604 vcpu->nextpc = vme->pc; 1605 error = vm_handle_suspend(vcpu, &retu); 1606 break; 1607 default: 1608 /* Handle in userland. */ 1609 vcpu->nextpc = vme->pc; 1610 retu = true; 1611 break; 1612 } 1613 } 1614 1615 if (error == 0 && retu == false) 1616 goto restart; 1617 1618 return (error); 1619 } 1620