1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * William Jolitz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91 35 * from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30 36 */ 37 38 #ifndef _MACHINE_VMPARAM_H_ 39 #define _MACHINE_VMPARAM_H_ 40 41 /* 42 * Virtual memory related constants, all in bytes 43 */ 44 #ifndef MAXTSIZ 45 #define MAXTSIZ (1*1024*1024*1024) /* max text size */ 46 #endif 47 #ifndef DFLDSIZ 48 #define DFLDSIZ (128*1024*1024) /* initial data size limit */ 49 #endif 50 #ifndef MAXDSIZ 51 #define MAXDSIZ (1*1024*1024*1024) /* max data size */ 52 #endif 53 #ifndef DFLSSIZ 54 #define DFLSSIZ (128*1024*1024) /* initial stack size limit */ 55 #endif 56 #ifndef MAXSSIZ 57 #define MAXSSIZ (1*1024*1024*1024) /* max stack size */ 58 #endif 59 #ifndef SGROWSIZ 60 #define SGROWSIZ (128*1024) /* amount to grow stack */ 61 #endif 62 63 /* 64 * The physical address space is sparsely populated. 65 */ 66 #define VM_PHYSSEG_SPARSE 67 68 /* 69 * The number of PHYSSEG entries. 70 */ 71 #define VM_PHYSSEG_MAX 64 72 73 /* 74 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool 75 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is 76 * the pool from which physical pages for small UMA objects are 77 * allocated. 78 */ 79 #define VM_NFREEPOOL 2 80 #define VM_FREEPOOL_DEFAULT 0 81 #define VM_FREEPOOL_DIRECT 1 82 83 /* 84 * Create one free page list: VM_FREELIST_DEFAULT is for all physical 85 * pages. 86 */ 87 #define VM_NFREELIST 1 88 #define VM_FREELIST_DEFAULT 0 89 90 /* 91 * An allocation size of 16MB is supported in order to optimize the 92 * use of the direct map by UMA. Specifically, a cache line contains 93 * at most four TTEs, collectively mapping 16MB of physical memory. 94 * By reducing the number of distinct 16MB "pages" that are used by UMA, 95 * the physical memory allocator reduces the likelihood of both 4MB 96 * page TLB misses and cache misses caused by 4MB page TLB misses. 97 */ 98 #define VM_NFREEORDER 12 99 100 /* 101 * Enable superpage reservations: 1 level. 102 */ 103 #ifndef VM_NRESERVLEVEL 104 #define VM_NRESERVLEVEL 1 105 #endif 106 107 /* 108 * Level 0 reservations consist of 512 pages. 109 */ 110 #ifndef VM_LEVEL_0_ORDER 111 #define VM_LEVEL_0_ORDER 9 112 #endif 113 114 /** 115 * Address space layout. 116 * 117 * RISC-V implements multiple paging modes with different virtual address space 118 * sizes: SV32, SV39, SV48 and SV57. Only SV39 and SV48 are supported by 119 * FreeBSD. SV39 provides a 512GB virtual address space and uses three-level 120 * page tables, while SV48 provides a 256TB virtual address space and uses 121 * four-level page tables. 64-bit RISC-V implementations are required to provide 122 * at least SV39 mode; locore initially enables SV39 mode while bootstrapping 123 * page tables, and pmap_bootstrap() optionally switches to SV48 mode. 124 * 125 * The address space is split into two regions at each end of the 64-bit address 126 * space; the lower region is for use by user mode software, while the upper 127 * region is used for various kernel maps. The kernel map layout in SV48 mode 128 * is currently identical to that used in SV39 mode. 129 * 130 * SV39 memory map: 131 * 0x0000000000000000 - 0x0000003fffffffff 256GB user map 132 * 0x0000004000000000 - 0xffffffbfffffffff unmappable 133 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 134 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 135 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 136 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 137 * 138 * SV48 memory map: 139 * 0x0000000000000000 - 0x00007fffffffffff 128TB user map 140 * 0x0000800000000000 - 0xffff7fffffffffff unmappable 141 * 0xffff800000000000 - 0xffffffc7ffffffff 127.75TB hole 142 * 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map 143 * 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused 144 * 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map 145 * 0xfffffff000000000 - 0xffffffffffffffff 64GB unused 146 * 147 * The kernel is loaded at the beginning of the kernel map. 148 * 149 * We define some interesting address constants: 150 * 151 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire 152 * 64 bit address space, mostly just for convenience. 153 * 154 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of 155 * mappable kernel virtual address space. 156 * 157 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the 158 * user address space. 159 */ 160 #define VM_MIN_ADDRESS (0x0000000000000000UL) 161 #define VM_MAX_ADDRESS (0xffffffffffffffffUL) 162 163 #define VM_MIN_KERNEL_ADDRESS (0xffffffc000000000UL) 164 #define VM_MAX_KERNEL_ADDRESS (0xffffffc800000000UL) 165 166 #define DMAP_MIN_ADDRESS (0xffffffd000000000UL) 167 #define DMAP_MAX_ADDRESS (0xfffffff000000000UL) 168 169 #define DMAP_MIN_PHYSADDR (dmap_phys_base) 170 #define DMAP_MAX_PHYSADDR (dmap_phys_max) 171 172 /* True if pa is in the dmap range */ 173 #define PHYS_IN_DMAP(pa) ((pa) >= DMAP_MIN_PHYSADDR && \ 174 (pa) < DMAP_MAX_PHYSADDR) 175 /* True if va is in the dmap range */ 176 #define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \ 177 (va) < (dmap_max_addr)) 178 179 #define PMAP_HAS_DMAP 1 180 #define PHYS_TO_DMAP(pa) \ 181 ({ \ 182 KASSERT(PHYS_IN_DMAP(pa), \ 183 ("%s: PA out of range, PA: 0x%lx", __func__, \ 184 (vm_paddr_t)(pa))); \ 185 ((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \ 186 }) 187 188 #define DMAP_TO_PHYS(va) \ 189 ({ \ 190 KASSERT(VIRT_IN_DMAP(va), \ 191 ("%s: VA out of range, VA: 0x%lx", __func__, \ 192 (vm_offset_t)(va))); \ 193 ((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \ 194 }) 195 196 #define VM_MIN_USER_ADDRESS (0x0000000000000000UL) 197 #define VM_MAX_USER_ADDRESS_SV39 (0x0000004000000000UL) 198 #define VM_MAX_USER_ADDRESS_SV48 (0x0000800000000000UL) 199 #define VM_MAX_USER_ADDRESS VM_MAX_USER_ADDRESS_SV48 200 201 #define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS) 202 #define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS) 203 204 #define KERNBASE (VM_MIN_KERNEL_ADDRESS) 205 #define SHAREDPAGE_SV39 (VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE) 206 #define SHAREDPAGE_SV48 (VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE) 207 #define SHAREDPAGE SHAREDPAGE_SV48 208 #define USRSTACK_SV39 SHAREDPAGE_SV39 209 #define USRSTACK_SV48 SHAREDPAGE_SV48 210 #define USRSTACK USRSTACK_SV48 211 #define PS_STRINGS_SV39 (USRSTACK_SV39 - sizeof(struct ps_strings)) 212 #define PS_STRINGS_SV48 (USRSTACK_SV48 - sizeof(struct ps_strings)) 213 214 #define VM_EARLY_DTB_ADDRESS (VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE)) 215 216 /* 217 * How many physical pages per kmem arena virtual page. 218 */ 219 #ifndef VM_KMEM_SIZE_SCALE 220 #define VM_KMEM_SIZE_SCALE (1) 221 #endif 222 223 /* 224 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 225 * kernel map. 226 */ 227 #ifndef VM_KMEM_SIZE_MAX 228 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 229 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 230 #endif 231 232 /* 233 * Initial pagein size of beginning of executable file. 234 */ 235 #ifndef VM_INITIAL_PAGEIN 236 #define VM_INITIAL_PAGEIN 16 237 #endif 238 239 #define UMA_MD_SMALL_ALLOC 240 241 #ifndef LOCORE 242 extern vm_paddr_t dmap_phys_base; 243 extern vm_paddr_t dmap_phys_max; 244 extern vm_offset_t dmap_max_addr; 245 extern vm_offset_t vm_max_kernel_address; 246 extern vm_offset_t init_pt_va; 247 #endif 248 249 #define ZERO_REGION_SIZE (64 * 1024) /* 64KB */ 250 251 #define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS 252 #define PMAP_MAPDEV_EARLY_SIZE L2_SIZE 253 254 /* 255 * No non-transparent large page support in the pmap. 256 */ 257 #define PMAP_HAS_LARGEPAGES 0 258 259 /* 260 * Need a page dump array for minidump. 261 */ 262 #define MINIDUMP_PAGE_TRACKING 1 263 264 #endif /* !_MACHINE_VMPARAM_H_ */ 265