1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * William Jolitz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30 34 */ 35 36 #ifndef _MACHINE_VMPARAM_H_ 37 #define _MACHINE_VMPARAM_H_ 38 39 /* 40 * Virtual memory related constants, all in bytes 41 */ 42 #ifndef MAXTSIZ 43 #define MAXTSIZ (1*1024*1024*1024) /* max text size */ 44 #endif 45 #ifndef DFLDSIZ 46 #define DFLDSIZ (128*1024*1024) /* initial data size limit */ 47 #endif 48 #ifndef MAXDSIZ 49 #define MAXDSIZ (1*1024*1024*1024) /* max data size */ 50 #endif 51 #ifndef DFLSSIZ 52 #define DFLSSIZ (128*1024*1024) /* initial stack size limit */ 53 #endif 54 #ifndef MAXSSIZ 55 #define MAXSSIZ (1*1024*1024*1024) /* max stack size */ 56 #endif 57 #ifndef SGROWSIZ 58 #define SGROWSIZ (128*1024) /* amount to grow stack */ 59 #endif 60 61 /* 62 * The physical address space is sparsely populated. 63 */ 64 #define VM_PHYSSEG_SPARSE 65 66 /* 67 * The number of PHYSSEG entries. 68 */ 69 #define VM_PHYSSEG_MAX 64 70 71 /* 72 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool 73 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is 74 * the pool from which physical pages for small UMA objects are 75 * allocated. 76 */ 77 #define VM_NFREEPOOL 2 78 #define VM_FREEPOOL_DEFAULT 0 79 #define VM_FREEPOOL_DIRECT 1 80 81 /* 82 * Create one free page list: VM_FREELIST_DEFAULT is for all physical 83 * pages. 84 */ 85 #define VM_NFREELIST 1 86 #define VM_FREELIST_DEFAULT 0 87 88 /* 89 * An allocation size of 16MB is supported in order to optimize the 90 * use of the direct map by UMA. Specifically, a cache line contains 91 * at most four TTEs, collectively mapping 16MB of physical memory. 92 * By reducing the number of distinct 16MB "pages" that are used by UMA, 93 * the physical memory allocator reduces the likelihood of both 4MB 94 * page TLB misses and cache misses caused by 4MB page TLB misses. 95 */ 96 #define VM_NFREEORDER 12 97 98 /* 99 * Enable superpage reservations: 1 level. 100 */ 101 #ifndef VM_NRESERVLEVEL 102 #define VM_NRESERVLEVEL 1 103 #endif 104 105 /* 106 * Level 0 reservations consist of 512 pages. 107 */ 108 #ifndef VM_LEVEL_0_ORDER 109 #define VM_LEVEL_0_ORDER 9 110 #endif 111 112 /** 113 * Address space layout. 114 * 115 * RISC-V implements multiple paging modes with different virtual address space 116 * sizes: SV32, SV39, SV48 and SV57. Only SV39 and SV48 are supported by 117 * FreeBSD. SV39 provides a 512GB virtual address space and uses three-level 118 * page tables, while SV48 provides a 256TB virtual address space and uses 119 * four-level page tables. 64-bit RISC-V implementations are required to provide 120 * at least SV39 mode; locore initially enables SV39 mode while bootstrapping 121 * page tables, and pmap_bootstrap() optionally switches to SV48 mode. 122 * 123 * The address space is split into two regions at each end of the 64-bit address 124 * space; the lower region is for use by user mode software, while the upper 125 * region is used for various kernel maps. The kernel map layout in SV48 mode 126 * is currently identical to that used in SV39 mode. 127 * 128 * SV39 memory map: 129 * 0x0000000000000000 - 0x0000003fffffffff 256GB user map 130 * 0x0000004000000000 - 0xffffffbfffffffff unmappable 131 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 132 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 133 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 134 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 135 * 136 * SV48 memory map: 137 * 0x0000000000000000 - 0x00007fffffffffff 128TB user map 138 * 0x0000800000000000 - 0xffff7fffffffffff unmappable 139 * 0xffff800000000000 - 0xffffffc7ffffffff 127.75TB hole 140 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 141 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 142 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 143 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 144 * 145 * The kernel is loaded at the beginning of the kernel map. 146 * 147 * We define some interesting address constants: 148 * 149 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire 150 * 64 bit address space, mostly just for convenience. 151 * 152 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of 153 * mappable kernel virtual address space. 154 * 155 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the 156 * user address space. 157 */ 158 #define VM_MIN_ADDRESS (0x0000000000000000UL) 159 #define VM_MAX_ADDRESS (0xffffffffffffffffUL) 160 161 #define VM_MIN_KERNEL_ADDRESS (0xffffffc000000000UL) 162 #define VM_MAX_KERNEL_ADDRESS (0xffffffc800000000UL) 163 164 #define DMAP_MIN_ADDRESS (0xffffffd000000000UL) 165 #define DMAP_MAX_ADDRESS (0xfffffff000000000UL) 166 167 #define DMAP_MIN_PHYSADDR (dmap_phys_base) 168 #define DMAP_MAX_PHYSADDR (dmap_phys_max) 169 170 /* True if pa is in the dmap range */ 171 #define PHYS_IN_DMAP(pa) ((pa) >= DMAP_MIN_PHYSADDR && \ 172 (pa) < DMAP_MAX_PHYSADDR) 173 /* True if va is in the dmap range */ 174 #define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \ 175 (va) < (dmap_max_addr)) 176 177 #define PMAP_HAS_DMAP 1 178 #define PHYS_TO_DMAP(pa) \ 179 ({ \ 180 KASSERT(PHYS_IN_DMAP(pa), \ 181 ("%s: PA out of range, PA: 0x%lx", __func__, \ 182 (vm_paddr_t)(pa))); \ 183 ((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \ 184 }) 185 186 #define DMAP_TO_PHYS(va) \ 187 ({ \ 188 KASSERT(VIRT_IN_DMAP(va), \ 189 ("%s: VA out of range, VA: 0x%lx", __func__, \ 190 (vm_offset_t)(va))); \ 191 ((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \ 192 }) 193 194 #define VM_MIN_USER_ADDRESS (0x0000000000000000UL) 195 #define VM_MAX_USER_ADDRESS_SV39 (0x0000004000000000UL) 196 #define VM_MAX_USER_ADDRESS_SV48 (0x0000800000000000UL) 197 #define VM_MAX_USER_ADDRESS VM_MAX_USER_ADDRESS_SV48 198 199 #define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS) 200 #define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS) 201 202 #define KERNBASE (VM_MIN_KERNEL_ADDRESS) 203 #define SHAREDPAGE_SV39 (VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE) 204 #define SHAREDPAGE_SV48 (VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE) 205 #define SHAREDPAGE SHAREDPAGE_SV48 206 #define USRSTACK_SV39 SHAREDPAGE_SV39 207 #define USRSTACK_SV48 SHAREDPAGE_SV48 208 #define USRSTACK USRSTACK_SV48 209 #define PS_STRINGS_SV39 (USRSTACK_SV39 - sizeof(struct ps_strings)) 210 #define PS_STRINGS_SV48 (USRSTACK_SV48 - sizeof(struct ps_strings)) 211 212 #define VM_EARLY_DTB_ADDRESS (VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE)) 213 214 /* 215 * How many physical pages per kmem arena virtual page. 216 */ 217 #ifndef VM_KMEM_SIZE_SCALE 218 #define VM_KMEM_SIZE_SCALE (1) 219 #endif 220 221 /* 222 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 223 * kernel map. 224 */ 225 #ifndef VM_KMEM_SIZE_MAX 226 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 227 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 228 #endif 229 230 /* 231 * Initial pagein size of beginning of executable file. 232 */ 233 #ifndef VM_INITIAL_PAGEIN 234 #define VM_INITIAL_PAGEIN 16 235 #endif 236 237 #define UMA_USE_DMAP 238 239 #ifndef LOCORE 240 extern vm_paddr_t dmap_phys_base; 241 extern vm_paddr_t dmap_phys_max; 242 extern vm_offset_t dmap_max_addr; 243 extern vm_offset_t init_pt_va; 244 #endif 245 246 #define ZERO_REGION_SIZE (64 * 1024) /* 64KB */ 247 248 #define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS 249 #define PMAP_MAPDEV_EARLY_SIZE L2_SIZE 250 251 /* 252 * No non-transparent large page support in the pmap. 253 */ 254 #define PMAP_HAS_LARGEPAGES 0 255 256 /* 257 * Need a page dump array for minidump. 258 */ 259 #define MINIDUMP_PAGE_TRACKING 1 260 #define MINIDUMP_STARTUP_PAGE_TRACKING 1 261 262 #endif /* !_MACHINE_VMPARAM_H_ */ 263