xref: /freebsd/sys/riscv/include/vmparam.h (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *	from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
34  */
35 
36 #ifndef	_MACHINE_VMPARAM_H_
37 #define	_MACHINE_VMPARAM_H_
38 
39 /*
40  * Virtual memory related constants, all in bytes
41  */
42 #ifndef MAXTSIZ
43 #define	MAXTSIZ		(1*1024*1024*1024)	/* max text size */
44 #endif
45 #ifndef DFLDSIZ
46 #define	DFLDSIZ		(128*1024*1024)		/* initial data size limit */
47 #endif
48 #ifndef MAXDSIZ
49 #define	MAXDSIZ		(1*1024*1024*1024)	/* max data size */
50 #endif
51 #ifndef DFLSSIZ
52 #define	DFLSSIZ		(128*1024*1024)		/* initial stack size limit */
53 #endif
54 #ifndef MAXSSIZ
55 #define	MAXSSIZ		(1*1024*1024*1024)	/* max stack size */
56 #endif
57 #ifndef SGROWSIZ
58 #define	SGROWSIZ	(128*1024)		/* amount to grow stack */
59 #endif
60 
61 /*
62  * The physical address space is sparsely populated.
63  */
64 #define	VM_PHYSSEG_SPARSE
65 
66 /*
67  * The number of PHYSSEG entries.
68  */
69 #define	VM_PHYSSEG_MAX		64
70 
71 /*
72  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
73  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
74  * the pool from which physical pages for small UMA objects are
75  * allocated.
76  */
77 #define	VM_NFREEPOOL		2
78 #define	VM_FREEPOOL_DEFAULT	0
79 #define	VM_FREEPOOL_DIRECT	1
80 
81 /*
82  * Create one free page list: VM_FREELIST_DEFAULT is for all physical
83  * pages.
84  */
85 #define	VM_NFREELIST		1
86 #define	VM_FREELIST_DEFAULT	0
87 
88 /*
89  * An allocation size of 16MB is supported in order to optimize the
90  * use of the direct map by UMA.  Specifically, a cache line contains
91  * at most four TTEs, collectively mapping 16MB of physical memory.
92  * By reducing the number of distinct 16MB "pages" that are used by UMA,
93  * the physical memory allocator reduces the likelihood of both 4MB
94  * page TLB misses and cache misses caused by 4MB page TLB misses.
95  */
96 #define	VM_NFREEORDER		12
97 
98 /*
99  * Enable superpage reservations: 1 level.
100  */
101 #ifndef	VM_NRESERVLEVEL
102 #define	VM_NRESERVLEVEL		1
103 #endif
104 
105 /*
106  * Level 0 reservations consist of 512 pages.
107  */
108 #ifndef	VM_LEVEL_0_ORDER
109 #define	VM_LEVEL_0_ORDER	9
110 #endif
111 
112 /**
113  * Address space layout.
114  *
115  * RISC-V implements multiple paging modes with different virtual address space
116  * sizes: SV32, SV39, SV48 and SV57.  Only SV39 and SV48 are supported by
117  * FreeBSD.  SV39 provides a 512GB virtual address space and uses three-level
118  * page tables, while SV48 provides a 256TB virtual address space and uses
119  * four-level page tables.  64-bit RISC-V implementations are required to provide
120  * at least SV39 mode; locore initially enables SV39 mode while bootstrapping
121  * page tables, and pmap_bootstrap() optionally switches to SV48 mode.
122  *
123  * The address space is split into two regions at each end of the 64-bit address
124  * space; the lower region is for use by user mode software, while the upper
125  * region is used for various kernel maps.  The kernel map layout in SV48 mode
126  * is currently identical to that used in SV39 mode.
127  *
128  * SV39 memory map:
129  * 0x0000000000000000 - 0x0000003fffffffff    256GB user map
130  * 0x0000004000000000 - 0xffffffbfffffffff    unmappable
131  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
132  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
133  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
134  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
135  *
136  * SV48 memory map:
137  * 0x0000000000000000 - 0x00007fffffffffff    128TB user map
138  * 0x0000800000000000 - 0xffff7fffffffffff    unmappable
139  * 0xffff800000000000 - 0xffffffc7ffffffff    127.75TB hole
140  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
141  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
142  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
143  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
144  *
145  * The kernel is loaded at the beginning of the kernel map.
146  *
147  * We define some interesting address constants:
148  *
149  * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
150  * 64 bit address space, mostly just for convenience.
151  *
152  * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
153  * mappable kernel virtual address space.
154  *
155  * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
156  * user address space.
157  */
158 #define	VM_MIN_ADDRESS		(0x0000000000000000UL)
159 #define	VM_MAX_ADDRESS		(0xffffffffffffffffUL)
160 
161 #define	VM_MIN_KERNEL_ADDRESS	(0xffffffc000000000UL)
162 #define	VM_MAX_KERNEL_ADDRESS	(0xffffffc800000000UL)
163 
164 #define	DMAP_MIN_ADDRESS	(0xffffffd000000000UL)
165 #define	DMAP_MAX_ADDRESS	(0xfffffff000000000UL)
166 
167 #define	DMAP_MIN_PHYSADDR	(dmap_phys_base)
168 #define	DMAP_MAX_PHYSADDR	(dmap_phys_max)
169 
170 /* True if pa is in the dmap range */
171 #define	PHYS_IN_DMAP(pa)	((pa) >= DMAP_MIN_PHYSADDR && \
172     (pa) < DMAP_MAX_PHYSADDR)
173 /* True if va is in the dmap range */
174 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS && \
175     (va) < (dmap_max_addr))
176 
177 #define	PMAP_HAS_DMAP	1
178 #define	PHYS_TO_DMAP(pa)						\
179 ({									\
180 	KASSERT(PHYS_IN_DMAP(pa),					\
181 	    ("%s: PA out of range, PA: 0x%lx", __func__,		\
182 	    (vm_paddr_t)(pa)));						\
183 	((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS;			\
184 })
185 
186 #define	DMAP_TO_PHYS(va)						\
187 ({									\
188 	KASSERT(VIRT_IN_DMAP(va),					\
189 	    ("%s: VA out of range, VA: 0x%lx", __func__,		\
190 	    (vm_offset_t)(va)));					\
191 	((va) - DMAP_MIN_ADDRESS) + dmap_phys_base;			\
192 })
193 
194 #define	VM_MIN_USER_ADDRESS		(0x0000000000000000UL)
195 #define	VM_MAX_USER_ADDRESS_SV39	(0x0000004000000000UL)
196 #define	VM_MAX_USER_ADDRESS_SV48	(0x0000800000000000UL)
197 #define	VM_MAX_USER_ADDRESS		VM_MAX_USER_ADDRESS_SV48
198 
199 #define	VM_MINUSER_ADDRESS	(VM_MIN_USER_ADDRESS)
200 #define	VM_MAXUSER_ADDRESS	(VM_MAX_USER_ADDRESS)
201 
202 #define	KERNBASE		(VM_MIN_KERNEL_ADDRESS)
203 #define	SHAREDPAGE_SV39		(VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE)
204 #define	SHAREDPAGE_SV48		(VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE)
205 #define	SHAREDPAGE		SHAREDPAGE_SV48
206 #define	USRSTACK_SV39		SHAREDPAGE_SV39
207 #define	USRSTACK_SV48		SHAREDPAGE_SV48
208 #define	USRSTACK		USRSTACK_SV48
209 #define	PS_STRINGS_SV39		(USRSTACK_SV39 - sizeof(struct ps_strings))
210 #define	PS_STRINGS_SV48		(USRSTACK_SV48 - sizeof(struct ps_strings))
211 
212 #define	VM_EARLY_DTB_ADDRESS	(VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE))
213 
214 /*
215  * How many physical pages per kmem arena virtual page.
216  */
217 #ifndef VM_KMEM_SIZE_SCALE
218 #define	VM_KMEM_SIZE_SCALE	(1)
219 #endif
220 
221 /*
222  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
223  * kernel map.
224  */
225 #ifndef VM_KMEM_SIZE_MAX
226 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
227     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
228 #endif
229 
230 /*
231  * Initial pagein size of beginning of executable file.
232  */
233 #ifndef	VM_INITIAL_PAGEIN
234 #define	VM_INITIAL_PAGEIN	16
235 #endif
236 
237 #define	UMA_MD_SMALL_ALLOC
238 
239 #ifndef LOCORE
240 extern vm_paddr_t dmap_phys_base;
241 extern vm_paddr_t dmap_phys_max;
242 extern vm_offset_t dmap_max_addr;
243 extern vm_offset_t vm_max_kernel_address;
244 extern vm_offset_t init_pt_va;
245 #endif
246 
247 #define	ZERO_REGION_SIZE	(64 * 1024)	/* 64KB */
248 
249 #define	DEVMAP_MAX_VADDR	VM_MAX_KERNEL_ADDRESS
250 #define	PMAP_MAPDEV_EARLY_SIZE	L2_SIZE
251 
252 /*
253  * No non-transparent large page support in the pmap.
254  */
255 #define	PMAP_HAS_LARGEPAGES	0
256 
257 /*
258  * Need a page dump array for minidump.
259  */
260 #define MINIDUMP_PAGE_TRACKING	1
261 
262 #endif /* !_MACHINE_VMPARAM_H_ */
263