1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2015 Mihai Carabas <mihai.carabas@gmail.com> 5 * Copyright (c) 2024 Ruslan Bukin <br@bsdpad.com> 6 * 7 * This software was developed by the University of Cambridge Computer 8 * Laboratory (Department of Computer Science and Technology) under Innovate 9 * UK project 105694, "Digital Security by Design (DSbD) Technology Platform 10 * Prototype". 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/cpuset.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 59 #include <machine/riscvreg.h> 60 #include <machine/cpu.h> 61 #include <machine/fpe.h> 62 #include <machine/machdep.h> 63 #include <machine/pcb.h> 64 #include <machine/smp.h> 65 #include <machine/vm.h> 66 #include <machine/vmparam.h> 67 #include <machine/vmm.h> 68 #include <machine/vmm_instruction_emul.h> 69 70 #include <dev/pci/pcireg.h> 71 72 #include <dev/vmm/vmm_dev.h> 73 #include <dev/vmm/vmm_ktr.h> 74 75 #include "vmm_stat.h" 76 #include "riscv.h" 77 78 #include "vmm_aplic.h" 79 80 struct vcpu { 81 int flags; 82 enum vcpu_state state; 83 struct mtx mtx; 84 int hostcpu; /* host cpuid this vcpu last ran on */ 85 int vcpuid; 86 void *stats; 87 struct vm_exit exitinfo; 88 uint64_t nextpc; /* (x) next instruction to execute */ 89 struct vm *vm; /* (o) */ 90 void *cookie; /* (i) cpu-specific data */ 91 struct fpreg *guestfpu; /* (a,i) guest fpu state */ 92 }; 93 94 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 95 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 96 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 97 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 98 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 99 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 100 101 struct mem_seg { 102 uint64_t gpa; 103 size_t len; 104 bool wired; 105 bool sysmem; 106 vm_object_t object; 107 }; 108 #define VM_MAX_MEMSEGS 3 109 110 struct mem_map { 111 vm_paddr_t gpa; 112 size_t len; 113 vm_ooffset_t segoff; 114 int segid; 115 int prot; 116 int flags; 117 }; 118 #define VM_MAX_MEMMAPS 4 119 120 struct vmm_mmio_region { 121 uint64_t start; 122 uint64_t end; 123 mem_region_read_t read; 124 mem_region_write_t write; 125 }; 126 #define VM_MAX_MMIO_REGIONS 4 127 128 /* 129 * Initialization: 130 * (o) initialized the first time the VM is created 131 * (i) initialized when VM is created and when it is reinitialized 132 * (x) initialized before use 133 */ 134 struct vm { 135 void *cookie; /* (i) cpu-specific data */ 136 volatile cpuset_t active_cpus; /* (i) active vcpus */ 137 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug*/ 138 int suspend; /* (i) stop VM execution */ 139 bool dying; /* (o) is dying */ 140 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 141 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 142 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 143 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 144 struct vmspace *vmspace; /* (o) guest's address space */ 145 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 146 struct vcpu **vcpu; /* (i) guest vcpus */ 147 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS]; 148 /* (o) guest MMIO regions */ 149 /* The following describe the vm cpu topology */ 150 uint16_t sockets; /* (o) num of sockets */ 151 uint16_t cores; /* (o) num of cores/socket */ 152 uint16_t threads; /* (o) num of threads/core */ 153 uint16_t maxcpus; /* (o) max pluggable cpus */ 154 struct sx mem_segs_lock; /* (o) */ 155 struct sx vcpus_init_lock; /* (o) */ 156 }; 157 158 static bool vmm_initialized = false; 159 160 static MALLOC_DEFINE(M_VMM, "vmm", "vmm"); 161 162 /* statistics */ 163 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 164 165 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 166 167 static int vmm_ipinum; 168 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 169 "IPI vector used for vcpu notifications"); 170 171 u_int vm_maxcpu; 172 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 173 &vm_maxcpu, 0, "Maximum number of vCPUs"); 174 175 static void vm_free_memmap(struct vm *vm, int ident); 176 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 177 static void vcpu_notify_event_locked(struct vcpu *vcpu); 178 179 /* 180 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this 181 * is a safe value for now. 182 */ 183 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 184 185 static void 186 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 187 { 188 vmmops_vcpu_cleanup(vcpu->cookie); 189 vcpu->cookie = NULL; 190 if (destroy) { 191 vmm_stat_free(vcpu->stats); 192 fpu_save_area_free(vcpu->guestfpu); 193 vcpu_lock_destroy(vcpu); 194 } 195 } 196 197 static struct vcpu * 198 vcpu_alloc(struct vm *vm, int vcpu_id) 199 { 200 struct vcpu *vcpu; 201 202 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 203 ("vcpu_alloc: invalid vcpu %d", vcpu_id)); 204 205 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO); 206 vcpu_lock_init(vcpu); 207 vcpu->state = VCPU_IDLE; 208 vcpu->hostcpu = NOCPU; 209 vcpu->vcpuid = vcpu_id; 210 vcpu->vm = vm; 211 vcpu->guestfpu = fpu_save_area_alloc(); 212 vcpu->stats = vmm_stat_alloc(); 213 return (vcpu); 214 } 215 216 static void 217 vcpu_init(struct vcpu *vcpu) 218 { 219 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 220 MPASS(vcpu->cookie != NULL); 221 fpu_save_area_reset(vcpu->guestfpu); 222 vmm_stat_init(vcpu->stats); 223 } 224 225 struct vm_exit * 226 vm_exitinfo(struct vcpu *vcpu) 227 { 228 return (&vcpu->exitinfo); 229 } 230 231 static int 232 vmm_init(void) 233 { 234 235 vm_maxcpu = mp_ncpus; 236 237 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 238 239 if (vm_maxcpu > VM_MAXCPU) { 240 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 241 vm_maxcpu = VM_MAXCPU; 242 } 243 244 if (vm_maxcpu == 0) 245 vm_maxcpu = 1; 246 247 return (vmmops_modinit()); 248 } 249 250 static int 251 vmm_handler(module_t mod, int what, void *arg) 252 { 253 int error; 254 255 switch (what) { 256 case MOD_LOAD: 257 /* TODO: check if has_hyp here? */ 258 error = vmmdev_init(); 259 if (error != 0) 260 break; 261 error = vmm_init(); 262 if (error == 0) 263 vmm_initialized = true; 264 break; 265 case MOD_UNLOAD: 266 /* TODO: check if has_hyp here? */ 267 error = vmmdev_cleanup(); 268 if (error == 0 && vmm_initialized) { 269 error = vmmops_modcleanup(); 270 if (error) 271 vmm_initialized = false; 272 } 273 break; 274 default: 275 error = 0; 276 break; 277 } 278 return (error); 279 } 280 281 static moduledata_t vmm_kmod = { 282 "vmm", 283 vmm_handler, 284 NULL 285 }; 286 287 /* 288 * vmm initialization has the following dependencies: 289 * 290 * - HYP initialization requires smp_rendezvous() and therefore must happen 291 * after SMP is fully functional (after SI_SUB_SMP). 292 */ 293 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 294 MODULE_VERSION(vmm, 1); 295 296 static void 297 vm_init(struct vm *vm, bool create) 298 { 299 int i; 300 301 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 302 MPASS(vm->cookie != NULL); 303 304 CPU_ZERO(&vm->active_cpus); 305 CPU_ZERO(&vm->debug_cpus); 306 307 vm->suspend = 0; 308 CPU_ZERO(&vm->suspended_cpus); 309 310 memset(vm->mmio_region, 0, sizeof(vm->mmio_region)); 311 312 if (!create) { 313 for (i = 0; i < vm->maxcpus; i++) { 314 if (vm->vcpu[i] != NULL) 315 vcpu_init(vm->vcpu[i]); 316 } 317 } 318 } 319 320 void 321 vm_disable_vcpu_creation(struct vm *vm) 322 { 323 sx_xlock(&vm->vcpus_init_lock); 324 vm->dying = true; 325 sx_xunlock(&vm->vcpus_init_lock); 326 } 327 328 struct vcpu * 329 vm_alloc_vcpu(struct vm *vm, int vcpuid) 330 { 331 struct vcpu *vcpu; 332 333 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 334 return (NULL); 335 336 /* Some interrupt controllers may have a CPU limit */ 337 if (vcpuid >= aplic_max_cpu_count(vm->cookie)) 338 return (NULL); 339 340 vcpu = (struct vcpu *) 341 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 342 if (__predict_true(vcpu != NULL)) 343 return (vcpu); 344 345 sx_xlock(&vm->vcpus_init_lock); 346 vcpu = vm->vcpu[vcpuid]; 347 if (vcpu == NULL && !vm->dying) { 348 vcpu = vcpu_alloc(vm, vcpuid); 349 vcpu_init(vcpu); 350 351 /* 352 * Ensure vCPU is fully created before updating pointer 353 * to permit unlocked reads above. 354 */ 355 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 356 (uintptr_t)vcpu); 357 } 358 sx_xunlock(&vm->vcpus_init_lock); 359 return (vcpu); 360 } 361 362 void 363 vm_slock_vcpus(struct vm *vm) 364 { 365 sx_slock(&vm->vcpus_init_lock); 366 } 367 368 void 369 vm_unlock_vcpus(struct vm *vm) 370 { 371 sx_unlock(&vm->vcpus_init_lock); 372 } 373 374 int 375 vm_create(const char *name, struct vm **retvm) 376 { 377 struct vm *vm; 378 struct vmspace *vmspace; 379 380 /* 381 * If vmm.ko could not be successfully initialized then don't attempt 382 * to create the virtual machine. 383 */ 384 if (!vmm_initialized) 385 return (ENXIO); 386 387 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 388 return (EINVAL); 389 390 vmspace = vmmops_vmspace_alloc(0, 1ul << 39); 391 if (vmspace == NULL) 392 return (ENOMEM); 393 394 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO); 395 strcpy(vm->name, name); 396 vm->vmspace = vmspace; 397 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 398 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 399 400 vm->sockets = 1; 401 vm->cores = 1; /* XXX backwards compatibility */ 402 vm->threads = 1; /* XXX backwards compatibility */ 403 vm->maxcpus = vm_maxcpu; 404 405 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM, 406 M_WAITOK | M_ZERO); 407 408 vm_init(vm, true); 409 410 *retvm = vm; 411 return (0); 412 } 413 414 void 415 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 416 uint16_t *threads, uint16_t *maxcpus) 417 { 418 *sockets = vm->sockets; 419 *cores = vm->cores; 420 *threads = vm->threads; 421 *maxcpus = vm->maxcpus; 422 } 423 424 uint16_t 425 vm_get_maxcpus(struct vm *vm) 426 { 427 return (vm->maxcpus); 428 } 429 430 int 431 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 432 uint16_t threads, uint16_t maxcpus) 433 { 434 /* Ignore maxcpus. */ 435 if ((sockets * cores * threads) > vm->maxcpus) 436 return (EINVAL); 437 vm->sockets = sockets; 438 vm->cores = cores; 439 vm->threads = threads; 440 return(0); 441 } 442 443 static void 444 vm_cleanup(struct vm *vm, bool destroy) 445 { 446 struct mem_map *mm; 447 int i; 448 449 aplic_detach_from_vm(vm->cookie); 450 451 for (i = 0; i < vm->maxcpus; i++) { 452 if (vm->vcpu[i] != NULL) 453 vcpu_cleanup(vm->vcpu[i], destroy); 454 } 455 456 vmmops_cleanup(vm->cookie); 457 458 /* 459 * System memory is removed from the guest address space only when 460 * the VM is destroyed. This is because the mapping remains the same 461 * across VM reset. 462 * 463 * Device memory can be relocated by the guest (e.g. using PCI BARs) 464 * so those mappings are removed on a VM reset. 465 */ 466 if (!destroy) { 467 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 468 mm = &vm->mem_maps[i]; 469 if (destroy || !sysmem_mapping(vm, mm)) 470 vm_free_memmap(vm, i); 471 } 472 } 473 474 if (destroy) { 475 for (i = 0; i < VM_MAX_MEMSEGS; i++) 476 vm_free_memseg(vm, i); 477 478 vmmops_vmspace_free(vm->vmspace); 479 vm->vmspace = NULL; 480 481 for (i = 0; i < vm->maxcpus; i++) 482 free(vm->vcpu[i], M_VMM); 483 free(vm->vcpu, M_VMM); 484 sx_destroy(&vm->vcpus_init_lock); 485 sx_destroy(&vm->mem_segs_lock); 486 } 487 } 488 489 void 490 vm_destroy(struct vm *vm) 491 { 492 493 vm_cleanup(vm, true); 494 495 free(vm, M_VMM); 496 } 497 498 int 499 vm_reinit(struct vm *vm) 500 { 501 int error; 502 503 /* 504 * A virtual machine can be reset only if all vcpus are suspended. 505 */ 506 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 507 vm_cleanup(vm, false); 508 vm_init(vm, false); 509 error = 0; 510 } else { 511 error = EBUSY; 512 } 513 514 return (error); 515 } 516 517 const char * 518 vm_name(struct vm *vm) 519 { 520 return (vm->name); 521 } 522 523 void 524 vm_slock_memsegs(struct vm *vm) 525 { 526 sx_slock(&vm->mem_segs_lock); 527 } 528 529 void 530 vm_xlock_memsegs(struct vm *vm) 531 { 532 sx_xlock(&vm->mem_segs_lock); 533 } 534 535 void 536 vm_unlock_memsegs(struct vm *vm) 537 { 538 sx_unlock(&vm->mem_segs_lock); 539 } 540 541 /* 542 * Return 'true' if 'gpa' is allocated in the guest address space. 543 * 544 * This function is called in the context of a running vcpu which acts as 545 * an implicit lock on 'vm->mem_maps[]'. 546 */ 547 bool 548 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 549 { 550 struct vm *vm = vcpu->vm; 551 struct mem_map *mm; 552 int i; 553 554 #ifdef INVARIANTS 555 int hostcpu, state; 556 state = vcpu_get_state(vcpu, &hostcpu); 557 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 558 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 559 #endif 560 561 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 562 mm = &vm->mem_maps[i]; 563 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 564 return (true); /* 'gpa' is sysmem or devmem */ 565 } 566 567 return (false); 568 } 569 570 int 571 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 572 { 573 struct mem_seg *seg; 574 vm_object_t obj; 575 576 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 577 578 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 579 return (EINVAL); 580 581 if (len == 0 || (len & PAGE_MASK)) 582 return (EINVAL); 583 584 seg = &vm->mem_segs[ident]; 585 if (seg->object != NULL) { 586 if (seg->len == len && seg->sysmem == sysmem) 587 return (EEXIST); 588 else 589 return (EINVAL); 590 } 591 592 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 593 if (obj == NULL) 594 return (ENOMEM); 595 596 seg->len = len; 597 seg->object = obj; 598 seg->sysmem = sysmem; 599 return (0); 600 } 601 602 int 603 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 604 vm_object_t *objptr) 605 { 606 struct mem_seg *seg; 607 608 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 609 610 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 611 return (EINVAL); 612 613 seg = &vm->mem_segs[ident]; 614 if (len) 615 *len = seg->len; 616 if (sysmem) 617 *sysmem = seg->sysmem; 618 if (objptr) 619 *objptr = seg->object; 620 return (0); 621 } 622 623 void 624 vm_free_memseg(struct vm *vm, int ident) 625 { 626 struct mem_seg *seg; 627 628 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 629 ("%s: invalid memseg ident %d", __func__, ident)); 630 631 seg = &vm->mem_segs[ident]; 632 if (seg->object != NULL) { 633 vm_object_deallocate(seg->object); 634 bzero(seg, sizeof(struct mem_seg)); 635 } 636 } 637 638 int 639 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 640 size_t len, int prot, int flags) 641 { 642 struct mem_seg *seg; 643 struct mem_map *m, *map; 644 vm_ooffset_t last; 645 int i, error; 646 647 dprintf("%s: gpa %lx first %lx len %lx\n", __func__, gpa, first, len); 648 649 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 650 return (EINVAL); 651 652 if (flags & ~VM_MEMMAP_F_WIRED) 653 return (EINVAL); 654 655 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 656 return (EINVAL); 657 658 seg = &vm->mem_segs[segid]; 659 if (seg->object == NULL) 660 return (EINVAL); 661 662 last = first + len; 663 if (first < 0 || first >= last || last > seg->len) 664 return (EINVAL); 665 666 if ((gpa | first | last) & PAGE_MASK) 667 return (EINVAL); 668 669 map = NULL; 670 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 671 m = &vm->mem_maps[i]; 672 if (m->len == 0) { 673 map = m; 674 break; 675 } 676 } 677 678 if (map == NULL) 679 return (ENOSPC); 680 681 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 682 len, 0, VMFS_NO_SPACE, prot, prot, 0); 683 if (error != KERN_SUCCESS) 684 return (EFAULT); 685 686 vm_object_reference(seg->object); 687 688 if (flags & VM_MEMMAP_F_WIRED) { 689 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 690 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 691 if (error != KERN_SUCCESS) { 692 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 693 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 694 EFAULT); 695 } 696 } 697 698 map->gpa = gpa; 699 map->len = len; 700 map->segoff = first; 701 map->segid = segid; 702 map->prot = prot; 703 map->flags = flags; 704 return (0); 705 } 706 707 int 708 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 709 { 710 struct mem_map *m; 711 int i; 712 713 dprintf("%s: gpa %lx len %lx\n", __func__, gpa, len); 714 715 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 716 m = &vm->mem_maps[i]; 717 if (m->gpa == gpa && m->len == len) { 718 vm_free_memmap(vm, i); 719 return (0); 720 } 721 } 722 723 return (EINVAL); 724 } 725 726 int 727 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 728 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 729 { 730 struct mem_map *mm, *mmnext; 731 int i; 732 733 mmnext = NULL; 734 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 735 mm = &vm->mem_maps[i]; 736 if (mm->len == 0 || mm->gpa < *gpa) 737 continue; 738 if (mmnext == NULL || mm->gpa < mmnext->gpa) 739 mmnext = mm; 740 } 741 742 if (mmnext != NULL) { 743 *gpa = mmnext->gpa; 744 if (segid) 745 *segid = mmnext->segid; 746 if (segoff) 747 *segoff = mmnext->segoff; 748 if (len) 749 *len = mmnext->len; 750 if (prot) 751 *prot = mmnext->prot; 752 if (flags) 753 *flags = mmnext->flags; 754 return (0); 755 } else { 756 return (ENOENT); 757 } 758 } 759 760 static void 761 vm_free_memmap(struct vm *vm, int ident) 762 { 763 struct mem_map *mm; 764 int error __diagused; 765 766 mm = &vm->mem_maps[ident]; 767 if (mm->len) { 768 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 769 mm->gpa + mm->len); 770 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 771 __func__, error)); 772 bzero(mm, sizeof(struct mem_map)); 773 } 774 } 775 776 static __inline bool 777 sysmem_mapping(struct vm *vm, struct mem_map *mm) 778 { 779 780 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 781 return (true); 782 else 783 return (false); 784 } 785 786 vm_paddr_t 787 vmm_sysmem_maxaddr(struct vm *vm) 788 { 789 struct mem_map *mm; 790 vm_paddr_t maxaddr; 791 int i; 792 793 maxaddr = 0; 794 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 795 mm = &vm->mem_maps[i]; 796 if (sysmem_mapping(vm, mm)) { 797 if (maxaddr < mm->gpa + mm->len) 798 maxaddr = mm->gpa + mm->len; 799 } 800 } 801 return (maxaddr); 802 } 803 804 int 805 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, 806 uint64_t gla, int prot, uint64_t *gpa, int *is_fault) 807 { 808 int error; 809 810 error = vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault); 811 812 return (error); 813 } 814 815 void 816 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size, 817 mem_region_read_t mmio_read, mem_region_write_t mmio_write) 818 { 819 int i; 820 821 for (i = 0; i < nitems(vm->mmio_region); i++) { 822 if (vm->mmio_region[i].start == 0 && 823 vm->mmio_region[i].end == 0) { 824 vm->mmio_region[i].start = start; 825 vm->mmio_region[i].end = start + size; 826 vm->mmio_region[i].read = mmio_read; 827 vm->mmio_region[i].write = mmio_write; 828 return; 829 } 830 } 831 832 panic("%s: No free MMIO region", __func__); 833 } 834 835 void 836 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size) 837 { 838 int i; 839 840 for (i = 0; i < nitems(vm->mmio_region); i++) { 841 if (vm->mmio_region[i].start == start && 842 vm->mmio_region[i].end == start + size) { 843 memset(&vm->mmio_region[i], 0, 844 sizeof(vm->mmio_region[i])); 845 return; 846 } 847 } 848 849 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start, 850 start + size); 851 } 852 853 static int 854 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 855 { 856 struct vm *vm; 857 struct vm_exit *vme; 858 struct vie *vie; 859 struct hyp *hyp; 860 uint64_t fault_ipa; 861 struct vm_guest_paging *paging; 862 struct vmm_mmio_region *vmr; 863 int error, i; 864 865 vm = vcpu->vm; 866 hyp = vm->cookie; 867 if (!hyp->aplic_attached) 868 goto out_user; 869 870 vme = &vcpu->exitinfo; 871 vie = &vme->u.inst_emul.vie; 872 paging = &vme->u.inst_emul.paging; 873 874 fault_ipa = vme->u.inst_emul.gpa; 875 876 vmr = NULL; 877 for (i = 0; i < nitems(vm->mmio_region); i++) { 878 if (vm->mmio_region[i].start <= fault_ipa && 879 vm->mmio_region[i].end > fault_ipa) { 880 vmr = &vm->mmio_region[i]; 881 break; 882 } 883 } 884 if (vmr == NULL) 885 goto out_user; 886 887 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging, 888 vmr->read, vmr->write, retu); 889 return (error); 890 891 out_user: 892 *retu = true; 893 return (0); 894 } 895 896 int 897 vm_suspend(struct vm *vm, enum vm_suspend_how how) 898 { 899 int i; 900 901 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 902 return (EINVAL); 903 904 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 905 VM_CTR2(vm, "virtual machine already suspended %d/%d", 906 vm->suspend, how); 907 return (EALREADY); 908 } 909 910 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 911 912 /* 913 * Notify all active vcpus that they are now suspended. 914 */ 915 for (i = 0; i < vm->maxcpus; i++) { 916 if (CPU_ISSET(i, &vm->active_cpus)) 917 vcpu_notify_event(vm_vcpu(vm, i)); 918 } 919 920 return (0); 921 } 922 923 void 924 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc) 925 { 926 struct vm *vm = vcpu->vm; 927 struct vm_exit *vmexit; 928 929 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 930 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 931 932 vmexit = vm_exitinfo(vcpu); 933 vmexit->pc = pc; 934 vmexit->inst_length = 4; 935 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 936 vmexit->u.suspended.how = vm->suspend; 937 } 938 939 void 940 vm_exit_debug(struct vcpu *vcpu, uint64_t pc) 941 { 942 struct vm_exit *vmexit; 943 944 vmexit = vm_exitinfo(vcpu); 945 vmexit->pc = pc; 946 vmexit->inst_length = 4; 947 vmexit->exitcode = VM_EXITCODE_DEBUG; 948 } 949 950 int 951 vm_activate_cpu(struct vcpu *vcpu) 952 { 953 struct vm *vm = vcpu->vm; 954 955 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 956 return (EBUSY); 957 958 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 959 return (0); 960 961 } 962 963 int 964 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 965 { 966 if (vcpu == NULL) { 967 vm->debug_cpus = vm->active_cpus; 968 for (int i = 0; i < vm->maxcpus; i++) { 969 if (CPU_ISSET(i, &vm->active_cpus)) 970 vcpu_notify_event(vm_vcpu(vm, i)); 971 } 972 } else { 973 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 974 return (EINVAL); 975 976 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 977 vcpu_notify_event(vcpu); 978 } 979 return (0); 980 } 981 982 int 983 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 984 { 985 986 if (vcpu == NULL) { 987 CPU_ZERO(&vm->debug_cpus); 988 } else { 989 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 990 return (EINVAL); 991 992 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 993 } 994 return (0); 995 } 996 997 int 998 vcpu_debugged(struct vcpu *vcpu) 999 { 1000 1001 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 1002 } 1003 1004 cpuset_t 1005 vm_active_cpus(struct vm *vm) 1006 { 1007 1008 return (vm->active_cpus); 1009 } 1010 1011 cpuset_t 1012 vm_debug_cpus(struct vm *vm) 1013 { 1014 1015 return (vm->debug_cpus); 1016 } 1017 1018 cpuset_t 1019 vm_suspended_cpus(struct vm *vm) 1020 { 1021 1022 return (vm->suspended_cpus); 1023 } 1024 1025 1026 void * 1027 vcpu_stats(struct vcpu *vcpu) 1028 { 1029 1030 return (vcpu->stats); 1031 } 1032 1033 /* 1034 * This function is called to ensure that a vcpu "sees" a pending event 1035 * as soon as possible: 1036 * - If the vcpu thread is sleeping then it is woken up. 1037 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1038 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1039 */ 1040 static void 1041 vcpu_notify_event_locked(struct vcpu *vcpu) 1042 { 1043 int hostcpu; 1044 1045 hostcpu = vcpu->hostcpu; 1046 if (vcpu->state == VCPU_RUNNING) { 1047 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1048 if (hostcpu != curcpu) { 1049 ipi_cpu(hostcpu, vmm_ipinum); 1050 } else { 1051 /* 1052 * If the 'vcpu' is running on 'curcpu' then it must 1053 * be sending a notification to itself (e.g. SELF_IPI). 1054 * The pending event will be picked up when the vcpu 1055 * transitions back to guest context. 1056 */ 1057 } 1058 } else { 1059 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1060 "with hostcpu %d", vcpu->state, hostcpu)); 1061 if (vcpu->state == VCPU_SLEEPING) 1062 wakeup_one(vcpu); 1063 } 1064 } 1065 1066 void 1067 vcpu_notify_event(struct vcpu *vcpu) 1068 { 1069 vcpu_lock(vcpu); 1070 vcpu_notify_event_locked(vcpu); 1071 vcpu_unlock(vcpu); 1072 } 1073 1074 static void 1075 restore_guest_fpustate(struct vcpu *vcpu) 1076 { 1077 1078 /* Flush host state to the pcb. */ 1079 fpe_state_save(curthread); 1080 1081 /* Ensure the VFP state will be re-loaded when exiting the guest. */ 1082 PCPU_SET(fpcurthread, NULL); 1083 1084 /* restore guest FPU state */ 1085 fpe_enable(); 1086 fpe_restore(vcpu->guestfpu); 1087 1088 /* 1089 * The FPU is now "dirty" with the guest's state so turn on emulation 1090 * to trap any access to the FPU by the host. 1091 */ 1092 fpe_disable(); 1093 } 1094 1095 static void 1096 save_guest_fpustate(struct vcpu *vcpu) 1097 { 1098 1099 /* Save guest FPE state. */ 1100 fpe_enable(); 1101 fpe_store(vcpu->guestfpu); 1102 fpe_disable(); 1103 1104 KASSERT(PCPU_GET(fpcurthread) == NULL, 1105 ("%s: fpcurthread set with guest registers", __func__)); 1106 } 1107 1108 static int 1109 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1110 bool from_idle) 1111 { 1112 int error; 1113 1114 vcpu_assert_locked(vcpu); 1115 1116 /* 1117 * State transitions from the vmmdev_ioctl() must always begin from 1118 * the VCPU_IDLE state. This guarantees that there is only a single 1119 * ioctl() operating on a vcpu at any point. 1120 */ 1121 if (from_idle) { 1122 while (vcpu->state != VCPU_IDLE) { 1123 vcpu_notify_event_locked(vcpu); 1124 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", 1125 hz / 1000); 1126 } 1127 } else { 1128 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1129 "vcpu idle state")); 1130 } 1131 1132 if (vcpu->state == VCPU_RUNNING) { 1133 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1134 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1135 } else { 1136 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1137 "vcpu that is not running", vcpu->hostcpu)); 1138 } 1139 1140 /* 1141 * The following state transitions are allowed: 1142 * IDLE -> FROZEN -> IDLE 1143 * FROZEN -> RUNNING -> FROZEN 1144 * FROZEN -> SLEEPING -> FROZEN 1145 */ 1146 switch (vcpu->state) { 1147 case VCPU_IDLE: 1148 case VCPU_RUNNING: 1149 case VCPU_SLEEPING: 1150 error = (newstate != VCPU_FROZEN); 1151 break; 1152 case VCPU_FROZEN: 1153 error = (newstate == VCPU_FROZEN); 1154 break; 1155 default: 1156 error = 1; 1157 break; 1158 } 1159 1160 if (error) 1161 return (EBUSY); 1162 1163 vcpu->state = newstate; 1164 if (newstate == VCPU_RUNNING) 1165 vcpu->hostcpu = curcpu; 1166 else 1167 vcpu->hostcpu = NOCPU; 1168 1169 if (newstate == VCPU_IDLE) 1170 wakeup(&vcpu->state); 1171 1172 return (0); 1173 } 1174 1175 static void 1176 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1177 { 1178 int error; 1179 1180 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1181 panic("Error %d setting state to %d\n", error, newstate); 1182 } 1183 1184 static void 1185 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1186 { 1187 int error; 1188 1189 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1190 panic("Error %d setting state to %d", error, newstate); 1191 } 1192 1193 int 1194 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 1195 { 1196 1197 if (type < 0 || type >= VM_CAP_MAX) 1198 return (EINVAL); 1199 1200 return (vmmops_getcap(vcpu->cookie, type, retval)); 1201 } 1202 1203 int 1204 vm_set_capability(struct vcpu *vcpu, int type, int val) 1205 { 1206 1207 if (type < 0 || type >= VM_CAP_MAX) 1208 return (EINVAL); 1209 1210 return (vmmops_setcap(vcpu->cookie, type, val)); 1211 } 1212 1213 struct vm * 1214 vcpu_vm(struct vcpu *vcpu) 1215 { 1216 1217 return (vcpu->vm); 1218 } 1219 1220 int 1221 vcpu_vcpuid(struct vcpu *vcpu) 1222 { 1223 1224 return (vcpu->vcpuid); 1225 } 1226 1227 void * 1228 vcpu_get_cookie(struct vcpu *vcpu) 1229 { 1230 1231 return (vcpu->cookie); 1232 } 1233 1234 struct vcpu * 1235 vm_vcpu(struct vm *vm, int vcpuid) 1236 { 1237 1238 return (vm->vcpu[vcpuid]); 1239 } 1240 1241 int 1242 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 1243 { 1244 int error; 1245 1246 vcpu_lock(vcpu); 1247 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1248 vcpu_unlock(vcpu); 1249 1250 return (error); 1251 } 1252 1253 enum vcpu_state 1254 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 1255 { 1256 enum vcpu_state state; 1257 1258 vcpu_lock(vcpu); 1259 state = vcpu->state; 1260 if (hostcpu != NULL) 1261 *hostcpu = vcpu->hostcpu; 1262 vcpu_unlock(vcpu); 1263 1264 return (state); 1265 } 1266 1267 static void * 1268 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1269 void **cookie) 1270 { 1271 int i, count, pageoff; 1272 struct mem_map *mm; 1273 vm_page_t m; 1274 1275 pageoff = gpa & PAGE_MASK; 1276 if (len > PAGE_SIZE - pageoff) 1277 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1278 1279 count = 0; 1280 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1281 mm = &vm->mem_maps[i]; 1282 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 1283 gpa < mm->gpa + mm->len) { 1284 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1285 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1286 break; 1287 } 1288 } 1289 1290 if (count == 1) { 1291 *cookie = m; 1292 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1293 } else { 1294 *cookie = NULL; 1295 return (NULL); 1296 } 1297 } 1298 1299 void * 1300 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1301 void **cookie) 1302 { 1303 #ifdef INVARIANTS 1304 /* 1305 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1306 * stability. 1307 */ 1308 int state = vcpu_get_state(vcpu, NULL); 1309 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1310 __func__, state)); 1311 #endif 1312 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1313 } 1314 1315 void * 1316 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1317 void **cookie) 1318 { 1319 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1320 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1321 } 1322 1323 void 1324 vm_gpa_release(void *cookie) 1325 { 1326 vm_page_t m = cookie; 1327 1328 vm_page_unwire(m, PQ_ACTIVE); 1329 } 1330 1331 int 1332 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1333 { 1334 1335 if (reg >= VM_REG_LAST) 1336 return (EINVAL); 1337 1338 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1339 } 1340 1341 int 1342 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1343 { 1344 int error; 1345 1346 if (reg >= VM_REG_LAST) 1347 return (EINVAL); 1348 error = vmmops_setreg(vcpu->cookie, reg, val); 1349 if (error || reg != VM_REG_GUEST_SEPC) 1350 return (error); 1351 1352 vcpu->nextpc = val; 1353 1354 return (0); 1355 } 1356 1357 void * 1358 vm_get_cookie(struct vm *vm) 1359 { 1360 1361 return (vm->cookie); 1362 } 1363 1364 int 1365 vm_inject_exception(struct vcpu *vcpu, uint64_t scause) 1366 { 1367 1368 return (vmmops_exception(vcpu->cookie, scause)); 1369 } 1370 1371 int 1372 vm_attach_aplic(struct vm *vm, struct vm_aplic_descr *descr) 1373 { 1374 1375 return (aplic_attach_to_vm(vm->cookie, descr)); 1376 } 1377 1378 int 1379 vm_assert_irq(struct vm *vm, uint32_t irq) 1380 { 1381 1382 return (aplic_inject_irq(vm->cookie, -1, irq, true)); 1383 } 1384 1385 int 1386 vm_deassert_irq(struct vm *vm, uint32_t irq) 1387 { 1388 1389 return (aplic_inject_irq(vm->cookie, -1, irq, false)); 1390 } 1391 1392 int 1393 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot, 1394 int func) 1395 { 1396 1397 return (aplic_inject_msi(vm->cookie, msg, addr)); 1398 } 1399 1400 static int 1401 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1402 { 1403 1404 vcpu_lock(vcpu); 1405 1406 while (1) { 1407 if (aplic_check_pending(vcpu->cookie)) 1408 break; 1409 1410 if (riscv_check_ipi(vcpu->cookie, false)) 1411 break; 1412 1413 if (vcpu_should_yield(vcpu)) 1414 break; 1415 1416 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1417 /* 1418 * XXX msleep_spin() cannot be interrupted by signals so 1419 * wake up periodically to check pending signals. 1420 */ 1421 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz / 1000); 1422 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1423 } 1424 vcpu_unlock(vcpu); 1425 1426 *retu = false; 1427 1428 return (0); 1429 } 1430 1431 static int 1432 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1433 { 1434 struct vm *vm; 1435 struct vm_exit *vme; 1436 struct vm_map *map; 1437 uint64_t addr; 1438 pmap_t pmap; 1439 int ftype, rv; 1440 1441 vm = vcpu->vm; 1442 vme = &vcpu->exitinfo; 1443 1444 pmap = vmspace_pmap(vm->vmspace); 1445 addr = (vme->htval << 2) & ~(PAGE_SIZE - 1); 1446 1447 dprintf("%s: %lx\n", __func__, addr); 1448 1449 switch (vme->scause) { 1450 case SCAUSE_STORE_GUEST_PAGE_FAULT: 1451 ftype = VM_PROT_WRITE; 1452 break; 1453 case SCAUSE_FETCH_GUEST_PAGE_FAULT: 1454 ftype = VM_PROT_EXECUTE; 1455 break; 1456 case SCAUSE_LOAD_GUEST_PAGE_FAULT: 1457 ftype = VM_PROT_READ; 1458 break; 1459 default: 1460 panic("unknown page trap: %lu", vme->scause); 1461 } 1462 1463 /* The page exists, but the page table needs to be updated. */ 1464 if (pmap_fault(pmap, addr, ftype)) 1465 return (0); 1466 1467 map = &vm->vmspace->vm_map; 1468 rv = vm_fault(map, addr, ftype, VM_FAULT_NORMAL, NULL); 1469 if (rv != KERN_SUCCESS) { 1470 printf("%s: vm_fault failed, addr %lx, ftype %d, err %d\n", 1471 __func__, addr, ftype, rv); 1472 return (EFAULT); 1473 } 1474 1475 return (0); 1476 } 1477 1478 static int 1479 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1480 { 1481 struct vm *vm = vcpu->vm; 1482 int error, i; 1483 struct thread *td; 1484 1485 error = 0; 1486 td = curthread; 1487 1488 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1489 1490 /* 1491 * Wait until all 'active_cpus' have suspended themselves. 1492 * 1493 * Since a VM may be suspended at any time including when one or 1494 * more vcpus are doing a rendezvous we need to call the rendezvous 1495 * handler while we are waiting to prevent a deadlock. 1496 */ 1497 vcpu_lock(vcpu); 1498 while (error == 0) { 1499 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) 1500 break; 1501 1502 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1503 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1504 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1505 if (td_ast_pending(td, TDA_SUSPEND)) { 1506 vcpu_unlock(vcpu); 1507 error = thread_check_susp(td, false); 1508 vcpu_lock(vcpu); 1509 } 1510 } 1511 vcpu_unlock(vcpu); 1512 1513 /* 1514 * Wakeup the other sleeping vcpus and return to userspace. 1515 */ 1516 for (i = 0; i < vm->maxcpus; i++) { 1517 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1518 vcpu_notify_event(vm_vcpu(vm, i)); 1519 } 1520 } 1521 1522 *retu = true; 1523 return (error); 1524 } 1525 1526 int 1527 vm_run(struct vcpu *vcpu) 1528 { 1529 struct vm_eventinfo evinfo; 1530 struct vm_exit *vme; 1531 struct vm *vm; 1532 pmap_t pmap; 1533 int error; 1534 int vcpuid; 1535 bool retu; 1536 1537 vm = vcpu->vm; 1538 1539 dprintf("%s\n", __func__); 1540 1541 vcpuid = vcpu->vcpuid; 1542 1543 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1544 return (EINVAL); 1545 1546 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1547 return (EINVAL); 1548 1549 pmap = vmspace_pmap(vm->vmspace); 1550 vme = &vcpu->exitinfo; 1551 evinfo.rptr = NULL; 1552 evinfo.sptr = &vm->suspend; 1553 evinfo.iptr = NULL; 1554 restart: 1555 critical_enter(); 1556 1557 restore_guest_fpustate(vcpu); 1558 1559 vcpu_require_state(vcpu, VCPU_RUNNING); 1560 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo); 1561 vcpu_require_state(vcpu, VCPU_FROZEN); 1562 1563 save_guest_fpustate(vcpu); 1564 1565 critical_exit(); 1566 1567 if (error == 0) { 1568 retu = false; 1569 switch (vme->exitcode) { 1570 case VM_EXITCODE_INST_EMUL: 1571 vcpu->nextpc = vme->pc + vme->inst_length; 1572 error = vm_handle_inst_emul(vcpu, &retu); 1573 break; 1574 case VM_EXITCODE_WFI: 1575 vcpu->nextpc = vme->pc + vme->inst_length; 1576 error = vm_handle_wfi(vcpu, vme, &retu); 1577 break; 1578 case VM_EXITCODE_ECALL: 1579 /* Handle in userland. */ 1580 vcpu->nextpc = vme->pc + vme->inst_length; 1581 retu = true; 1582 break; 1583 case VM_EXITCODE_PAGING: 1584 vcpu->nextpc = vme->pc; 1585 error = vm_handle_paging(vcpu, &retu); 1586 break; 1587 case VM_EXITCODE_BOGUS: 1588 vcpu->nextpc = vme->pc; 1589 retu = false; 1590 error = 0; 1591 break; 1592 case VM_EXITCODE_SUSPENDED: 1593 vcpu->nextpc = vme->pc; 1594 error = vm_handle_suspend(vcpu, &retu); 1595 break; 1596 default: 1597 /* Handle in userland. */ 1598 vcpu->nextpc = vme->pc; 1599 retu = true; 1600 break; 1601 } 1602 } 1603 1604 if (error == 0 && retu == false) 1605 goto restart; 1606 1607 return (error); 1608 } 1609