1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 2019 Justin Hibbits 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 20 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 21 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 22 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 23 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_platform.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/module.h> 36 #include <sys/bus.h> 37 #include <sys/conf.h> 38 #include <sys/endian.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/smp.h> 44 45 #include <vm/vm.h> 46 #include <vm/pmap.h> 47 48 #include <machine/bus.h> 49 #include <machine/intr_machdep.h> 50 #include <machine/md_var.h> 51 52 #include <dev/ofw/ofw_bus.h> 53 #include <dev/ofw/ofw_bus_subr.h> 54 55 #ifdef POWERNV 56 #include <powerpc/powernv/opal.h> 57 #endif 58 59 #include "pic_if.h" 60 61 #define XIVE_PRIORITY 7 /* Random non-zero number */ 62 #define MAX_XIVE_IRQS (1<<24) /* 24-bit XIRR field */ 63 64 /* Registers */ 65 #define XIVE_TM_QW1_OS 0x010 /* Guest OS registers */ 66 #define XIVE_TM_QW2_HV_POOL 0x020 /* Hypervisor pool registers */ 67 #define XIVE_TM_QW3_HV 0x030 /* Hypervisor registers */ 68 69 #define XIVE_TM_NSR 0x00 70 #define XIVE_TM_CPPR 0x01 71 #define XIVE_TM_IPB 0x02 72 #define XIVE_TM_LSMFB 0x03 73 #define XIVE_TM_ACK_CNT 0x04 74 #define XIVE_TM_INC 0x05 75 #define XIVE_TM_AGE 0x06 76 #define XIVE_TM_PIPR 0x07 77 78 #define TM_WORD0 0x0 79 #define TM_WORD2 0x8 80 #define TM_QW2W2_VP 0x80000000 81 82 #define XIVE_TM_SPC_ACK 0x800 83 #define TM_QW3NSR_HE_SHIFT 14 84 #define TM_QW3_NSR_HE_NONE 0 85 #define TM_QW3_NSR_HE_POOL 1 86 #define TM_QW3_NSR_HE_PHYS 2 87 #define TM_QW3_NSR_HE_LSI 3 88 #define XIVE_TM_SPC_PULL_POOL_CTX 0x828 89 90 #define XIVE_IRQ_LOAD_EOI 0x000 91 #define XIVE_IRQ_STORE_EOI 0x400 92 #define XIVE_IRQ_PQ_00 0xc00 93 #define XIVE_IRQ_PQ_01 0xd00 94 95 #define XIVE_IRQ_VAL_P 0x02 96 #define XIVE_IRQ_VAL_Q 0x01 97 98 struct xive_softc; 99 struct xive_irq; 100 101 extern void (*powernv_smp_ap_extra_init)(void); 102 103 /* Private support */ 104 static void xive_setup_cpu(void); 105 static void xive_smp_cpu_startup(void); 106 static void xive_init_irq(struct xive_irq *irqd, u_int irq); 107 static struct xive_irq *xive_configure_irq(u_int irq); 108 static int xive_provision_page(struct xive_softc *sc); 109 110 /* Interfaces */ 111 static int xive_probe(device_t); 112 static int xive_attach(device_t); 113 static int xics_probe(device_t); 114 static int xics_attach(device_t); 115 116 static void xive_bind(device_t, u_int, cpuset_t, void **); 117 static void xive_dispatch(device_t, struct trapframe *); 118 static void xive_enable(device_t, u_int, u_int, void **); 119 static void xive_eoi(device_t, u_int, void *); 120 static void xive_ipi(device_t, u_int); 121 static void xive_mask(device_t, u_int, void *); 122 static void xive_unmask(device_t, u_int, void *); 123 static void xive_translate_code(device_t dev, u_int irq, int code, 124 enum intr_trigger *trig, enum intr_polarity *pol); 125 126 static device_method_t xive_methods[] = { 127 /* Device interface */ 128 DEVMETHOD(device_probe, xive_probe), 129 DEVMETHOD(device_attach, xive_attach), 130 131 /* PIC interface */ 132 DEVMETHOD(pic_bind, xive_bind), 133 DEVMETHOD(pic_dispatch, xive_dispatch), 134 DEVMETHOD(pic_enable, xive_enable), 135 DEVMETHOD(pic_eoi, xive_eoi), 136 DEVMETHOD(pic_ipi, xive_ipi), 137 DEVMETHOD(pic_mask, xive_mask), 138 DEVMETHOD(pic_unmask, xive_unmask), 139 DEVMETHOD(pic_translate_code, xive_translate_code), 140 141 DEVMETHOD_END 142 }; 143 144 static device_method_t xics_methods[] = { 145 /* Device interface */ 146 DEVMETHOD(device_probe, xics_probe), 147 DEVMETHOD(device_attach, xics_attach), 148 149 DEVMETHOD_END 150 }; 151 152 struct xive_softc { 153 struct mtx sc_mtx; 154 struct resource *sc_mem; 155 vm_size_t sc_prov_page_size; 156 uint32_t sc_offset; 157 }; 158 159 struct xive_queue { 160 uint32_t *q_page; 161 uint32_t *q_eoi_page; 162 uint32_t q_toggle; 163 uint32_t q_size; 164 uint32_t q_index; 165 uint32_t q_mask; 166 }; 167 168 struct xive_irq { 169 uint32_t girq; 170 uint32_t lirq; 171 uint64_t vp; 172 uint64_t flags; 173 #define OPAL_XIVE_IRQ_SHIFT_BUG 0x00000008 174 #define OPAL_XIVE_IRQ_LSI 0x00000004 175 #define OPAL_XIVE_IRQ_STORE_EOI 0x00000002 176 #define OPAL_XIVE_IRQ_TRIGGER_PAGE 0x00000001 177 uint8_t prio; 178 vm_offset_t eoi_page; 179 vm_offset_t trig_page; 180 vm_size_t esb_size; 181 int chip; 182 }; 183 184 struct xive_cpu { 185 uint64_t vp; 186 uint64_t flags; 187 struct xive_irq ipi_data; 188 struct xive_queue queue; /* We only use a single queue for now. */ 189 uint64_t cam; 190 uint32_t chip; 191 }; 192 193 static driver_t xive_driver = { 194 "xive", 195 xive_methods, 196 sizeof(struct xive_softc) 197 }; 198 199 static driver_t xics_driver = { 200 "xivevc", 201 xics_methods, 202 0 203 }; 204 205 EARLY_DRIVER_MODULE(xive, ofwbus, xive_driver, 0, 0, BUS_PASS_INTERRUPT - 1); 206 EARLY_DRIVER_MODULE(xivevc, ofwbus, xics_driver, 0, 0, BUS_PASS_INTERRUPT); 207 208 MALLOC_DEFINE(M_XIVE, "xive", "XIVE Memory"); 209 210 DPCPU_DEFINE_STATIC(struct xive_cpu, xive_cpu_data); 211 212 static int xive_ipi_vector = -1; 213 214 /* 215 * XIVE Exploitation mode driver. 216 * 217 * The XIVE, present in the POWER9 CPU, can run in two modes: XICS emulation 218 * mode, and "Exploitation mode". XICS emulation mode is compatible with the 219 * POWER8 and earlier XICS interrupt controller, using OPAL calls to emulate 220 * hypervisor calls and memory accesses. Exploitation mode gives us raw access 221 * to the XIVE MMIO, improving performance significantly. 222 * 223 * The XIVE controller is a very bizarre interrupt controller. It uses queues 224 * in memory to pass interrupts around, and maps itself into 512GB of physical 225 * device address space, giving each interrupt in the system one or more pages 226 * of address space. An IRQ is tied to a virtual processor, which could be a 227 * physical CPU thread, or a guest CPU thread (LPAR running on a physical 228 * thread). Thus, the controller can route interrupts directly to guest OSes 229 * bypassing processing by the hypervisor, thereby improving performance of the 230 * guest OS. 231 * 232 * An IRQ, in addition to being tied to a virtual processor, has one or two 233 * page mappings: an EOI page, and an optional trigger page. The trigger page 234 * could be the same as the EOI page. Level-sensitive interrupts (LSIs) don't 235 * have a trigger page, as they're external interrupts controlled by physical 236 * lines. MSIs and IPIs have trigger pages. An IPI is really just another IRQ 237 * in the XIVE, which is triggered by software. 238 * 239 * An interesting behavior of the XIVE controller is that oftentimes the 240 * contents of an address location don't actually matter, but the direction of 241 * the action is the signifier (read vs write), and the address is significant. 242 * Hence, masking and unmasking an interrupt is done by reading different 243 * addresses in the EOI page, and triggering an interrupt consists of writing to 244 * the trigger page. 245 * 246 * Additionally, the MMIO region mapped is CPU-sensitive, just like the 247 * per-processor register space (private access) in OpenPIC. In order for a CPU 248 * to receive interrupts it must itself configure its CPPR (Current Processor 249 * Priority Register), it cannot be set by any other processor. This 250 * necessitates the xive_smp_cpu_startup() function. 251 * 252 * Queues are pages of memory, sized powers-of-two, that are shared with the 253 * XIVE. The XIVE writes into the queue with an alternating polarity bit, which 254 * flips when the queue wraps. 255 */ 256 257 /* 258 * Offset-based read/write interfaces. 259 */ 260 static uint16_t 261 xive_read_2(struct xive_softc *sc, bus_size_t offset) 262 { 263 264 return (bus_read_2(sc->sc_mem, sc->sc_offset + offset)); 265 } 266 267 static void 268 xive_write_1(struct xive_softc *sc, bus_size_t offset, uint8_t val) 269 { 270 271 bus_write_1(sc->sc_mem, sc->sc_offset + offset, val); 272 } 273 274 /* EOI and Trigger page access interfaces. */ 275 static uint64_t 276 xive_read_mmap8(vm_offset_t addr) 277 { 278 return (*(volatile uint64_t *)addr); 279 } 280 281 static void 282 xive_write_mmap8(vm_offset_t addr, uint64_t val) 283 { 284 *(uint64_t *)(addr) = val; 285 } 286 287 /* Device interfaces. */ 288 static int 289 xive_probe(device_t dev) 290 { 291 292 if (!ofw_bus_is_compatible(dev, "ibm,opal-xive-pe")) 293 return (ENXIO); 294 295 device_set_desc(dev, "External Interrupt Virtualization Engine"); 296 297 /* Make sure we always win against the xicp driver. */ 298 return (BUS_PROBE_DEFAULT); 299 } 300 301 static int 302 xics_probe(device_t dev) 303 { 304 305 if (!ofw_bus_is_compatible(dev, "ibm,opal-xive-vc")) 306 return (ENXIO); 307 308 device_set_desc(dev, "External Interrupt Virtualization Engine Root"); 309 return (BUS_PROBE_DEFAULT); 310 } 311 312 static int 313 xive_attach(device_t dev) 314 { 315 struct xive_softc *sc = device_get_softc(dev); 316 struct xive_cpu *xive_cpud; 317 phandle_t phandle = ofw_bus_get_node(dev); 318 int64_t vp_block; 319 int error; 320 int rid; 321 int i, order; 322 uint64_t vp_id; 323 int64_t ipi_irq; 324 325 opal_call(OPAL_XIVE_RESET, OPAL_XIVE_XICS_MODE_EXP); 326 327 error = OF_getencprop(phandle, "ibm,xive-provision-page-size", 328 (pcell_t *)&sc->sc_prov_page_size, sizeof(sc->sc_prov_page_size)); 329 330 rid = 1; /* Get the Hypervisor-level register set. */ 331 sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 332 &rid, RF_ACTIVE); 333 sc->sc_offset = XIVE_TM_QW3_HV; 334 335 mtx_init(&sc->sc_mtx, "XIVE", NULL, MTX_DEF); 336 337 /* Workaround for qemu single-thread powernv */ 338 if (mp_maxid == 0) 339 order = 1; 340 else 341 order = fls(mp_maxid + (mp_maxid - 1)) - 1; 342 343 do { 344 vp_block = opal_call(OPAL_XIVE_ALLOCATE_VP_BLOCK, order); 345 if (vp_block == OPAL_BUSY) 346 DELAY(10); 347 else if (vp_block == OPAL_XIVE_PROVISIONING) 348 xive_provision_page(sc); 349 else 350 break; 351 } while (1); 352 353 if (vp_block < 0) { 354 device_printf(dev, 355 "Unable to allocate VP block. Opal error %d\n", 356 (int)vp_block); 357 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->sc_mem); 358 return (ENXIO); 359 } 360 361 /* 362 * Set up the VPs. Try to do as much as we can in attach, to lessen 363 * what's needed at AP spawn time. 364 */ 365 CPU_FOREACH(i) { 366 vp_id = pcpu_find(i)->pc_hwref; 367 368 xive_cpud = DPCPU_ID_PTR(i, xive_cpu_data); 369 xive_cpud->vp = vp_id + vp_block; 370 opal_call(OPAL_XIVE_GET_VP_INFO, xive_cpud->vp, NULL, 371 vtophys(&xive_cpud->cam), NULL, vtophys(&xive_cpud->chip)); 372 373 xive_cpud->cam = be64toh(xive_cpud->cam); 374 xive_cpud->chip = be64toh(xive_cpud->chip); 375 376 /* Allocate the queue page and populate the queue state data. */ 377 xive_cpud->queue.q_page = contigmalloc(PAGE_SIZE, M_XIVE, 378 M_ZERO | M_WAITOK, 0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0); 379 xive_cpud->queue.q_size = 1 << PAGE_SHIFT; 380 xive_cpud->queue.q_mask = 381 ((xive_cpud->queue.q_size / sizeof(int)) - 1); 382 xive_cpud->queue.q_toggle = 0; 383 xive_cpud->queue.q_index = 0; 384 do { 385 error = opal_call(OPAL_XIVE_SET_VP_INFO, xive_cpud->vp, 386 OPAL_XIVE_VP_ENABLED, 0); 387 } while (error == OPAL_BUSY); 388 error = opal_call(OPAL_XIVE_SET_QUEUE_INFO, vp_id, 389 XIVE_PRIORITY, vtophys(xive_cpud->queue.q_page), PAGE_SHIFT, 390 OPAL_XIVE_EQ_ALWAYS_NOTIFY | OPAL_XIVE_EQ_ENABLED); 391 392 do { 393 ipi_irq = opal_call(OPAL_XIVE_ALLOCATE_IRQ, 394 xive_cpud->chip); 395 } while (ipi_irq == OPAL_BUSY); 396 397 if (ipi_irq < 0) 398 device_printf(root_pic, 399 "Failed allocating IPI. OPAL error %d\n", 400 (int)ipi_irq); 401 else { 402 xive_init_irq(&xive_cpud->ipi_data, ipi_irq); 403 xive_cpud->ipi_data.vp = vp_id; 404 xive_cpud->ipi_data.lirq = MAX_XIVE_IRQS; 405 opal_call(OPAL_XIVE_SET_IRQ_CONFIG, ipi_irq, 406 xive_cpud->ipi_data.vp, XIVE_PRIORITY, 407 MAX_XIVE_IRQS); 408 } 409 } 410 411 powerpc_register_pic(dev, OF_xref_from_node(phandle), MAX_XIVE_IRQS, 412 1 /* Number of IPIs */, FALSE); 413 root_pic = dev; 414 415 xive_setup_cpu(); 416 powernv_smp_ap_extra_init = xive_smp_cpu_startup; 417 418 return (0); 419 } 420 421 static int 422 xics_attach(device_t dev) 423 { 424 phandle_t phandle = ofw_bus_get_node(dev); 425 426 /* The XIVE (root PIC) will handle all our interrupts */ 427 powerpc_register_pic(root_pic, OF_xref_from_node(phandle), 428 MAX_XIVE_IRQS, 1 /* Number of IPIs */, FALSE); 429 430 return (0); 431 } 432 433 /* 434 * PIC I/F methods. 435 */ 436 437 static void 438 xive_bind(device_t dev, u_int irq, cpuset_t cpumask, void **priv) 439 { 440 struct xive_irq *irqd; 441 int cpu; 442 int ncpus, i, error; 443 444 if (*priv == NULL) 445 *priv = xive_configure_irq(irq); 446 447 irqd = *priv; 448 449 /* 450 * This doesn't appear to actually support affinity groups, so pick a 451 * random CPU. 452 */ 453 ncpus = 0; 454 CPU_FOREACH(cpu) 455 if (CPU_ISSET(cpu, &cpumask)) ncpus++; 456 457 i = mftb() % ncpus; 458 ncpus = 0; 459 CPU_FOREACH(cpu) { 460 if (!CPU_ISSET(cpu, &cpumask)) 461 continue; 462 if (ncpus == i) 463 break; 464 ncpus++; 465 } 466 467 opal_call(OPAL_XIVE_SYNC, OPAL_XIVE_SYNC_QUEUE, irq); 468 469 irqd->vp = pcpu_find(cpu)->pc_hwref; 470 error = opal_call(OPAL_XIVE_SET_IRQ_CONFIG, irq, irqd->vp, 471 XIVE_PRIORITY, irqd->lirq); 472 473 if (error < 0) 474 panic("Cannot bind interrupt %d to CPU %d", irq, cpu); 475 476 xive_eoi(dev, irq, irqd); 477 } 478 479 /* Read the next entry in the queue page and update the index. */ 480 static int 481 xive_read_eq(struct xive_queue *q) 482 { 483 uint32_t i = be32toh(q->q_page[q->q_index]); 484 485 /* Check validity, using current queue polarity. */ 486 if ((i >> 31) == q->q_toggle) 487 return (0); 488 489 q->q_index = (q->q_index + 1) & q->q_mask; 490 491 if (q->q_index == 0) 492 q->q_toggle ^= 1; 493 494 return (i & 0x7fffffff); 495 } 496 497 static void 498 xive_dispatch(device_t dev, struct trapframe *tf) 499 { 500 struct xive_softc *sc; 501 struct xive_cpu *xive_cpud; 502 uint32_t vector; 503 uint16_t ack; 504 uint8_t cppr, he; 505 506 sc = device_get_softc(dev); 507 508 xive_cpud = DPCPU_PTR(xive_cpu_data); 509 for (;;) { 510 ack = xive_read_2(sc, XIVE_TM_SPC_ACK); 511 cppr = (ack & 0xff); 512 513 he = ack >> TM_QW3NSR_HE_SHIFT; 514 515 if (he == TM_QW3_NSR_HE_NONE) 516 break; 517 518 else if (__predict_false(he != TM_QW3_NSR_HE_PHYS)) { 519 /* 520 * We don't support TM_QW3_NSR_HE_POOL or 521 * TM_QW3_NSR_HE_LSI interrupts. 522 */ 523 device_printf(dev, 524 "Unexpected interrupt he type: %d\n", he); 525 goto end; 526 } 527 528 xive_write_1(sc, XIVE_TM_CPPR, cppr); 529 530 for (;;) { 531 vector = xive_read_eq(&xive_cpud->queue); 532 533 if (vector == 0) 534 break; 535 536 if (vector == MAX_XIVE_IRQS) 537 vector = xive_ipi_vector; 538 539 powerpc_dispatch_intr(vector, tf); 540 } 541 } 542 end: 543 xive_write_1(sc, XIVE_TM_CPPR, 0xff); 544 } 545 546 static void 547 xive_enable(device_t dev, u_int irq, u_int vector, void **priv) 548 { 549 struct xive_irq *irqd; 550 cell_t status, cpu; 551 552 if (irq == MAX_XIVE_IRQS) { 553 if (xive_ipi_vector == -1) 554 xive_ipi_vector = vector; 555 return; 556 } 557 if (*priv == NULL) 558 *priv = xive_configure_irq(irq); 559 560 irqd = *priv; 561 562 /* Bind to this CPU to start */ 563 cpu = PCPU_GET(hwref); 564 irqd->lirq = vector; 565 566 for (;;) { 567 status = opal_call(OPAL_XIVE_SET_IRQ_CONFIG, irq, cpu, 568 XIVE_PRIORITY, vector); 569 if (status != OPAL_BUSY) 570 break; 571 DELAY(10); 572 } 573 574 if (status != 0) 575 panic("OPAL_SET_XIVE IRQ %d -> cpu %d failed: %d", irq, 576 cpu, status); 577 578 xive_unmask(dev, irq, *priv); 579 } 580 581 static void 582 xive_eoi(device_t dev, u_int irq, void *priv) 583 { 584 struct xive_irq *rirq; 585 struct xive_cpu *cpud; 586 uint8_t eoi_val; 587 588 if (irq == MAX_XIVE_IRQS) { 589 cpud = DPCPU_PTR(xive_cpu_data); 590 rirq = &cpud->ipi_data; 591 } else 592 rirq = priv; 593 594 if (rirq->flags & OPAL_XIVE_IRQ_STORE_EOI) 595 xive_write_mmap8(rirq->eoi_page + XIVE_IRQ_STORE_EOI, 0); 596 else if (rirq->flags & OPAL_XIVE_IRQ_LSI) 597 xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_LOAD_EOI); 598 else { 599 eoi_val = xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_00); 600 if ((eoi_val & XIVE_IRQ_VAL_Q) && rirq->trig_page != 0) 601 xive_write_mmap8(rirq->trig_page, 0); 602 } 603 } 604 605 static void 606 xive_ipi(device_t dev, u_int cpu) 607 { 608 struct xive_cpu *xive_cpud; 609 610 xive_cpud = DPCPU_ID_PTR(cpu, xive_cpu_data); 611 612 if (xive_cpud->ipi_data.trig_page == 0) 613 return; 614 xive_write_mmap8(xive_cpud->ipi_data.trig_page, 0); 615 } 616 617 static void 618 xive_mask(device_t dev, u_int irq, void *priv) 619 { 620 struct xive_irq *rirq; 621 622 /* Never mask IPIs */ 623 if (irq == MAX_XIVE_IRQS) 624 return; 625 626 rirq = priv; 627 628 if (!(rirq->flags & OPAL_XIVE_IRQ_LSI)) 629 return; 630 xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_01); 631 } 632 633 static void 634 xive_unmask(device_t dev, u_int irq, void *priv) 635 { 636 struct xive_irq *rirq; 637 638 rirq = priv; 639 640 xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_00); 641 } 642 643 static void 644 xive_translate_code(device_t dev, u_int irq, int code, 645 enum intr_trigger *trig, enum intr_polarity *pol) 646 { 647 switch (code) { 648 case 0: 649 /* L to H edge */ 650 *trig = INTR_TRIGGER_EDGE; 651 *pol = INTR_POLARITY_HIGH; 652 break; 653 case 1: 654 /* Active L level */ 655 *trig = INTR_TRIGGER_LEVEL; 656 *pol = INTR_POLARITY_LOW; 657 break; 658 default: 659 *trig = INTR_TRIGGER_CONFORM; 660 *pol = INTR_POLARITY_CONFORM; 661 } 662 } 663 664 /* Private functions. */ 665 /* 666 * Setup the current CPU. Called by the BSP at driver attachment, and by each 667 * AP at wakeup (via xive_smp_cpu_startup()). 668 */ 669 static void 670 xive_setup_cpu(void) 671 { 672 struct xive_softc *sc; 673 struct xive_cpu *cpup; 674 uint32_t val; 675 676 cpup = DPCPU_PTR(xive_cpu_data); 677 678 sc = device_get_softc(root_pic); 679 680 val = bus_read_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD2); 681 if (val & TM_QW2W2_VP) 682 bus_read_8(sc->sc_mem, XIVE_TM_SPC_PULL_POOL_CTX); 683 684 bus_write_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD0, 0xff); 685 bus_write_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD2, 686 TM_QW2W2_VP | cpup->cam); 687 688 xive_unmask(root_pic, cpup->ipi_data.girq, &cpup->ipi_data); 689 xive_write_1(sc, XIVE_TM_CPPR, 0xff); 690 } 691 692 /* Populate an IRQ structure, mapping the EOI and trigger pages. */ 693 static void 694 xive_init_irq(struct xive_irq *irqd, u_int irq) 695 { 696 uint64_t eoi_phys, trig_phys; 697 uint32_t esb_shift; 698 699 opal_call(OPAL_XIVE_GET_IRQ_INFO, irq, 700 vtophys(&irqd->flags), vtophys(&eoi_phys), 701 vtophys(&trig_phys), vtophys(&esb_shift), 702 vtophys(&irqd->chip)); 703 704 irqd->flags = be64toh(irqd->flags); 705 eoi_phys = be64toh(eoi_phys); 706 trig_phys = be64toh(trig_phys); 707 esb_shift = be32toh(esb_shift); 708 irqd->chip = be32toh(irqd->chip); 709 710 irqd->girq = irq; 711 irqd->esb_size = 1 << esb_shift; 712 irqd->eoi_page = (vm_offset_t)pmap_mapdev(eoi_phys, irqd->esb_size); 713 714 if (eoi_phys == trig_phys) 715 irqd->trig_page = irqd->eoi_page; 716 else if (trig_phys != 0) 717 irqd->trig_page = (vm_offset_t)pmap_mapdev(trig_phys, 718 irqd->esb_size); 719 else 720 irqd->trig_page = 0; 721 722 opal_call(OPAL_XIVE_GET_IRQ_CONFIG, irq, vtophys(&irqd->vp), 723 vtophys(&irqd->prio), vtophys(&irqd->lirq)); 724 725 irqd->vp = be64toh(irqd->vp); 726 irqd->prio = be64toh(irqd->prio); 727 irqd->lirq = be32toh(irqd->lirq); 728 } 729 730 /* Allocate an IRQ struct before populating it. */ 731 static struct xive_irq * 732 xive_configure_irq(u_int irq) 733 { 734 struct xive_irq *irqd; 735 736 irqd = malloc(sizeof(struct xive_irq), M_XIVE, M_WAITOK); 737 738 xive_init_irq(irqd, irq); 739 740 return (irqd); 741 } 742 743 /* 744 * Part of the OPAL API. OPAL_XIVE_ALLOCATE_VP_BLOCK might require more pages, 745 * provisioned through this call. 746 */ 747 static int 748 xive_provision_page(struct xive_softc *sc) 749 { 750 void *prov_page; 751 int error; 752 753 do { 754 prov_page = contigmalloc(sc->sc_prov_page_size, M_XIVE, 0, 755 0, BUS_SPACE_MAXADDR, 756 sc->sc_prov_page_size, sc->sc_prov_page_size); 757 758 error = opal_call(OPAL_XIVE_DONATE_PAGE, -1, 759 vtophys(prov_page)); 760 } while (error == OPAL_XIVE_PROVISIONING); 761 762 return (0); 763 } 764 765 /* The XIVE_TM_CPPR register must be set by each thread */ 766 static void 767 xive_smp_cpu_startup(void) 768 { 769 770 xive_setup_cpu(); 771 } 772