xref: /freebsd/sys/riscv/include/vmparam.h (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vmparam.h     5.9 (Berkeley) 5/12/91
35  *	from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
36  */
37 
38 #ifndef	_MACHINE_VMPARAM_H_
39 #define	_MACHINE_VMPARAM_H_
40 
41 /*
42  * Virtual memory related constants, all in bytes
43  */
44 #ifndef MAXTSIZ
45 #define	MAXTSIZ		(1*1024*1024*1024)	/* max text size */
46 #endif
47 #ifndef DFLDSIZ
48 #define	DFLDSIZ		(128*1024*1024)		/* initial data size limit */
49 #endif
50 #ifndef MAXDSIZ
51 #define	MAXDSIZ		(1*1024*1024*1024)	/* max data size */
52 #endif
53 #ifndef DFLSSIZ
54 #define	DFLSSIZ		(128*1024*1024)		/* initial stack size limit */
55 #endif
56 #ifndef MAXSSIZ
57 #define	MAXSSIZ		(1*1024*1024*1024)	/* max stack size */
58 #endif
59 #ifndef SGROWSIZ
60 #define	SGROWSIZ	(128*1024)		/* amount to grow stack */
61 #endif
62 
63 /*
64  * The physical address space is sparsely populated.
65  */
66 #define	VM_PHYSSEG_SPARSE
67 
68 /*
69  * The number of PHYSSEG entries.
70  */
71 #define	VM_PHYSSEG_MAX		64
72 
73 /*
74  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
75  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
76  * the pool from which physical pages for small UMA objects are
77  * allocated.
78  */
79 #define	VM_NFREEPOOL		2
80 #define	VM_FREEPOOL_DEFAULT	0
81 #define	VM_FREEPOOL_DIRECT	1
82 
83 /*
84  * Create one free page list: VM_FREELIST_DEFAULT is for all physical
85  * pages.
86  */
87 #define	VM_NFREELIST		1
88 #define	VM_FREELIST_DEFAULT	0
89 
90 /*
91  * An allocation size of 16MB is supported in order to optimize the
92  * use of the direct map by UMA.  Specifically, a cache line contains
93  * at most four TTEs, collectively mapping 16MB of physical memory.
94  * By reducing the number of distinct 16MB "pages" that are used by UMA,
95  * the physical memory allocator reduces the likelihood of both 4MB
96  * page TLB misses and cache misses caused by 4MB page TLB misses.
97  */
98 #define	VM_NFREEORDER		12
99 
100 /*
101  * Enable superpage reservations: 1 level.
102  */
103 #ifndef	VM_NRESERVLEVEL
104 #define	VM_NRESERVLEVEL		1
105 #endif
106 
107 /*
108  * Level 0 reservations consist of 512 pages.
109  */
110 #ifndef	VM_LEVEL_0_ORDER
111 #define	VM_LEVEL_0_ORDER	9
112 #endif
113 
114 /**
115  * Address space layout.
116  *
117  * RISC-V implements multiple paging modes with different virtual address space
118  * sizes: SV32, SV39, SV48 and SV57.  Only SV39 and SV48 are supported by
119  * FreeBSD.  SV39 provides a 512GB virtual address space and uses three-level
120  * page tables, while SV48 provides a 256TB virtual address space and uses
121  * four-level page tables.  64-bit RISC-V implementations are required to provide
122  * at least SV39 mode; locore initially enables SV39 mode while bootstrapping
123  * page tables, and pmap_bootstrap() optionally switches to SV48 mode.
124  *
125  * The address space is split into two regions at each end of the 64-bit address
126  * space; the lower region is for use by user mode software, while the upper
127  * region is used for various kernel maps.  The kernel map layout in SV48 mode
128  * is currently identical to that used in SV39 mode.
129  *
130  * SV39 memory map:
131  * 0x0000000000000000 - 0x0000003fffffffff    256GB user map
132  * 0x0000004000000000 - 0xffffffbfffffffff    unmappable
133  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
134  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
135  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
136  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
137  *
138  * SV48 memory map:
139  * 0x0000000000000000 - 0x00007fffffffffff    128TB user map
140  * 0x0000800000000000 - 0xffff7fffffffffff    unmappable
141  * 0xffff800000000000 - 0xffffffc7ffffffff    127.75TB hole
142  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
143  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
144  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
145  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
146  *
147  * The kernel is loaded at the beginning of the kernel map.
148  *
149  * We define some interesting address constants:
150  *
151  * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
152  * 64 bit address space, mostly just for convenience.
153  *
154  * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
155  * mappable kernel virtual address space.
156  *
157  * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
158  * user address space.
159  */
160 #define	VM_MIN_ADDRESS		(0x0000000000000000UL)
161 #define	VM_MAX_ADDRESS		(0xffffffffffffffffUL)
162 
163 #define	VM_MIN_KERNEL_ADDRESS	(0xffffffc000000000UL)
164 #define	VM_MAX_KERNEL_ADDRESS	(0xffffffc800000000UL)
165 
166 #define	DMAP_MIN_ADDRESS	(0xffffffd000000000UL)
167 #define	DMAP_MAX_ADDRESS	(0xfffffff000000000UL)
168 
169 #define	DMAP_MIN_PHYSADDR	(dmap_phys_base)
170 #define	DMAP_MAX_PHYSADDR	(dmap_phys_max)
171 
172 /* True if pa is in the dmap range */
173 #define	PHYS_IN_DMAP(pa)	((pa) >= DMAP_MIN_PHYSADDR && \
174     (pa) < DMAP_MAX_PHYSADDR)
175 /* True if va is in the dmap range */
176 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS && \
177     (va) < (dmap_max_addr))
178 
179 #define	PMAP_HAS_DMAP	1
180 #define	PHYS_TO_DMAP(pa)						\
181 ({									\
182 	KASSERT(PHYS_IN_DMAP(pa),					\
183 	    ("%s: PA out of range, PA: 0x%lx", __func__,		\
184 	    (vm_paddr_t)(pa)));						\
185 	((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS;			\
186 })
187 
188 #define	DMAP_TO_PHYS(va)						\
189 ({									\
190 	KASSERT(VIRT_IN_DMAP(va),					\
191 	    ("%s: VA out of range, VA: 0x%lx", __func__,		\
192 	    (vm_offset_t)(va)));					\
193 	((va) - DMAP_MIN_ADDRESS) + dmap_phys_base;			\
194 })
195 
196 #define	VM_MIN_USER_ADDRESS		(0x0000000000000000UL)
197 #define	VM_MAX_USER_ADDRESS_SV39	(0x0000004000000000UL)
198 #define	VM_MAX_USER_ADDRESS_SV48	(0x0000800000000000UL)
199 #define	VM_MAX_USER_ADDRESS		VM_MAX_USER_ADDRESS_SV48
200 
201 #define	VM_MINUSER_ADDRESS	(VM_MIN_USER_ADDRESS)
202 #define	VM_MAXUSER_ADDRESS	(VM_MAX_USER_ADDRESS)
203 
204 #define	KERNBASE		(VM_MIN_KERNEL_ADDRESS)
205 #define	SHAREDPAGE_SV39		(VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE)
206 #define	SHAREDPAGE_SV48		(VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE)
207 #define	SHAREDPAGE		SHAREDPAGE_SV48
208 #define	USRSTACK_SV39		SHAREDPAGE_SV39
209 #define	USRSTACK_SV48		SHAREDPAGE_SV48
210 #define	USRSTACK		USRSTACK_SV48
211 #define	PS_STRINGS_SV39		(USRSTACK_SV39 - sizeof(struct ps_strings))
212 #define	PS_STRINGS_SV48		(USRSTACK_SV48 - sizeof(struct ps_strings))
213 
214 #define	VM_EARLY_DTB_ADDRESS	(VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE))
215 
216 /*
217  * How many physical pages per kmem arena virtual page.
218  */
219 #ifndef VM_KMEM_SIZE_SCALE
220 #define	VM_KMEM_SIZE_SCALE	(1)
221 #endif
222 
223 /*
224  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
225  * kernel map.
226  */
227 #ifndef VM_KMEM_SIZE_MAX
228 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
229     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
230 #endif
231 
232 /*
233  * Initial pagein size of beginning of executable file.
234  */
235 #ifndef	VM_INITIAL_PAGEIN
236 #define	VM_INITIAL_PAGEIN	16
237 #endif
238 
239 #define	UMA_MD_SMALL_ALLOC
240 
241 #ifndef LOCORE
242 extern vm_paddr_t dmap_phys_base;
243 extern vm_paddr_t dmap_phys_max;
244 extern vm_offset_t dmap_max_addr;
245 extern vm_offset_t vm_max_kernel_address;
246 extern vm_offset_t init_pt_va;
247 #endif
248 
249 #define	ZERO_REGION_SIZE	(64 * 1024)	/* 64KB */
250 
251 #define	DEVMAP_MAX_VADDR	VM_MAX_KERNEL_ADDRESS
252 #define	PMAP_MAPDEV_EARLY_SIZE	L2_SIZE
253 
254 /*
255  * No non-transparent large page support in the pmap.
256  */
257 #define	PMAP_HAS_LARGEPAGES	0
258 
259 /*
260  * Need a page dump array for minidump.
261  */
262 #define MINIDUMP_PAGE_TRACKING	1
263 
264 #endif /* !_MACHINE_VMPARAM_H_ */
265