1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2015 Mihai Carabas <mihai.carabas@gmail.com> 5 * Copyright (c) 2024 Ruslan Bukin <br@bsdpad.com> 6 * 7 * This software was developed by the University of Cambridge Computer 8 * Laboratory (Department of Computer Science and Technology) under Innovate 9 * UK project 105694, "Digital Security by Design (DSbD) Technology Platform 10 * Prototype". 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/cpuset.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/pcpu.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 59 #include <machine/riscvreg.h> 60 #include <machine/cpu.h> 61 #include <machine/fpe.h> 62 #include <machine/machdep.h> 63 #include <machine/pcb.h> 64 #include <machine/smp.h> 65 #include <machine/vm.h> 66 #include <machine/vmparam.h> 67 #include <machine/vmm.h> 68 #include <machine/vmm_instruction_emul.h> 69 70 #include <dev/pci/pcireg.h> 71 72 #include <dev/vmm/vmm_dev.h> 73 #include <dev/vmm/vmm_ktr.h> 74 75 #include "vmm_stat.h" 76 #include "riscv.h" 77 78 #include "vmm_aplic.h" 79 80 struct vcpu { 81 int flags; 82 enum vcpu_state state; 83 struct mtx mtx; 84 int hostcpu; /* host cpuid this vcpu last ran on */ 85 int vcpuid; 86 void *stats; 87 struct vm_exit exitinfo; 88 uint64_t nextpc; /* (x) next instruction to execute */ 89 struct vm *vm; /* (o) */ 90 void *cookie; /* (i) cpu-specific data */ 91 struct fpreg *guestfpu; /* (a,i) guest fpu state */ 92 }; 93 94 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 95 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 96 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 97 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 98 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 99 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 100 101 struct mem_seg { 102 uint64_t gpa; 103 size_t len; 104 bool wired; 105 bool sysmem; 106 vm_object_t object; 107 }; 108 #define VM_MAX_MEMSEGS 3 109 110 struct mem_map { 111 vm_paddr_t gpa; 112 size_t len; 113 vm_ooffset_t segoff; 114 int segid; 115 int prot; 116 int flags; 117 }; 118 #define VM_MAX_MEMMAPS 4 119 120 struct vmm_mmio_region { 121 uint64_t start; 122 uint64_t end; 123 mem_region_read_t read; 124 mem_region_write_t write; 125 }; 126 #define VM_MAX_MMIO_REGIONS 4 127 128 /* 129 * Initialization: 130 * (o) initialized the first time the VM is created 131 * (i) initialized when VM is created and when it is reinitialized 132 * (x) initialized before use 133 */ 134 struct vm { 135 void *cookie; /* (i) cpu-specific data */ 136 volatile cpuset_t active_cpus; /* (i) active vcpus */ 137 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug*/ 138 int suspend; /* (i) stop VM execution */ 139 bool dying; /* (o) is dying */ 140 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 141 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 142 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 143 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 144 struct vmspace *vmspace; /* (o) guest's address space */ 145 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 146 struct vcpu **vcpu; /* (i) guest vcpus */ 147 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS]; 148 /* (o) guest MMIO regions */ 149 /* The following describe the vm cpu topology */ 150 uint16_t sockets; /* (o) num of sockets */ 151 uint16_t cores; /* (o) num of cores/socket */ 152 uint16_t threads; /* (o) num of threads/core */ 153 uint16_t maxcpus; /* (o) max pluggable cpus */ 154 struct sx mem_segs_lock; /* (o) */ 155 struct sx vcpus_init_lock; /* (o) */ 156 }; 157 158 static bool vmm_initialized = false; 159 160 static MALLOC_DEFINE(M_VMM, "vmm", "vmm"); 161 162 /* statistics */ 163 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 164 165 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 166 167 static int vmm_ipinum; 168 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 169 "IPI vector used for vcpu notifications"); 170 171 u_int vm_maxcpu; 172 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 173 &vm_maxcpu, 0, "Maximum number of vCPUs"); 174 175 static void vm_free_memmap(struct vm *vm, int ident); 176 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 177 static void vcpu_notify_event_locked(struct vcpu *vcpu); 178 179 /* 180 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this 181 * is a safe value for now. 182 */ 183 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 184 185 static void 186 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 187 { 188 vmmops_vcpu_cleanup(vcpu->cookie); 189 vcpu->cookie = NULL; 190 if (destroy) { 191 vmm_stat_free(vcpu->stats); 192 fpu_save_area_free(vcpu->guestfpu); 193 vcpu_lock_destroy(vcpu); 194 } 195 } 196 197 static struct vcpu * 198 vcpu_alloc(struct vm *vm, int vcpu_id) 199 { 200 struct vcpu *vcpu; 201 202 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 203 ("vcpu_alloc: invalid vcpu %d", vcpu_id)); 204 205 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO); 206 vcpu_lock_init(vcpu); 207 vcpu->state = VCPU_IDLE; 208 vcpu->hostcpu = NOCPU; 209 vcpu->vcpuid = vcpu_id; 210 vcpu->vm = vm; 211 vcpu->guestfpu = fpu_save_area_alloc(); 212 vcpu->stats = vmm_stat_alloc(); 213 return (vcpu); 214 } 215 216 static void 217 vcpu_init(struct vcpu *vcpu) 218 { 219 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 220 MPASS(vcpu->cookie != NULL); 221 fpu_save_area_reset(vcpu->guestfpu); 222 vmm_stat_init(vcpu->stats); 223 } 224 225 struct vm_exit * 226 vm_exitinfo(struct vcpu *vcpu) 227 { 228 return (&vcpu->exitinfo); 229 } 230 231 static int 232 vmm_init(void) 233 { 234 235 vm_maxcpu = mp_ncpus; 236 237 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 238 239 if (vm_maxcpu > VM_MAXCPU) { 240 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 241 vm_maxcpu = VM_MAXCPU; 242 } 243 244 if (vm_maxcpu == 0) 245 vm_maxcpu = 1; 246 247 return (vmmops_modinit()); 248 } 249 250 static int 251 vmm_handler(module_t mod, int what, void *arg) 252 { 253 int error; 254 255 switch (what) { 256 case MOD_LOAD: 257 /* TODO: check if has_hyp here? */ 258 error = vmmdev_init(); 259 if (error != 0) 260 break; 261 error = vmm_init(); 262 if (error == 0) 263 vmm_initialized = true; 264 break; 265 case MOD_UNLOAD: 266 /* TODO: check if has_hyp here? */ 267 error = vmmdev_cleanup(); 268 if (error == 0 && vmm_initialized) { 269 error = vmmops_modcleanup(); 270 if (error) 271 vmm_initialized = false; 272 } 273 break; 274 default: 275 error = 0; 276 break; 277 } 278 return (error); 279 } 280 281 static moduledata_t vmm_kmod = { 282 "vmm", 283 vmm_handler, 284 NULL 285 }; 286 287 /* 288 * vmm initialization has the following dependencies: 289 * 290 * - vmm device initialization requires an initialized devfs. 291 */ 292 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_DEVFS + 1, SI_ORDER_ANY); 293 MODULE_VERSION(vmm, 1); 294 295 static void 296 vm_init(struct vm *vm, bool create) 297 { 298 int i; 299 300 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 301 MPASS(vm->cookie != NULL); 302 303 CPU_ZERO(&vm->active_cpus); 304 CPU_ZERO(&vm->debug_cpus); 305 306 vm->suspend = 0; 307 CPU_ZERO(&vm->suspended_cpus); 308 309 memset(vm->mmio_region, 0, sizeof(vm->mmio_region)); 310 311 if (!create) { 312 for (i = 0; i < vm->maxcpus; i++) { 313 if (vm->vcpu[i] != NULL) 314 vcpu_init(vm->vcpu[i]); 315 } 316 } 317 } 318 319 void 320 vm_disable_vcpu_creation(struct vm *vm) 321 { 322 sx_xlock(&vm->vcpus_init_lock); 323 vm->dying = true; 324 sx_xunlock(&vm->vcpus_init_lock); 325 } 326 327 struct vcpu * 328 vm_alloc_vcpu(struct vm *vm, int vcpuid) 329 { 330 struct vcpu *vcpu; 331 332 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 333 return (NULL); 334 335 /* Some interrupt controllers may have a CPU limit */ 336 if (vcpuid >= aplic_max_cpu_count(vm->cookie)) 337 return (NULL); 338 339 vcpu = (struct vcpu *) 340 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 341 if (__predict_true(vcpu != NULL)) 342 return (vcpu); 343 344 sx_xlock(&vm->vcpus_init_lock); 345 vcpu = vm->vcpu[vcpuid]; 346 if (vcpu == NULL && !vm->dying) { 347 vcpu = vcpu_alloc(vm, vcpuid); 348 vcpu_init(vcpu); 349 350 /* 351 * Ensure vCPU is fully created before updating pointer 352 * to permit unlocked reads above. 353 */ 354 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 355 (uintptr_t)vcpu); 356 } 357 sx_xunlock(&vm->vcpus_init_lock); 358 return (vcpu); 359 } 360 361 void 362 vm_slock_vcpus(struct vm *vm) 363 { 364 sx_slock(&vm->vcpus_init_lock); 365 } 366 367 void 368 vm_unlock_vcpus(struct vm *vm) 369 { 370 sx_unlock(&vm->vcpus_init_lock); 371 } 372 373 int 374 vm_create(const char *name, struct vm **retvm) 375 { 376 struct vm *vm; 377 struct vmspace *vmspace; 378 379 /* 380 * If vmm.ko could not be successfully initialized then don't attempt 381 * to create the virtual machine. 382 */ 383 if (!vmm_initialized) 384 return (ENXIO); 385 386 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 387 return (EINVAL); 388 389 vmspace = vmmops_vmspace_alloc(0, 1ul << 39); 390 if (vmspace == NULL) 391 return (ENOMEM); 392 393 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO); 394 strcpy(vm->name, name); 395 vm->vmspace = vmspace; 396 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 397 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 398 399 vm->sockets = 1; 400 vm->cores = 1; /* XXX backwards compatibility */ 401 vm->threads = 1; /* XXX backwards compatibility */ 402 vm->maxcpus = vm_maxcpu; 403 404 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM, 405 M_WAITOK | M_ZERO); 406 407 vm_init(vm, true); 408 409 *retvm = vm; 410 return (0); 411 } 412 413 void 414 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 415 uint16_t *threads, uint16_t *maxcpus) 416 { 417 *sockets = vm->sockets; 418 *cores = vm->cores; 419 *threads = vm->threads; 420 *maxcpus = vm->maxcpus; 421 } 422 423 uint16_t 424 vm_get_maxcpus(struct vm *vm) 425 { 426 return (vm->maxcpus); 427 } 428 429 int 430 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 431 uint16_t threads, uint16_t maxcpus) 432 { 433 /* Ignore maxcpus. */ 434 if ((sockets * cores * threads) > vm->maxcpus) 435 return (EINVAL); 436 vm->sockets = sockets; 437 vm->cores = cores; 438 vm->threads = threads; 439 return(0); 440 } 441 442 static void 443 vm_cleanup(struct vm *vm, bool destroy) 444 { 445 struct mem_map *mm; 446 int i; 447 448 aplic_detach_from_vm(vm->cookie); 449 450 for (i = 0; i < vm->maxcpus; i++) { 451 if (vm->vcpu[i] != NULL) 452 vcpu_cleanup(vm->vcpu[i], destroy); 453 } 454 455 vmmops_cleanup(vm->cookie); 456 457 /* 458 * System memory is removed from the guest address space only when 459 * the VM is destroyed. This is because the mapping remains the same 460 * across VM reset. 461 * 462 * Device memory can be relocated by the guest (e.g. using PCI BARs) 463 * so those mappings are removed on a VM reset. 464 */ 465 if (!destroy) { 466 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 467 mm = &vm->mem_maps[i]; 468 if (destroy || !sysmem_mapping(vm, mm)) 469 vm_free_memmap(vm, i); 470 } 471 } 472 473 if (destroy) { 474 for (i = 0; i < VM_MAX_MEMSEGS; i++) 475 vm_free_memseg(vm, i); 476 477 vmmops_vmspace_free(vm->vmspace); 478 vm->vmspace = NULL; 479 480 for (i = 0; i < vm->maxcpus; i++) 481 free(vm->vcpu[i], M_VMM); 482 free(vm->vcpu, M_VMM); 483 sx_destroy(&vm->vcpus_init_lock); 484 sx_destroy(&vm->mem_segs_lock); 485 } 486 } 487 488 void 489 vm_destroy(struct vm *vm) 490 { 491 492 vm_cleanup(vm, true); 493 494 free(vm, M_VMM); 495 } 496 497 int 498 vm_reinit(struct vm *vm) 499 { 500 int error; 501 502 /* 503 * A virtual machine can be reset only if all vcpus are suspended. 504 */ 505 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 506 vm_cleanup(vm, false); 507 vm_init(vm, false); 508 error = 0; 509 } else { 510 error = EBUSY; 511 } 512 513 return (error); 514 } 515 516 const char * 517 vm_name(struct vm *vm) 518 { 519 return (vm->name); 520 } 521 522 void 523 vm_slock_memsegs(struct vm *vm) 524 { 525 sx_slock(&vm->mem_segs_lock); 526 } 527 528 void 529 vm_xlock_memsegs(struct vm *vm) 530 { 531 sx_xlock(&vm->mem_segs_lock); 532 } 533 534 void 535 vm_unlock_memsegs(struct vm *vm) 536 { 537 sx_unlock(&vm->mem_segs_lock); 538 } 539 540 /* 541 * Return 'true' if 'gpa' is allocated in the guest address space. 542 * 543 * This function is called in the context of a running vcpu which acts as 544 * an implicit lock on 'vm->mem_maps[]'. 545 */ 546 bool 547 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 548 { 549 struct vm *vm = vcpu->vm; 550 struct mem_map *mm; 551 int i; 552 553 #ifdef INVARIANTS 554 int hostcpu, state; 555 state = vcpu_get_state(vcpu, &hostcpu); 556 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 557 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 558 #endif 559 560 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 561 mm = &vm->mem_maps[i]; 562 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 563 return (true); /* 'gpa' is sysmem or devmem */ 564 } 565 566 return (false); 567 } 568 569 int 570 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 571 { 572 struct mem_seg *seg; 573 vm_object_t obj; 574 575 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 576 577 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 578 return (EINVAL); 579 580 if (len == 0 || (len & PAGE_MASK)) 581 return (EINVAL); 582 583 seg = &vm->mem_segs[ident]; 584 if (seg->object != NULL) { 585 if (seg->len == len && seg->sysmem == sysmem) 586 return (EEXIST); 587 else 588 return (EINVAL); 589 } 590 591 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 592 if (obj == NULL) 593 return (ENOMEM); 594 595 seg->len = len; 596 seg->object = obj; 597 seg->sysmem = sysmem; 598 return (0); 599 } 600 601 int 602 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 603 vm_object_t *objptr) 604 { 605 struct mem_seg *seg; 606 607 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 608 609 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 610 return (EINVAL); 611 612 seg = &vm->mem_segs[ident]; 613 if (len) 614 *len = seg->len; 615 if (sysmem) 616 *sysmem = seg->sysmem; 617 if (objptr) 618 *objptr = seg->object; 619 return (0); 620 } 621 622 void 623 vm_free_memseg(struct vm *vm, int ident) 624 { 625 struct mem_seg *seg; 626 627 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 628 ("%s: invalid memseg ident %d", __func__, ident)); 629 630 seg = &vm->mem_segs[ident]; 631 if (seg->object != NULL) { 632 vm_object_deallocate(seg->object); 633 bzero(seg, sizeof(struct mem_seg)); 634 } 635 } 636 637 int 638 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 639 size_t len, int prot, int flags) 640 { 641 struct mem_seg *seg; 642 struct mem_map *m, *map; 643 vm_ooffset_t last; 644 int i, error; 645 646 dprintf("%s: gpa %lx first %lx len %lx\n", __func__, gpa, first, len); 647 648 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 649 return (EINVAL); 650 651 if (flags & ~VM_MEMMAP_F_WIRED) 652 return (EINVAL); 653 654 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 655 return (EINVAL); 656 657 seg = &vm->mem_segs[segid]; 658 if (seg->object == NULL) 659 return (EINVAL); 660 661 last = first + len; 662 if (first < 0 || first >= last || last > seg->len) 663 return (EINVAL); 664 665 if ((gpa | first | last) & PAGE_MASK) 666 return (EINVAL); 667 668 map = NULL; 669 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 670 m = &vm->mem_maps[i]; 671 if (m->len == 0) { 672 map = m; 673 break; 674 } 675 } 676 677 if (map == NULL) 678 return (ENOSPC); 679 680 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 681 len, 0, VMFS_NO_SPACE, prot, prot, 0); 682 if (error != KERN_SUCCESS) 683 return (EFAULT); 684 685 vm_object_reference(seg->object); 686 687 if (flags & VM_MEMMAP_F_WIRED) { 688 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 689 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 690 if (error != KERN_SUCCESS) { 691 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 692 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 693 EFAULT); 694 } 695 } 696 697 map->gpa = gpa; 698 map->len = len; 699 map->segoff = first; 700 map->segid = segid; 701 map->prot = prot; 702 map->flags = flags; 703 return (0); 704 } 705 706 int 707 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 708 { 709 struct mem_map *m; 710 int i; 711 712 dprintf("%s: gpa %lx len %lx\n", __func__, gpa, len); 713 714 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 715 m = &vm->mem_maps[i]; 716 if (m->gpa == gpa && m->len == len) { 717 vm_free_memmap(vm, i); 718 return (0); 719 } 720 } 721 722 return (EINVAL); 723 } 724 725 int 726 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 727 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 728 { 729 struct mem_map *mm, *mmnext; 730 int i; 731 732 mmnext = NULL; 733 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 734 mm = &vm->mem_maps[i]; 735 if (mm->len == 0 || mm->gpa < *gpa) 736 continue; 737 if (mmnext == NULL || mm->gpa < mmnext->gpa) 738 mmnext = mm; 739 } 740 741 if (mmnext != NULL) { 742 *gpa = mmnext->gpa; 743 if (segid) 744 *segid = mmnext->segid; 745 if (segoff) 746 *segoff = mmnext->segoff; 747 if (len) 748 *len = mmnext->len; 749 if (prot) 750 *prot = mmnext->prot; 751 if (flags) 752 *flags = mmnext->flags; 753 return (0); 754 } else { 755 return (ENOENT); 756 } 757 } 758 759 static void 760 vm_free_memmap(struct vm *vm, int ident) 761 { 762 struct mem_map *mm; 763 int error __diagused; 764 765 mm = &vm->mem_maps[ident]; 766 if (mm->len) { 767 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 768 mm->gpa + mm->len); 769 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 770 __func__, error)); 771 bzero(mm, sizeof(struct mem_map)); 772 } 773 } 774 775 static __inline bool 776 sysmem_mapping(struct vm *vm, struct mem_map *mm) 777 { 778 779 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 780 return (true); 781 else 782 return (false); 783 } 784 785 vm_paddr_t 786 vmm_sysmem_maxaddr(struct vm *vm) 787 { 788 struct mem_map *mm; 789 vm_paddr_t maxaddr; 790 int i; 791 792 maxaddr = 0; 793 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 794 mm = &vm->mem_maps[i]; 795 if (sysmem_mapping(vm, mm)) { 796 if (maxaddr < mm->gpa + mm->len) 797 maxaddr = mm->gpa + mm->len; 798 } 799 } 800 return (maxaddr); 801 } 802 803 int 804 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, 805 uint64_t gla, int prot, uint64_t *gpa, int *is_fault) 806 { 807 int error; 808 809 error = vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault); 810 811 return (error); 812 } 813 814 void 815 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size, 816 mem_region_read_t mmio_read, mem_region_write_t mmio_write) 817 { 818 int i; 819 820 for (i = 0; i < nitems(vm->mmio_region); i++) { 821 if (vm->mmio_region[i].start == 0 && 822 vm->mmio_region[i].end == 0) { 823 vm->mmio_region[i].start = start; 824 vm->mmio_region[i].end = start + size; 825 vm->mmio_region[i].read = mmio_read; 826 vm->mmio_region[i].write = mmio_write; 827 return; 828 } 829 } 830 831 panic("%s: No free MMIO region", __func__); 832 } 833 834 void 835 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size) 836 { 837 int i; 838 839 for (i = 0; i < nitems(vm->mmio_region); i++) { 840 if (vm->mmio_region[i].start == start && 841 vm->mmio_region[i].end == start + size) { 842 memset(&vm->mmio_region[i], 0, 843 sizeof(vm->mmio_region[i])); 844 return; 845 } 846 } 847 848 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start, 849 start + size); 850 } 851 852 static int 853 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 854 { 855 struct vm *vm; 856 struct vm_exit *vme; 857 struct vie *vie; 858 struct hyp *hyp; 859 uint64_t fault_ipa; 860 struct vm_guest_paging *paging; 861 struct vmm_mmio_region *vmr; 862 int error, i; 863 864 vm = vcpu->vm; 865 hyp = vm->cookie; 866 if (!hyp->aplic_attached) 867 goto out_user; 868 869 vme = &vcpu->exitinfo; 870 vie = &vme->u.inst_emul.vie; 871 paging = &vme->u.inst_emul.paging; 872 873 fault_ipa = vme->u.inst_emul.gpa; 874 875 vmr = NULL; 876 for (i = 0; i < nitems(vm->mmio_region); i++) { 877 if (vm->mmio_region[i].start <= fault_ipa && 878 vm->mmio_region[i].end > fault_ipa) { 879 vmr = &vm->mmio_region[i]; 880 break; 881 } 882 } 883 if (vmr == NULL) 884 goto out_user; 885 886 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging, 887 vmr->read, vmr->write, retu); 888 return (error); 889 890 out_user: 891 *retu = true; 892 return (0); 893 } 894 895 int 896 vm_suspend(struct vm *vm, enum vm_suspend_how how) 897 { 898 int i; 899 900 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 901 return (EINVAL); 902 903 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 904 VM_CTR2(vm, "virtual machine already suspended %d/%d", 905 vm->suspend, how); 906 return (EALREADY); 907 } 908 909 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 910 911 /* 912 * Notify all active vcpus that they are now suspended. 913 */ 914 for (i = 0; i < vm->maxcpus; i++) { 915 if (CPU_ISSET(i, &vm->active_cpus)) 916 vcpu_notify_event(vm_vcpu(vm, i)); 917 } 918 919 return (0); 920 } 921 922 void 923 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc) 924 { 925 struct vm *vm = vcpu->vm; 926 struct vm_exit *vmexit; 927 928 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 929 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 930 931 vmexit = vm_exitinfo(vcpu); 932 vmexit->pc = pc; 933 vmexit->inst_length = 4; 934 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 935 vmexit->u.suspended.how = vm->suspend; 936 } 937 938 void 939 vm_exit_debug(struct vcpu *vcpu, uint64_t pc) 940 { 941 struct vm_exit *vmexit; 942 943 vmexit = vm_exitinfo(vcpu); 944 vmexit->pc = pc; 945 vmexit->inst_length = 4; 946 vmexit->exitcode = VM_EXITCODE_DEBUG; 947 } 948 949 int 950 vm_activate_cpu(struct vcpu *vcpu) 951 { 952 struct vm *vm = vcpu->vm; 953 954 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 955 return (EBUSY); 956 957 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 958 return (0); 959 960 } 961 962 int 963 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 964 { 965 if (vcpu == NULL) { 966 vm->debug_cpus = vm->active_cpus; 967 for (int i = 0; i < vm->maxcpus; i++) { 968 if (CPU_ISSET(i, &vm->active_cpus)) 969 vcpu_notify_event(vm_vcpu(vm, i)); 970 } 971 } else { 972 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 973 return (EINVAL); 974 975 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 976 vcpu_notify_event(vcpu); 977 } 978 return (0); 979 } 980 981 int 982 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 983 { 984 985 if (vcpu == NULL) { 986 CPU_ZERO(&vm->debug_cpus); 987 } else { 988 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 989 return (EINVAL); 990 991 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 992 } 993 return (0); 994 } 995 996 int 997 vcpu_debugged(struct vcpu *vcpu) 998 { 999 1000 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 1001 } 1002 1003 cpuset_t 1004 vm_active_cpus(struct vm *vm) 1005 { 1006 1007 return (vm->active_cpus); 1008 } 1009 1010 cpuset_t 1011 vm_debug_cpus(struct vm *vm) 1012 { 1013 1014 return (vm->debug_cpus); 1015 } 1016 1017 cpuset_t 1018 vm_suspended_cpus(struct vm *vm) 1019 { 1020 1021 return (vm->suspended_cpus); 1022 } 1023 1024 1025 void * 1026 vcpu_stats(struct vcpu *vcpu) 1027 { 1028 1029 return (vcpu->stats); 1030 } 1031 1032 /* 1033 * This function is called to ensure that a vcpu "sees" a pending event 1034 * as soon as possible: 1035 * - If the vcpu thread is sleeping then it is woken up. 1036 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1037 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1038 */ 1039 static void 1040 vcpu_notify_event_locked(struct vcpu *vcpu) 1041 { 1042 int hostcpu; 1043 1044 hostcpu = vcpu->hostcpu; 1045 if (vcpu->state == VCPU_RUNNING) { 1046 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1047 if (hostcpu != curcpu) { 1048 ipi_cpu(hostcpu, vmm_ipinum); 1049 } else { 1050 /* 1051 * If the 'vcpu' is running on 'curcpu' then it must 1052 * be sending a notification to itself (e.g. SELF_IPI). 1053 * The pending event will be picked up when the vcpu 1054 * transitions back to guest context. 1055 */ 1056 } 1057 } else { 1058 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1059 "with hostcpu %d", vcpu->state, hostcpu)); 1060 if (vcpu->state == VCPU_SLEEPING) 1061 wakeup_one(vcpu); 1062 } 1063 } 1064 1065 void 1066 vcpu_notify_event(struct vcpu *vcpu) 1067 { 1068 vcpu_lock(vcpu); 1069 vcpu_notify_event_locked(vcpu); 1070 vcpu_unlock(vcpu); 1071 } 1072 1073 static void 1074 restore_guest_fpustate(struct vcpu *vcpu) 1075 { 1076 1077 /* Flush host state to the pcb. */ 1078 fpe_state_save(curthread); 1079 1080 /* Ensure the VFP state will be re-loaded when exiting the guest. */ 1081 PCPU_SET(fpcurthread, NULL); 1082 1083 /* restore guest FPU state */ 1084 fpe_enable(); 1085 fpe_restore(vcpu->guestfpu); 1086 1087 /* 1088 * The FPU is now "dirty" with the guest's state so turn on emulation 1089 * to trap any access to the FPU by the host. 1090 */ 1091 fpe_disable(); 1092 } 1093 1094 static void 1095 save_guest_fpustate(struct vcpu *vcpu) 1096 { 1097 1098 /* Save guest FPE state. */ 1099 fpe_enable(); 1100 fpe_store(vcpu->guestfpu); 1101 fpe_disable(); 1102 1103 KASSERT(PCPU_GET(fpcurthread) == NULL, 1104 ("%s: fpcurthread set with guest registers", __func__)); 1105 } 1106 1107 static int 1108 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1109 bool from_idle) 1110 { 1111 int error; 1112 1113 vcpu_assert_locked(vcpu); 1114 1115 /* 1116 * State transitions from the vmmdev_ioctl() must always begin from 1117 * the VCPU_IDLE state. This guarantees that there is only a single 1118 * ioctl() operating on a vcpu at any point. 1119 */ 1120 if (from_idle) { 1121 while (vcpu->state != VCPU_IDLE) { 1122 vcpu_notify_event_locked(vcpu); 1123 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", 1124 hz / 1000); 1125 } 1126 } else { 1127 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1128 "vcpu idle state")); 1129 } 1130 1131 if (vcpu->state == VCPU_RUNNING) { 1132 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1133 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1134 } else { 1135 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1136 "vcpu that is not running", vcpu->hostcpu)); 1137 } 1138 1139 /* 1140 * The following state transitions are allowed: 1141 * IDLE -> FROZEN -> IDLE 1142 * FROZEN -> RUNNING -> FROZEN 1143 * FROZEN -> SLEEPING -> FROZEN 1144 */ 1145 switch (vcpu->state) { 1146 case VCPU_IDLE: 1147 case VCPU_RUNNING: 1148 case VCPU_SLEEPING: 1149 error = (newstate != VCPU_FROZEN); 1150 break; 1151 case VCPU_FROZEN: 1152 error = (newstate == VCPU_FROZEN); 1153 break; 1154 default: 1155 error = 1; 1156 break; 1157 } 1158 1159 if (error) 1160 return (EBUSY); 1161 1162 vcpu->state = newstate; 1163 if (newstate == VCPU_RUNNING) 1164 vcpu->hostcpu = curcpu; 1165 else 1166 vcpu->hostcpu = NOCPU; 1167 1168 if (newstate == VCPU_IDLE) 1169 wakeup(&vcpu->state); 1170 1171 return (0); 1172 } 1173 1174 static void 1175 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1176 { 1177 int error; 1178 1179 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1180 panic("Error %d setting state to %d\n", error, newstate); 1181 } 1182 1183 static void 1184 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1185 { 1186 int error; 1187 1188 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1189 panic("Error %d setting state to %d", error, newstate); 1190 } 1191 1192 int 1193 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 1194 { 1195 1196 if (type < 0 || type >= VM_CAP_MAX) 1197 return (EINVAL); 1198 1199 return (vmmops_getcap(vcpu->cookie, type, retval)); 1200 } 1201 1202 int 1203 vm_set_capability(struct vcpu *vcpu, int type, int val) 1204 { 1205 1206 if (type < 0 || type >= VM_CAP_MAX) 1207 return (EINVAL); 1208 1209 return (vmmops_setcap(vcpu->cookie, type, val)); 1210 } 1211 1212 struct vm * 1213 vcpu_vm(struct vcpu *vcpu) 1214 { 1215 1216 return (vcpu->vm); 1217 } 1218 1219 int 1220 vcpu_vcpuid(struct vcpu *vcpu) 1221 { 1222 1223 return (vcpu->vcpuid); 1224 } 1225 1226 void * 1227 vcpu_get_cookie(struct vcpu *vcpu) 1228 { 1229 1230 return (vcpu->cookie); 1231 } 1232 1233 struct vcpu * 1234 vm_vcpu(struct vm *vm, int vcpuid) 1235 { 1236 1237 return (vm->vcpu[vcpuid]); 1238 } 1239 1240 int 1241 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 1242 { 1243 int error; 1244 1245 vcpu_lock(vcpu); 1246 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1247 vcpu_unlock(vcpu); 1248 1249 return (error); 1250 } 1251 1252 enum vcpu_state 1253 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 1254 { 1255 enum vcpu_state state; 1256 1257 vcpu_lock(vcpu); 1258 state = vcpu->state; 1259 if (hostcpu != NULL) 1260 *hostcpu = vcpu->hostcpu; 1261 vcpu_unlock(vcpu); 1262 1263 return (state); 1264 } 1265 1266 static void * 1267 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1268 void **cookie) 1269 { 1270 int i, count, pageoff; 1271 struct mem_map *mm; 1272 vm_page_t m; 1273 1274 pageoff = gpa & PAGE_MASK; 1275 if (len > PAGE_SIZE - pageoff) 1276 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1277 1278 count = 0; 1279 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1280 mm = &vm->mem_maps[i]; 1281 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 1282 gpa < mm->gpa + mm->len) { 1283 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1284 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1285 break; 1286 } 1287 } 1288 1289 if (count == 1) { 1290 *cookie = m; 1291 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1292 } else { 1293 *cookie = NULL; 1294 return (NULL); 1295 } 1296 } 1297 1298 void * 1299 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1300 void **cookie) 1301 { 1302 #ifdef INVARIANTS 1303 /* 1304 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1305 * stability. 1306 */ 1307 int state = vcpu_get_state(vcpu, NULL); 1308 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1309 __func__, state)); 1310 #endif 1311 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1312 } 1313 1314 void * 1315 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1316 void **cookie) 1317 { 1318 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1319 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1320 } 1321 1322 void 1323 vm_gpa_release(void *cookie) 1324 { 1325 vm_page_t m = cookie; 1326 1327 vm_page_unwire(m, PQ_ACTIVE); 1328 } 1329 1330 int 1331 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1332 { 1333 1334 if (reg >= VM_REG_LAST) 1335 return (EINVAL); 1336 1337 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1338 } 1339 1340 int 1341 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1342 { 1343 int error; 1344 1345 if (reg >= VM_REG_LAST) 1346 return (EINVAL); 1347 error = vmmops_setreg(vcpu->cookie, reg, val); 1348 if (error || reg != VM_REG_GUEST_SEPC) 1349 return (error); 1350 1351 vcpu->nextpc = val; 1352 1353 return (0); 1354 } 1355 1356 void * 1357 vm_get_cookie(struct vm *vm) 1358 { 1359 1360 return (vm->cookie); 1361 } 1362 1363 int 1364 vm_inject_exception(struct vcpu *vcpu, uint64_t scause) 1365 { 1366 1367 return (vmmops_exception(vcpu->cookie, scause)); 1368 } 1369 1370 int 1371 vm_attach_aplic(struct vm *vm, struct vm_aplic_descr *descr) 1372 { 1373 1374 return (aplic_attach_to_vm(vm->cookie, descr)); 1375 } 1376 1377 int 1378 vm_assert_irq(struct vm *vm, uint32_t irq) 1379 { 1380 1381 return (aplic_inject_irq(vm->cookie, -1, irq, true)); 1382 } 1383 1384 int 1385 vm_deassert_irq(struct vm *vm, uint32_t irq) 1386 { 1387 1388 return (aplic_inject_irq(vm->cookie, -1, irq, false)); 1389 } 1390 1391 int 1392 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot, 1393 int func) 1394 { 1395 1396 return (aplic_inject_msi(vm->cookie, msg, addr)); 1397 } 1398 1399 static int 1400 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1401 { 1402 1403 vcpu_lock(vcpu); 1404 1405 while (1) { 1406 if (aplic_check_pending(vcpu->cookie)) 1407 break; 1408 1409 if (riscv_check_ipi(vcpu->cookie, false)) 1410 break; 1411 1412 if (vcpu_should_yield(vcpu)) 1413 break; 1414 1415 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1416 /* 1417 * XXX msleep_spin() cannot be interrupted by signals so 1418 * wake up periodically to check pending signals. 1419 */ 1420 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz / 1000); 1421 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1422 } 1423 vcpu_unlock(vcpu); 1424 1425 *retu = false; 1426 1427 return (0); 1428 } 1429 1430 static int 1431 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1432 { 1433 struct vm *vm; 1434 struct vm_exit *vme; 1435 struct vm_map *map; 1436 uint64_t addr; 1437 pmap_t pmap; 1438 int ftype, rv; 1439 1440 vm = vcpu->vm; 1441 vme = &vcpu->exitinfo; 1442 1443 pmap = vmspace_pmap(vm->vmspace); 1444 addr = (vme->htval << 2) & ~(PAGE_SIZE - 1); 1445 1446 dprintf("%s: %lx\n", __func__, addr); 1447 1448 switch (vme->scause) { 1449 case SCAUSE_STORE_GUEST_PAGE_FAULT: 1450 ftype = VM_PROT_WRITE; 1451 break; 1452 case SCAUSE_FETCH_GUEST_PAGE_FAULT: 1453 ftype = VM_PROT_EXECUTE; 1454 break; 1455 case SCAUSE_LOAD_GUEST_PAGE_FAULT: 1456 ftype = VM_PROT_READ; 1457 break; 1458 default: 1459 panic("unknown page trap: %lu", vme->scause); 1460 } 1461 1462 /* The page exists, but the page table needs to be updated. */ 1463 if (pmap_fault(pmap, addr, ftype)) 1464 return (0); 1465 1466 map = &vm->vmspace->vm_map; 1467 rv = vm_fault(map, addr, ftype, VM_FAULT_NORMAL, NULL); 1468 if (rv != KERN_SUCCESS) { 1469 printf("%s: vm_fault failed, addr %lx, ftype %d, err %d\n", 1470 __func__, addr, ftype, rv); 1471 return (EFAULT); 1472 } 1473 1474 return (0); 1475 } 1476 1477 static int 1478 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1479 { 1480 struct vm *vm = vcpu->vm; 1481 int error, i; 1482 struct thread *td; 1483 1484 error = 0; 1485 td = curthread; 1486 1487 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1488 1489 /* 1490 * Wait until all 'active_cpus' have suspended themselves. 1491 * 1492 * Since a VM may be suspended at any time including when one or 1493 * more vcpus are doing a rendezvous we need to call the rendezvous 1494 * handler while we are waiting to prevent a deadlock. 1495 */ 1496 vcpu_lock(vcpu); 1497 while (error == 0) { 1498 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) 1499 break; 1500 1501 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1502 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1503 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1504 if (td_ast_pending(td, TDA_SUSPEND)) { 1505 vcpu_unlock(vcpu); 1506 error = thread_check_susp(td, false); 1507 vcpu_lock(vcpu); 1508 } 1509 } 1510 vcpu_unlock(vcpu); 1511 1512 /* 1513 * Wakeup the other sleeping vcpus and return to userspace. 1514 */ 1515 for (i = 0; i < vm->maxcpus; i++) { 1516 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1517 vcpu_notify_event(vm_vcpu(vm, i)); 1518 } 1519 } 1520 1521 *retu = true; 1522 return (error); 1523 } 1524 1525 int 1526 vm_run(struct vcpu *vcpu) 1527 { 1528 struct vm_eventinfo evinfo; 1529 struct vm_exit *vme; 1530 struct vm *vm; 1531 pmap_t pmap; 1532 int error; 1533 int vcpuid; 1534 bool retu; 1535 1536 vm = vcpu->vm; 1537 1538 dprintf("%s\n", __func__); 1539 1540 vcpuid = vcpu->vcpuid; 1541 1542 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1543 return (EINVAL); 1544 1545 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1546 return (EINVAL); 1547 1548 pmap = vmspace_pmap(vm->vmspace); 1549 vme = &vcpu->exitinfo; 1550 evinfo.rptr = NULL; 1551 evinfo.sptr = &vm->suspend; 1552 evinfo.iptr = NULL; 1553 restart: 1554 critical_enter(); 1555 1556 restore_guest_fpustate(vcpu); 1557 1558 vcpu_require_state(vcpu, VCPU_RUNNING); 1559 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo); 1560 vcpu_require_state(vcpu, VCPU_FROZEN); 1561 1562 save_guest_fpustate(vcpu); 1563 1564 critical_exit(); 1565 1566 if (error == 0) { 1567 retu = false; 1568 switch (vme->exitcode) { 1569 case VM_EXITCODE_INST_EMUL: 1570 vcpu->nextpc = vme->pc + vme->inst_length; 1571 error = vm_handle_inst_emul(vcpu, &retu); 1572 break; 1573 case VM_EXITCODE_WFI: 1574 vcpu->nextpc = vme->pc + vme->inst_length; 1575 error = vm_handle_wfi(vcpu, vme, &retu); 1576 break; 1577 case VM_EXITCODE_ECALL: 1578 /* Handle in userland. */ 1579 vcpu->nextpc = vme->pc + vme->inst_length; 1580 retu = true; 1581 break; 1582 case VM_EXITCODE_PAGING: 1583 vcpu->nextpc = vme->pc; 1584 error = vm_handle_paging(vcpu, &retu); 1585 break; 1586 case VM_EXITCODE_BOGUS: 1587 vcpu->nextpc = vme->pc; 1588 retu = false; 1589 error = 0; 1590 break; 1591 case VM_EXITCODE_SUSPENDED: 1592 vcpu->nextpc = vme->pc; 1593 error = vm_handle_suspend(vcpu, &retu); 1594 break; 1595 default: 1596 /* Handle in userland. */ 1597 vcpu->nextpc = vme->pc; 1598 retu = true; 1599 break; 1600 } 1601 } 1602 1603 if (error == 0 && retu == false) 1604 goto restart; 1605 1606 return (error); 1607 } 1608