1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * William Jolitz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91 35 * from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30 36 * $FreeBSD$ 37 */ 38 39 #ifndef _MACHINE_VMPARAM_H_ 40 #define _MACHINE_VMPARAM_H_ 41 42 /* 43 * Virtual memory related constants, all in bytes 44 */ 45 #ifndef MAXTSIZ 46 #define MAXTSIZ (1*1024*1024*1024) /* max text size */ 47 #endif 48 #ifndef DFLDSIZ 49 #define DFLDSIZ (128*1024*1024) /* initial data size limit */ 50 #endif 51 #ifndef MAXDSIZ 52 #define MAXDSIZ (1*1024*1024*1024) /* max data size */ 53 #endif 54 #ifndef DFLSSIZ 55 #define DFLSSIZ (128*1024*1024) /* initial stack size limit */ 56 #endif 57 #ifndef MAXSSIZ 58 #define MAXSSIZ (1*1024*1024*1024) /* max stack size */ 59 #endif 60 #ifndef SGROWSIZ 61 #define SGROWSIZ (128*1024) /* amount to grow stack */ 62 #endif 63 64 /* 65 * The physical address space is sparsely populated. 66 */ 67 #define VM_PHYSSEG_SPARSE 68 69 /* 70 * The number of PHYSSEG entries. 71 */ 72 #define VM_PHYSSEG_MAX 64 73 74 /* 75 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool 76 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is 77 * the pool from which physical pages for small UMA objects are 78 * allocated. 79 */ 80 #define VM_NFREEPOOL 2 81 #define VM_FREEPOOL_DEFAULT 0 82 #define VM_FREEPOOL_DIRECT 1 83 84 /* 85 * Create one free page list: VM_FREELIST_DEFAULT is for all physical 86 * pages. 87 */ 88 #define VM_NFREELIST 1 89 #define VM_FREELIST_DEFAULT 0 90 91 /* 92 * An allocation size of 16MB is supported in order to optimize the 93 * use of the direct map by UMA. Specifically, a cache line contains 94 * at most four TTEs, collectively mapping 16MB of physical memory. 95 * By reducing the number of distinct 16MB "pages" that are used by UMA, 96 * the physical memory allocator reduces the likelihood of both 4MB 97 * page TLB misses and cache misses caused by 4MB page TLB misses. 98 */ 99 #define VM_NFREEORDER 12 100 101 /* 102 * Enable superpage reservations: 1 level. 103 */ 104 #ifndef VM_NRESERVLEVEL 105 #define VM_NRESERVLEVEL 1 106 #endif 107 108 /* 109 * Level 0 reservations consist of 512 pages. 110 */ 111 #ifndef VM_LEVEL_0_ORDER 112 #define VM_LEVEL_0_ORDER 9 113 #endif 114 115 /** 116 * Address space layout. 117 * 118 * RISC-V implements multiple paging modes with different virtual address space 119 * sizes: SV32, SV39, SV48 and SV57. Only SV39 and SV48 are supported by 120 * FreeBSD. SV39 provides a 512GB virtual address space and uses three-level 121 * page tables, while SV48 provides a 256TB virtual address space and uses 122 * four-level page tables. 64-bit RISC-V implementations are required to provide 123 * at least SV39 mode; locore initially enables SV39 mode while bootstrapping 124 * page tables, and pmap_bootstrap() optionally switches to SV48 mode. 125 * 126 * The address space is split into two regions at each end of the 64-bit address 127 * space; the lower region is for use by user mode software, while the upper 128 * region is used for various kernel maps. The kernel map layout in SV48 mode 129 * is currently identical to that used in SV39 mode. 130 * 131 * SV39 memory map: 132 * 0x0000000000000000 - 0x0000003fffffffff 256GB user map 133 * 0x0000004000000000 - 0xffffffbfffffffff unmappable 134 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 135 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 136 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 137 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 138 * 139 * SV48 memory map: 140 * 0x0000000000000000 - 0x00007fffffffffff 128TB user map 141 * 0x0000800000000000 - 0xffff7fffffffffff unmappable 142 * 0xffff800000000000 - 0xffffffc7ffffffff 127.75TB hole 143 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 144 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 145 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 146 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 147 * 148 * The kernel is loaded at the beginning of the kernel map. 149 * 150 * We define some interesting address constants: 151 * 152 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire 153 * 64 bit address space, mostly just for convenience. 154 * 155 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of 156 * mappable kernel virtual address space. 157 * 158 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the 159 * user address space. 160 */ 161 #define VM_MIN_ADDRESS (0x0000000000000000UL) 162 #define VM_MAX_ADDRESS (0xffffffffffffffffUL) 163 164 #define VM_MIN_KERNEL_ADDRESS (0xffffffc000000000UL) 165 #define VM_MAX_KERNEL_ADDRESS (0xffffffc800000000UL) 166 167 #define DMAP_MIN_ADDRESS (0xffffffd000000000UL) 168 #define DMAP_MAX_ADDRESS (0xfffffff000000000UL) 169 170 #define DMAP_MIN_PHYSADDR (dmap_phys_base) 171 #define DMAP_MAX_PHYSADDR (dmap_phys_max) 172 173 /* True if pa is in the dmap range */ 174 #define PHYS_IN_DMAP(pa) ((pa) >= DMAP_MIN_PHYSADDR && \ 175 (pa) < DMAP_MAX_PHYSADDR) 176 /* True if va is in the dmap range */ 177 #define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \ 178 (va) < (dmap_max_addr)) 179 180 #define PMAP_HAS_DMAP 1 181 #define PHYS_TO_DMAP(pa) \ 182 ({ \ 183 KASSERT(PHYS_IN_DMAP(pa), \ 184 ("%s: PA out of range, PA: 0x%lx", __func__, \ 185 (vm_paddr_t)(pa))); \ 186 ((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \ 187 }) 188 189 #define DMAP_TO_PHYS(va) \ 190 ({ \ 191 KASSERT(VIRT_IN_DMAP(va), \ 192 ("%s: VA out of range, VA: 0x%lx", __func__, \ 193 (vm_offset_t)(va))); \ 194 ((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \ 195 }) 196 197 #define VM_MIN_USER_ADDRESS (0x0000000000000000UL) 198 #define VM_MAX_USER_ADDRESS_SV39 (0x0000004000000000UL) 199 #define VM_MAX_USER_ADDRESS_SV48 (0x0000800000000000UL) 200 #define VM_MAX_USER_ADDRESS VM_MAX_USER_ADDRESS_SV48 201 202 #define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS) 203 #define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS) 204 205 /* Check if an address resides in a mappable region. */ 206 #define VIRT_IS_VALID(va) \ 207 (((va) < VM_MAX_USER_ADDRESS) || ((va) >= VM_MIN_KERNEL_ADDRESS)) 208 209 #define KERNBASE (VM_MIN_KERNEL_ADDRESS) 210 #define SHAREDPAGE_SV39 (VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE) 211 #define SHAREDPAGE_SV48 (VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE) 212 #define SHAREDPAGE SHAREDPAGE_SV48 213 #define USRSTACK_SV39 SHAREDPAGE_SV39 214 #define USRSTACK_SV48 SHAREDPAGE_SV48 215 #define USRSTACK USRSTACK_SV48 216 #define PS_STRINGS_SV39 (USRSTACK_SV39 - sizeof(struct ps_strings)) 217 #define PS_STRINGS_SV48 (USRSTACK_SV48 - sizeof(struct ps_strings)) 218 219 #define VM_EARLY_DTB_ADDRESS (VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE)) 220 221 /* 222 * How many physical pages per kmem arena virtual page. 223 */ 224 #ifndef VM_KMEM_SIZE_SCALE 225 #define VM_KMEM_SIZE_SCALE (1) 226 #endif 227 228 /* 229 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 230 * kernel map. 231 */ 232 #ifndef VM_KMEM_SIZE_MAX 233 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 234 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 235 #endif 236 237 /* 238 * Initial pagein size of beginning of executable file. 239 */ 240 #ifndef VM_INITIAL_PAGEIN 241 #define VM_INITIAL_PAGEIN 16 242 #endif 243 244 #define UMA_MD_SMALL_ALLOC 245 246 #ifndef LOCORE 247 extern vm_paddr_t dmap_phys_base; 248 extern vm_paddr_t dmap_phys_max; 249 extern vm_offset_t dmap_max_addr; 250 extern vm_offset_t vm_max_kernel_address; 251 extern vm_offset_t init_pt_va; 252 #endif 253 254 #define ZERO_REGION_SIZE (64 * 1024) /* 64KB */ 255 256 #define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS 257 #define PMAP_MAPDEV_EARLY_SIZE (L2_SIZE * 2) 258 259 /* 260 * No non-transparent large page support in the pmap. 261 */ 262 #define PMAP_HAS_LARGEPAGES 0 263 264 /* 265 * Need a page dump array for minidump. 266 */ 267 #define MINIDUMP_PAGE_TRACKING 1 268 269 #endif /* !_MACHINE_VMPARAM_H_ */ 270