1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2015 Mihai Carabas <mihai.carabas@gmail.com> 5 * Copyright (c) 2024 Ruslan Bukin <br@bsdpad.com> 6 * 7 * This software was developed by the University of Cambridge Computer 8 * Laboratory (Department of Computer Science and Technology) under Innovate 9 * UK project 105694, "Digital Security by Design (DSbD) Technology Platform 10 * Prototype". 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/cpuset.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 59 #include <machine/riscvreg.h> 60 #include <machine/cpu.h> 61 #include <machine/fpe.h> 62 #include <machine/machdep.h> 63 #include <machine/pcb.h> 64 #include <machine/smp.h> 65 #include <machine/vm.h> 66 #include <machine/vmparam.h> 67 #include <machine/vmm.h> 68 #include <machine/vmm_instruction_emul.h> 69 70 #include <dev/pci/pcireg.h> 71 72 #include <dev/vmm/vmm_dev.h> 73 #include <dev/vmm/vmm_ktr.h> 74 #include <dev/vmm/vmm_mem.h> 75 76 #include "vmm_stat.h" 77 #include "riscv.h" 78 79 #include "vmm_aplic.h" 80 81 struct vcpu { 82 int flags; 83 enum vcpu_state state; 84 struct mtx mtx; 85 int hostcpu; /* host cpuid this vcpu last ran on */ 86 int vcpuid; 87 void *stats; 88 struct vm_exit exitinfo; 89 uint64_t nextpc; /* (x) next instruction to execute */ 90 struct vm *vm; /* (o) */ 91 void *cookie; /* (i) cpu-specific data */ 92 struct fpreg *guestfpu; /* (a,i) guest fpu state */ 93 }; 94 95 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 96 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 97 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 98 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 99 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 100 101 struct vmm_mmio_region { 102 uint64_t start; 103 uint64_t end; 104 mem_region_read_t read; 105 mem_region_write_t write; 106 }; 107 #define VM_MAX_MMIO_REGIONS 4 108 109 /* 110 * Initialization: 111 * (o) initialized the first time the VM is created 112 * (i) initialized when VM is created and when it is reinitialized 113 * (x) initialized before use 114 */ 115 struct vm { 116 void *cookie; /* (i) cpu-specific data */ 117 volatile cpuset_t active_cpus; /* (i) active vcpus */ 118 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug*/ 119 int suspend; /* (i) stop VM execution */ 120 bool dying; /* (o) is dying */ 121 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 122 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 123 struct vm_mem mem; /* (i) [m+v] guest memory */ 124 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 125 struct vcpu **vcpu; /* (i) guest vcpus */ 126 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS]; 127 /* (o) guest MMIO regions */ 128 /* The following describe the vm cpu topology */ 129 uint16_t sockets; /* (o) num of sockets */ 130 uint16_t cores; /* (o) num of cores/socket */ 131 uint16_t threads; /* (o) num of threads/core */ 132 uint16_t maxcpus; /* (o) max pluggable cpus */ 133 struct sx vcpus_init_lock; /* (o) */ 134 }; 135 136 static bool vmm_initialized = false; 137 138 static MALLOC_DEFINE(M_VMM, "vmm", "vmm"); 139 140 /* statistics */ 141 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 142 143 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 144 145 static int vmm_ipinum; 146 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 147 "IPI vector used for vcpu notifications"); 148 149 u_int vm_maxcpu; 150 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 151 &vm_maxcpu, 0, "Maximum number of vCPUs"); 152 153 static void vcpu_notify_event_locked(struct vcpu *vcpu); 154 155 /* global statistics */ 156 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 157 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq"); 158 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception"); 159 160 /* 161 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this 162 * is a safe value for now. 163 */ 164 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 165 166 static void 167 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 168 { 169 vmmops_vcpu_cleanup(vcpu->cookie); 170 vcpu->cookie = NULL; 171 if (destroy) { 172 vmm_stat_free(vcpu->stats); 173 fpu_save_area_free(vcpu->guestfpu); 174 vcpu_lock_destroy(vcpu); 175 free(vcpu, M_VMM); 176 } 177 } 178 179 static struct vcpu * 180 vcpu_alloc(struct vm *vm, int vcpu_id) 181 { 182 struct vcpu *vcpu; 183 184 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 185 ("vcpu_alloc: invalid vcpu %d", vcpu_id)); 186 187 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO); 188 vcpu_lock_init(vcpu); 189 vcpu->state = VCPU_IDLE; 190 vcpu->hostcpu = NOCPU; 191 vcpu->vcpuid = vcpu_id; 192 vcpu->vm = vm; 193 vcpu->guestfpu = fpu_save_area_alloc(); 194 vcpu->stats = vmm_stat_alloc(); 195 return (vcpu); 196 } 197 198 static void 199 vcpu_init(struct vcpu *vcpu) 200 { 201 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 202 MPASS(vcpu->cookie != NULL); 203 fpu_save_area_reset(vcpu->guestfpu); 204 vmm_stat_init(vcpu->stats); 205 } 206 207 struct vm_exit * 208 vm_exitinfo(struct vcpu *vcpu) 209 { 210 return (&vcpu->exitinfo); 211 } 212 213 static int 214 vmm_init(void) 215 { 216 217 vm_maxcpu = mp_ncpus; 218 219 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 220 221 if (vm_maxcpu > VM_MAXCPU) { 222 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 223 vm_maxcpu = VM_MAXCPU; 224 } 225 226 if (vm_maxcpu == 0) 227 vm_maxcpu = 1; 228 229 return (vmmops_modinit()); 230 } 231 232 static int 233 vmm_handler(module_t mod, int what, void *arg) 234 { 235 int error; 236 237 switch (what) { 238 case MOD_LOAD: 239 error = vmmdev_init(); 240 if (error != 0) 241 break; 242 error = vmm_init(); 243 if (error == 0) 244 vmm_initialized = true; 245 else 246 (void)vmmdev_cleanup(); 247 break; 248 case MOD_UNLOAD: 249 error = vmmdev_cleanup(); 250 if (error == 0 && vmm_initialized) { 251 error = vmmops_modcleanup(); 252 if (error) { 253 /* 254 * Something bad happened - prevent new 255 * VMs from being created 256 */ 257 vmm_initialized = false; 258 } 259 } 260 break; 261 default: 262 error = 0; 263 break; 264 } 265 return (error); 266 } 267 268 static moduledata_t vmm_kmod = { 269 "vmm", 270 vmm_handler, 271 NULL 272 }; 273 274 /* 275 * vmm initialization has the following dependencies: 276 * 277 * - vmm device initialization requires an initialized devfs. 278 */ 279 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_DEVFS + 1, SI_ORDER_ANY); 280 MODULE_VERSION(vmm, 1); 281 282 static void 283 vm_init(struct vm *vm, bool create) 284 { 285 int i; 286 287 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm))); 288 MPASS(vm->cookie != NULL); 289 290 CPU_ZERO(&vm->active_cpus); 291 CPU_ZERO(&vm->debug_cpus); 292 293 vm->suspend = 0; 294 CPU_ZERO(&vm->suspended_cpus); 295 296 memset(vm->mmio_region, 0, sizeof(vm->mmio_region)); 297 298 if (!create) { 299 for (i = 0; i < vm->maxcpus; i++) { 300 if (vm->vcpu[i] != NULL) 301 vcpu_init(vm->vcpu[i]); 302 } 303 } 304 } 305 306 void 307 vm_disable_vcpu_creation(struct vm *vm) 308 { 309 sx_xlock(&vm->vcpus_init_lock); 310 vm->dying = true; 311 sx_xunlock(&vm->vcpus_init_lock); 312 } 313 314 struct vcpu * 315 vm_alloc_vcpu(struct vm *vm, int vcpuid) 316 { 317 struct vcpu *vcpu; 318 319 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 320 return (NULL); 321 322 /* Some interrupt controllers may have a CPU limit */ 323 if (vcpuid >= aplic_max_cpu_count(vm->cookie)) 324 return (NULL); 325 326 vcpu = (struct vcpu *) 327 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 328 if (__predict_true(vcpu != NULL)) 329 return (vcpu); 330 331 sx_xlock(&vm->vcpus_init_lock); 332 vcpu = vm->vcpu[vcpuid]; 333 if (vcpu == NULL && !vm->dying) { 334 vcpu = vcpu_alloc(vm, vcpuid); 335 vcpu_init(vcpu); 336 337 /* 338 * Ensure vCPU is fully created before updating pointer 339 * to permit unlocked reads above. 340 */ 341 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 342 (uintptr_t)vcpu); 343 } 344 sx_xunlock(&vm->vcpus_init_lock); 345 return (vcpu); 346 } 347 348 void 349 vm_lock_vcpus(struct vm *vm) 350 { 351 sx_xlock(&vm->vcpus_init_lock); 352 } 353 354 void 355 vm_unlock_vcpus(struct vm *vm) 356 { 357 sx_unlock(&vm->vcpus_init_lock); 358 } 359 360 int 361 vm_create(const char *name, struct vm **retvm) 362 { 363 struct vm *vm; 364 int error; 365 366 /* 367 * If vmm.ko could not be successfully initialized then don't attempt 368 * to create the virtual machine. 369 */ 370 if (!vmm_initialized) 371 return (ENXIO); 372 373 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 374 return (EINVAL); 375 376 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO); 377 error = vm_mem_init(&vm->mem, 0, 1ul << 39); 378 if (error != 0) { 379 free(vm, M_VMM); 380 return (error); 381 } 382 strcpy(vm->name, name); 383 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 384 385 vm->sockets = 1; 386 vm->cores = 1; /* XXX backwards compatibility */ 387 vm->threads = 1; /* XXX backwards compatibility */ 388 vm->maxcpus = vm_maxcpu; 389 390 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM, 391 M_WAITOK | M_ZERO); 392 393 vm_init(vm, true); 394 395 *retvm = vm; 396 return (0); 397 } 398 399 void 400 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 401 uint16_t *threads, uint16_t *maxcpus) 402 { 403 *sockets = vm->sockets; 404 *cores = vm->cores; 405 *threads = vm->threads; 406 *maxcpus = vm->maxcpus; 407 } 408 409 uint16_t 410 vm_get_maxcpus(struct vm *vm) 411 { 412 return (vm->maxcpus); 413 } 414 415 int 416 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 417 uint16_t threads, uint16_t maxcpus) 418 { 419 /* Ignore maxcpus. */ 420 if ((sockets * cores * threads) > vm->maxcpus) 421 return (EINVAL); 422 vm->sockets = sockets; 423 vm->cores = cores; 424 vm->threads = threads; 425 return(0); 426 } 427 428 static void 429 vm_cleanup(struct vm *vm, bool destroy) 430 { 431 int i; 432 433 if (destroy) 434 vm_xlock_memsegs(vm); 435 else 436 vm_assert_memseg_xlocked(vm); 437 438 aplic_detach_from_vm(vm->cookie); 439 440 for (i = 0; i < vm->maxcpus; i++) { 441 if (vm->vcpu[i] != NULL) 442 vcpu_cleanup(vm->vcpu[i], destroy); 443 } 444 445 vmmops_cleanup(vm->cookie); 446 447 vm_mem_cleanup(vm); 448 if (destroy) { 449 vm_mem_destroy(vm); 450 451 free(vm->vcpu, M_VMM); 452 sx_destroy(&vm->vcpus_init_lock); 453 } 454 } 455 456 void 457 vm_destroy(struct vm *vm) 458 { 459 460 vm_cleanup(vm, true); 461 462 free(vm, M_VMM); 463 } 464 465 int 466 vm_reinit(struct vm *vm) 467 { 468 int error; 469 470 /* 471 * A virtual machine can be reset only if all vcpus are suspended. 472 */ 473 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 474 vm_cleanup(vm, false); 475 vm_init(vm, false); 476 error = 0; 477 } else { 478 error = EBUSY; 479 } 480 481 return (error); 482 } 483 484 const char * 485 vm_name(struct vm *vm) 486 { 487 return (vm->name); 488 } 489 490 int 491 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, 492 uint64_t gla, int prot, uint64_t *gpa, int *is_fault) 493 { 494 return (vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault)); 495 } 496 497 void 498 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size, 499 mem_region_read_t mmio_read, mem_region_write_t mmio_write) 500 { 501 int i; 502 503 for (i = 0; i < nitems(vm->mmio_region); i++) { 504 if (vm->mmio_region[i].start == 0 && 505 vm->mmio_region[i].end == 0) { 506 vm->mmio_region[i].start = start; 507 vm->mmio_region[i].end = start + size; 508 vm->mmio_region[i].read = mmio_read; 509 vm->mmio_region[i].write = mmio_write; 510 return; 511 } 512 } 513 514 panic("%s: No free MMIO region", __func__); 515 } 516 517 void 518 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size) 519 { 520 int i; 521 522 for (i = 0; i < nitems(vm->mmio_region); i++) { 523 if (vm->mmio_region[i].start == start && 524 vm->mmio_region[i].end == start + size) { 525 memset(&vm->mmio_region[i], 0, 526 sizeof(vm->mmio_region[i])); 527 return; 528 } 529 } 530 531 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start, 532 start + size); 533 } 534 535 static int 536 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 537 { 538 struct vm *vm; 539 struct vm_exit *vme; 540 struct vie *vie; 541 struct hyp *hyp; 542 uint64_t fault_ipa; 543 struct vm_guest_paging *paging; 544 struct vmm_mmio_region *vmr; 545 int error, i; 546 547 vm = vcpu->vm; 548 hyp = vm->cookie; 549 if (!hyp->aplic_attached) 550 goto out_user; 551 552 vme = &vcpu->exitinfo; 553 vie = &vme->u.inst_emul.vie; 554 paging = &vme->u.inst_emul.paging; 555 556 fault_ipa = vme->u.inst_emul.gpa; 557 558 vmr = NULL; 559 for (i = 0; i < nitems(vm->mmio_region); i++) { 560 if (vm->mmio_region[i].start <= fault_ipa && 561 vm->mmio_region[i].end > fault_ipa) { 562 vmr = &vm->mmio_region[i]; 563 break; 564 } 565 } 566 if (vmr == NULL) 567 goto out_user; 568 569 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging, 570 vmr->read, vmr->write, retu); 571 return (error); 572 573 out_user: 574 *retu = true; 575 return (0); 576 } 577 578 int 579 vm_suspend(struct vm *vm, enum vm_suspend_how how) 580 { 581 int i; 582 583 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 584 return (EINVAL); 585 586 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 587 VM_CTR2(vm, "virtual machine already suspended %d/%d", 588 vm->suspend, how); 589 return (EALREADY); 590 } 591 592 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 593 594 /* 595 * Notify all active vcpus that they are now suspended. 596 */ 597 for (i = 0; i < vm->maxcpus; i++) { 598 if (CPU_ISSET(i, &vm->active_cpus)) 599 vcpu_notify_event(vm_vcpu(vm, i)); 600 } 601 602 return (0); 603 } 604 605 void 606 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc) 607 { 608 struct vm *vm = vcpu->vm; 609 struct vm_exit *vmexit; 610 611 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 612 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 613 614 vmexit = vm_exitinfo(vcpu); 615 vmexit->pc = pc; 616 vmexit->inst_length = 4; 617 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 618 vmexit->u.suspended.how = vm->suspend; 619 } 620 621 void 622 vm_exit_debug(struct vcpu *vcpu, uint64_t pc) 623 { 624 struct vm_exit *vmexit; 625 626 vmexit = vm_exitinfo(vcpu); 627 vmexit->pc = pc; 628 vmexit->inst_length = 4; 629 vmexit->exitcode = VM_EXITCODE_DEBUG; 630 } 631 632 int 633 vm_activate_cpu(struct vcpu *vcpu) 634 { 635 struct vm *vm = vcpu->vm; 636 637 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 638 return (EBUSY); 639 640 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 641 return (0); 642 643 } 644 645 int 646 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 647 { 648 if (vcpu == NULL) { 649 vm->debug_cpus = vm->active_cpus; 650 for (int i = 0; i < vm->maxcpus; i++) { 651 if (CPU_ISSET(i, &vm->active_cpus)) 652 vcpu_notify_event(vm_vcpu(vm, i)); 653 } 654 } else { 655 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 656 return (EINVAL); 657 658 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 659 vcpu_notify_event(vcpu); 660 } 661 return (0); 662 } 663 664 int 665 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 666 { 667 668 if (vcpu == NULL) { 669 CPU_ZERO(&vm->debug_cpus); 670 } else { 671 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 672 return (EINVAL); 673 674 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 675 } 676 return (0); 677 } 678 679 int 680 vcpu_debugged(struct vcpu *vcpu) 681 { 682 683 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 684 } 685 686 cpuset_t 687 vm_active_cpus(struct vm *vm) 688 { 689 690 return (vm->active_cpus); 691 } 692 693 cpuset_t 694 vm_debug_cpus(struct vm *vm) 695 { 696 697 return (vm->debug_cpus); 698 } 699 700 cpuset_t 701 vm_suspended_cpus(struct vm *vm) 702 { 703 704 return (vm->suspended_cpus); 705 } 706 707 708 void * 709 vcpu_stats(struct vcpu *vcpu) 710 { 711 712 return (vcpu->stats); 713 } 714 715 /* 716 * This function is called to ensure that a vcpu "sees" a pending event 717 * as soon as possible: 718 * - If the vcpu thread is sleeping then it is woken up. 719 * - If the vcpu is running on a different host_cpu then an IPI will be directed 720 * to the host_cpu to cause the vcpu to trap into the hypervisor. 721 */ 722 static void 723 vcpu_notify_event_locked(struct vcpu *vcpu) 724 { 725 int hostcpu; 726 727 hostcpu = vcpu->hostcpu; 728 if (vcpu->state == VCPU_RUNNING) { 729 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 730 if (hostcpu != curcpu) { 731 ipi_cpu(hostcpu, vmm_ipinum); 732 } else { 733 /* 734 * If the 'vcpu' is running on 'curcpu' then it must 735 * be sending a notification to itself (e.g. SELF_IPI). 736 * The pending event will be picked up when the vcpu 737 * transitions back to guest context. 738 */ 739 } 740 } else { 741 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 742 "with hostcpu %d", vcpu->state, hostcpu)); 743 if (vcpu->state == VCPU_SLEEPING) 744 wakeup_one(vcpu); 745 } 746 } 747 748 void 749 vcpu_notify_event(struct vcpu *vcpu) 750 { 751 vcpu_lock(vcpu); 752 vcpu_notify_event_locked(vcpu); 753 vcpu_unlock(vcpu); 754 } 755 756 struct vm_mem * 757 vm_mem(struct vm *vm) 758 { 759 return (&vm->mem); 760 } 761 762 static void 763 restore_guest_fpustate(struct vcpu *vcpu) 764 { 765 766 /* Flush host state to the pcb. */ 767 fpe_state_save(curthread); 768 769 /* Ensure the VFP state will be re-loaded when exiting the guest. */ 770 PCPU_SET(fpcurthread, NULL); 771 772 /* restore guest FPU state */ 773 fpe_enable(); 774 fpe_restore(vcpu->guestfpu); 775 776 /* 777 * The FPU is now "dirty" with the guest's state so turn on emulation 778 * to trap any access to the FPU by the host. 779 */ 780 fpe_disable(); 781 } 782 783 static void 784 save_guest_fpustate(struct vcpu *vcpu) 785 { 786 787 /* Save guest FPE state. */ 788 fpe_enable(); 789 fpe_store(vcpu->guestfpu); 790 fpe_disable(); 791 792 KASSERT(PCPU_GET(fpcurthread) == NULL, 793 ("%s: fpcurthread set with guest registers", __func__)); 794 } 795 796 static int 797 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 798 bool from_idle) 799 { 800 int error; 801 802 vcpu_assert_locked(vcpu); 803 804 /* 805 * State transitions from the vmmdev_ioctl() must always begin from 806 * the VCPU_IDLE state. This guarantees that there is only a single 807 * ioctl() operating on a vcpu at any point. 808 */ 809 if (from_idle) { 810 while (vcpu->state != VCPU_IDLE) { 811 vcpu_notify_event_locked(vcpu); 812 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 813 } 814 } else { 815 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 816 "vcpu idle state")); 817 } 818 819 if (vcpu->state == VCPU_RUNNING) { 820 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 821 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 822 } else { 823 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 824 "vcpu that is not running", vcpu->hostcpu)); 825 } 826 827 /* 828 * The following state transitions are allowed: 829 * IDLE -> FROZEN -> IDLE 830 * FROZEN -> RUNNING -> FROZEN 831 * FROZEN -> SLEEPING -> FROZEN 832 */ 833 switch (vcpu->state) { 834 case VCPU_IDLE: 835 case VCPU_RUNNING: 836 case VCPU_SLEEPING: 837 error = (newstate != VCPU_FROZEN); 838 break; 839 case VCPU_FROZEN: 840 error = (newstate == VCPU_FROZEN); 841 break; 842 default: 843 error = 1; 844 break; 845 } 846 847 if (error) 848 return (EBUSY); 849 850 vcpu->state = newstate; 851 if (newstate == VCPU_RUNNING) 852 vcpu->hostcpu = curcpu; 853 else 854 vcpu->hostcpu = NOCPU; 855 856 if (newstate == VCPU_IDLE) 857 wakeup(&vcpu->state); 858 859 return (0); 860 } 861 862 static void 863 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 864 { 865 int error; 866 867 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 868 panic("Error %d setting state to %d\n", error, newstate); 869 } 870 871 static void 872 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 873 { 874 int error; 875 876 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 877 panic("Error %d setting state to %d", error, newstate); 878 } 879 880 int 881 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 882 { 883 884 if (type < 0 || type >= VM_CAP_MAX) 885 return (EINVAL); 886 887 return (vmmops_getcap(vcpu->cookie, type, retval)); 888 } 889 890 int 891 vm_set_capability(struct vcpu *vcpu, int type, int val) 892 { 893 894 if (type < 0 || type >= VM_CAP_MAX) 895 return (EINVAL); 896 897 return (vmmops_setcap(vcpu->cookie, type, val)); 898 } 899 900 struct vm * 901 vcpu_vm(struct vcpu *vcpu) 902 { 903 904 return (vcpu->vm); 905 } 906 907 int 908 vcpu_vcpuid(struct vcpu *vcpu) 909 { 910 911 return (vcpu->vcpuid); 912 } 913 914 void * 915 vcpu_get_cookie(struct vcpu *vcpu) 916 { 917 918 return (vcpu->cookie); 919 } 920 921 struct vcpu * 922 vm_vcpu(struct vm *vm, int vcpuid) 923 { 924 925 return (vm->vcpu[vcpuid]); 926 } 927 928 int 929 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 930 { 931 int error; 932 933 vcpu_lock(vcpu); 934 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 935 vcpu_unlock(vcpu); 936 937 return (error); 938 } 939 940 enum vcpu_state 941 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 942 { 943 enum vcpu_state state; 944 945 vcpu_lock(vcpu); 946 state = vcpu->state; 947 if (hostcpu != NULL) 948 *hostcpu = vcpu->hostcpu; 949 vcpu_unlock(vcpu); 950 951 return (state); 952 } 953 954 int 955 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 956 { 957 if (reg < 0 || reg >= VM_REG_LAST) 958 return (EINVAL); 959 960 return (vmmops_getreg(vcpu->cookie, reg, retval)); 961 } 962 963 int 964 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 965 { 966 int error; 967 968 if (reg < 0 || reg >= VM_REG_LAST) 969 return (EINVAL); 970 error = vmmops_setreg(vcpu->cookie, reg, val); 971 if (error || reg != VM_REG_GUEST_SEPC) 972 return (error); 973 974 vcpu->nextpc = val; 975 976 return (0); 977 } 978 979 void * 980 vm_get_cookie(struct vm *vm) 981 { 982 983 return (vm->cookie); 984 } 985 986 int 987 vm_inject_exception(struct vcpu *vcpu, uint64_t scause) 988 { 989 990 return (vmmops_exception(vcpu->cookie, scause)); 991 } 992 993 int 994 vm_attach_aplic(struct vm *vm, struct vm_aplic_descr *descr) 995 { 996 997 return (aplic_attach_to_vm(vm->cookie, descr)); 998 } 999 1000 int 1001 vm_assert_irq(struct vm *vm, uint32_t irq) 1002 { 1003 1004 return (aplic_inject_irq(vm->cookie, -1, irq, true)); 1005 } 1006 1007 int 1008 vm_deassert_irq(struct vm *vm, uint32_t irq) 1009 { 1010 1011 return (aplic_inject_irq(vm->cookie, -1, irq, false)); 1012 } 1013 1014 int 1015 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot, 1016 int func) 1017 { 1018 1019 return (aplic_inject_msi(vm->cookie, msg, addr)); 1020 } 1021 1022 static int 1023 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1024 { 1025 struct vm *vm; 1026 1027 vm = vcpu->vm; 1028 vcpu_lock(vcpu); 1029 while (1) { 1030 if (vm->suspend) 1031 break; 1032 1033 if (aplic_check_pending(vcpu->cookie)) 1034 break; 1035 1036 if (riscv_check_ipi(vcpu->cookie, false)) 1037 break; 1038 1039 if (riscv_check_interrupts_pending(vcpu->cookie)) 1040 break; 1041 1042 if (vcpu_should_yield(vcpu)) 1043 break; 1044 1045 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1046 /* 1047 * XXX msleep_spin() cannot be interrupted by signals so 1048 * wake up periodically to check pending signals. 1049 */ 1050 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz); 1051 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1052 } 1053 vcpu_unlock(vcpu); 1054 1055 *retu = false; 1056 1057 return (0); 1058 } 1059 1060 static int 1061 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1062 { 1063 struct vm *vm; 1064 struct vm_exit *vme; 1065 struct vm_map *map; 1066 uint64_t addr; 1067 pmap_t pmap; 1068 int ftype, rv; 1069 1070 vm = vcpu->vm; 1071 vme = &vcpu->exitinfo; 1072 1073 pmap = vmspace_pmap(vm_vmspace(vm)); 1074 addr = (vme->htval << 2) & ~(PAGE_SIZE - 1); 1075 1076 dprintf("%s: %lx\n", __func__, addr); 1077 1078 switch (vme->scause) { 1079 case SCAUSE_STORE_GUEST_PAGE_FAULT: 1080 ftype = VM_PROT_WRITE; 1081 break; 1082 case SCAUSE_FETCH_GUEST_PAGE_FAULT: 1083 ftype = VM_PROT_EXECUTE; 1084 break; 1085 case SCAUSE_LOAD_GUEST_PAGE_FAULT: 1086 ftype = VM_PROT_READ; 1087 break; 1088 default: 1089 panic("unknown page trap: %lu", vme->scause); 1090 } 1091 1092 /* The page exists, but the page table needs to be updated. */ 1093 if (pmap_fault(pmap, addr, ftype)) 1094 return (0); 1095 1096 map = &vm_vmspace(vm)->vm_map; 1097 rv = vm_fault(map, addr, ftype, VM_FAULT_NORMAL, NULL); 1098 if (rv != KERN_SUCCESS) { 1099 printf("%s: vm_fault failed, addr %lx, ftype %d, err %d\n", 1100 __func__, addr, ftype, rv); 1101 return (EFAULT); 1102 } 1103 1104 return (0); 1105 } 1106 1107 static int 1108 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1109 { 1110 struct vm *vm = vcpu->vm; 1111 int error, i; 1112 struct thread *td; 1113 1114 error = 0; 1115 td = curthread; 1116 1117 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1118 1119 /* 1120 * Wait until all 'active_cpus' have suspended themselves. 1121 * 1122 * Since a VM may be suspended at any time including when one or 1123 * more vcpus are doing a rendezvous we need to call the rendezvous 1124 * handler while we are waiting to prevent a deadlock. 1125 */ 1126 vcpu_lock(vcpu); 1127 while (error == 0) { 1128 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) 1129 break; 1130 1131 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1132 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1133 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1134 if (td_ast_pending(td, TDA_SUSPEND)) { 1135 vcpu_unlock(vcpu); 1136 error = thread_check_susp(td, false); 1137 vcpu_lock(vcpu); 1138 } 1139 } 1140 vcpu_unlock(vcpu); 1141 1142 /* 1143 * Wakeup the other sleeping vcpus and return to userspace. 1144 */ 1145 for (i = 0; i < vm->maxcpus; i++) { 1146 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1147 vcpu_notify_event(vm_vcpu(vm, i)); 1148 } 1149 } 1150 1151 *retu = true; 1152 return (error); 1153 } 1154 1155 int 1156 vm_run(struct vcpu *vcpu) 1157 { 1158 struct vm_eventinfo evinfo; 1159 struct vm_exit *vme; 1160 struct vm *vm; 1161 pmap_t pmap; 1162 int error; 1163 int vcpuid; 1164 bool retu; 1165 1166 vm = vcpu->vm; 1167 1168 dprintf("%s\n", __func__); 1169 1170 vcpuid = vcpu->vcpuid; 1171 1172 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1173 return (EINVAL); 1174 1175 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1176 return (EINVAL); 1177 1178 pmap = vmspace_pmap(vm_vmspace(vm)); 1179 vme = &vcpu->exitinfo; 1180 evinfo.rptr = NULL; 1181 evinfo.sptr = &vm->suspend; 1182 evinfo.iptr = NULL; 1183 restart: 1184 critical_enter(); 1185 1186 restore_guest_fpustate(vcpu); 1187 1188 vcpu_require_state(vcpu, VCPU_RUNNING); 1189 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo); 1190 vcpu_require_state(vcpu, VCPU_FROZEN); 1191 1192 save_guest_fpustate(vcpu); 1193 1194 critical_exit(); 1195 1196 if (error == 0) { 1197 retu = false; 1198 switch (vme->exitcode) { 1199 case VM_EXITCODE_INST_EMUL: 1200 vcpu->nextpc = vme->pc + vme->inst_length; 1201 error = vm_handle_inst_emul(vcpu, &retu); 1202 break; 1203 case VM_EXITCODE_WFI: 1204 vcpu->nextpc = vme->pc + vme->inst_length; 1205 error = vm_handle_wfi(vcpu, vme, &retu); 1206 break; 1207 case VM_EXITCODE_ECALL: 1208 /* Handle in userland. */ 1209 vcpu->nextpc = vme->pc + vme->inst_length; 1210 retu = true; 1211 break; 1212 case VM_EXITCODE_PAGING: 1213 vcpu->nextpc = vme->pc; 1214 error = vm_handle_paging(vcpu, &retu); 1215 break; 1216 case VM_EXITCODE_BOGUS: 1217 vcpu->nextpc = vme->pc; 1218 retu = false; 1219 error = 0; 1220 break; 1221 case VM_EXITCODE_SUSPENDED: 1222 vcpu->nextpc = vme->pc; 1223 error = vm_handle_suspend(vcpu, &retu); 1224 break; 1225 default: 1226 /* Handle in userland. */ 1227 vcpu->nextpc = vme->pc; 1228 retu = true; 1229 break; 1230 } 1231 } 1232 1233 if (error == 0 && retu == false) 1234 goto restart; 1235 1236 return (error); 1237 } 1238