xref: /freebsd/sys/powerpc/powernv/platform_powernv.c (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 /*-
2  * Copyright (c) 2015 Nathan Whitehorn
3  * Copyright (c) 2017-2018 Semihalf
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/bus.h>
32 #include <sys/pcpu.h>
33 #include <sys/proc.h>
34 #include <sys/smp.h>
35 #include <vm/vm.h>
36 #include <vm/pmap.h>
37 
38 #include <machine/bus.h>
39 #include <machine/cpu.h>
40 #include <machine/hid.h>
41 #include <machine/platformvar.h>
42 #include <machine/pmap.h>
43 #include <machine/rtas.h>
44 #include <machine/smp.h>
45 #include <machine/spr.h>
46 #include <machine/trap.h>
47 
48 #include <dev/ofw/openfirm.h>
49 #include <dev/ofw/ofw_bus.h>
50 #include <dev/ofw/ofw_bus_subr.h>
51 #include <machine/ofw_machdep.h>
52 #include <powerpc/aim/mmu_oea64.h>
53 
54 #include "platform_if.h"
55 #include "opal.h"
56 
57 #ifdef SMP
58 extern void *ap_pcpu;
59 #endif
60 
61 void (*powernv_smp_ap_extra_init)(void);
62 
63 static int powernv_probe(platform_t);
64 static int powernv_attach(platform_t);
65 void powernv_mem_regions(platform_t, struct mem_region *phys, int *physsz,
66     struct mem_region *avail, int *availsz);
67 static void powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz);
68 static u_long powernv_timebase_freq(platform_t, struct cpuref *cpuref);
69 static int powernv_smp_first_cpu(platform_t, struct cpuref *cpuref);
70 static int powernv_smp_next_cpu(platform_t, struct cpuref *cpuref);
71 static int powernv_smp_get_bsp(platform_t, struct cpuref *cpuref);
72 static void powernv_smp_ap_init(platform_t);
73 #ifdef SMP
74 static int powernv_smp_start_cpu(platform_t, struct pcpu *cpu);
75 static void powernv_smp_probe_threads(platform_t);
76 static struct cpu_group *powernv_smp_topo(platform_t plat);
77 #endif
78 static void powernv_reset(platform_t);
79 static void powernv_cpu_idle(sbintime_t sbt);
80 static int powernv_cpuref_init(void);
81 static int powernv_node_numa_domain(platform_t platform, phandle_t node);
82 
83 static platform_method_t powernv_methods[] = {
84 	PLATFORMMETHOD(platform_probe, 		powernv_probe),
85 	PLATFORMMETHOD(platform_attach,		powernv_attach),
86 	PLATFORMMETHOD(platform_mem_regions,	powernv_mem_regions),
87 	PLATFORMMETHOD(platform_numa_mem_regions,	powernv_numa_mem_regions),
88 	PLATFORMMETHOD(platform_timebase_freq,	powernv_timebase_freq),
89 
90 	PLATFORMMETHOD(platform_smp_ap_init,	powernv_smp_ap_init),
91 	PLATFORMMETHOD(platform_smp_first_cpu,	powernv_smp_first_cpu),
92 	PLATFORMMETHOD(platform_smp_next_cpu,	powernv_smp_next_cpu),
93 	PLATFORMMETHOD(platform_smp_get_bsp,	powernv_smp_get_bsp),
94 #ifdef SMP
95 	PLATFORMMETHOD(platform_smp_start_cpu,	powernv_smp_start_cpu),
96 	PLATFORMMETHOD(platform_smp_probe_threads,	powernv_smp_probe_threads),
97 	PLATFORMMETHOD(platform_smp_topo,	powernv_smp_topo),
98 #endif
99 	PLATFORMMETHOD(platform_node_numa_domain,	powernv_node_numa_domain),
100 
101 	PLATFORMMETHOD(platform_reset,		powernv_reset),
102 	{ 0, 0 }
103 };
104 
105 static platform_def_t powernv_platform = {
106 	"powernv",
107 	powernv_methods,
108 	0
109 };
110 
111 static struct cpuref platform_cpuref[MAXCPU];
112 static int platform_cpuref_cnt;
113 static int platform_cpuref_valid;
114 static int platform_associativity;
115 
116 PLATFORM_DEF(powernv_platform);
117 
118 static uint64_t powernv_boot_pir;
119 
120 static int
121 powernv_probe(platform_t plat)
122 {
123 	if (opal_check() == 0)
124 		return (BUS_PROBE_SPECIFIC);
125 
126 	return (ENXIO);
127 }
128 
129 static int
130 powernv_attach(platform_t plat)
131 {
132 	uint32_t nptlp, shift = 0, slb_encoding = 0;
133 	int32_t lp_size, lp_encoding;
134 	char buf[255];
135 	pcell_t refpoints[3];
136 	pcell_t prop;
137 	phandle_t cpu;
138 	phandle_t opal;
139 	int res, len, idx;
140 	register_t msr;
141 	bool has_lp;
142 
143 	/* Ping OPAL again just to make sure */
144 	opal_check();
145 
146 #if BYTE_ORDER == LITTLE_ENDIAN
147 	opal_call(OPAL_REINIT_CPUS, 2 /* Little endian */);
148 #else
149 	opal_call(OPAL_REINIT_CPUS, 1 /* Big endian */);
150 #endif
151 	opal = OF_finddevice("/ibm,opal");
152 
153 	platform_associativity = 4; /* Skiboot default. */
154 	if (OF_getencprop(opal, "ibm,associativity-reference-points", refpoints,
155 	    sizeof(refpoints)) > 0) {
156 		platform_associativity = refpoints[0];
157 	}
158 
159        if (cpu_idle_hook == NULL)
160                 cpu_idle_hook = powernv_cpu_idle;
161 
162 	powernv_boot_pir = mfspr(SPR_PIR);
163 
164 	/* LPID must not be altered when PSL_DR or PSL_IR is set */
165 	msr = mfmsr();
166 	mtmsr(msr & ~(PSL_DR | PSL_IR));
167 
168 	/* Direct interrupts to SRR instead of HSRR and reset LPCR otherwise */
169 	mtspr(SPR_LPID, 0);
170 	isync();
171 
172 	if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
173 		lpcr |= LPCR_HVICE;
174 
175 #if BYTE_ORDER == LITTLE_ENDIAN
176 	lpcr |= LPCR_ILE;
177 #endif
178 
179 	mtspr(SPR_LPCR, lpcr);
180 	isync();
181 
182 	mtmsr(msr);
183 
184 	powernv_cpuref_init();
185 
186 	/* Set SLB count from device tree */
187 	cpu = OF_peer(0);
188 	cpu = OF_child(cpu);
189 	while (cpu != 0) {
190 		res = OF_getprop(cpu, "name", buf, sizeof(buf));
191 		if (res > 0 && strcmp(buf, "cpus") == 0)
192 			break;
193 		cpu = OF_peer(cpu);
194 	}
195 	if (cpu == 0)
196 		goto out;
197 
198 	cpu = OF_child(cpu);
199 	while (cpu != 0) {
200 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
201 		if (res > 0 && strcmp(buf, "cpu") == 0)
202 			break;
203 		cpu = OF_peer(cpu);
204 	}
205 	if (cpu == 0)
206 		goto out;
207 
208 	res = OF_getencprop(cpu, "ibm,slb-size", &prop, sizeof(prop));
209 	if (res > 0)
210 		n_slbs = prop;
211 
212 	/*
213 	 * Scan the large page size property for PAPR compatible machines.
214 	 * See PAPR D.5 Changes to Section 5.1.4, 'CPU Node Properties'
215 	 * for the encoding of the property.
216 	 */
217 
218 	len = OF_getproplen(cpu, "ibm,segment-page-sizes");
219 	if (len > 0) {
220 		/*
221 		 * We have to use a variable length array on the stack
222 		 * since we have very limited stack space.
223 		 */
224 		pcell_t arr[len/sizeof(cell_t)];
225 		res = OF_getencprop(cpu, "ibm,segment-page-sizes", arr,
226 		    sizeof(arr));
227 		len /= 4;
228 		idx = 0;
229 		has_lp = false;
230 		while (len > 0) {
231 			shift = arr[idx];
232 			slb_encoding = arr[idx + 1];
233 			nptlp = arr[idx + 2];
234 			idx += 3;
235 			len -= 3;
236 			while (len > 0 && nptlp) {
237 				lp_size = arr[idx];
238 				lp_encoding = arr[idx+1];
239 				if (slb_encoding == SLBV_L && lp_encoding == 0)
240 					has_lp = true;
241 
242 				if (slb_encoding == SLB_PGSZ_4K_4K &&
243 				    lp_encoding == LP_4K_16M)
244 					moea64_has_lp_4k_16m = true;
245 
246 				idx += 2;
247 				len -= 2;
248 				nptlp--;
249 			}
250 			if (has_lp && moea64_has_lp_4k_16m)
251 				break;
252 		}
253 
254 		if (!has_lp)
255 			panic("Standard large pages (SLB[L] = 1, PTE[LP] = 0) "
256 			    "not supported by this system.");
257 
258 		moea64_large_page_shift = shift;
259 		moea64_large_page_size = 1ULL << lp_size;
260 	}
261 
262 out:
263 	return (0);
264 }
265 
266 void
267 powernv_mem_regions(platform_t plat, struct mem_region *phys, int *physsz,
268     struct mem_region *avail, int *availsz)
269 {
270 
271 	ofw_mem_regions(phys, physsz, avail, availsz);
272 }
273 
274 static void
275 powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz)
276 {
277 
278 	ofw_numa_mem_regions(phys, physsz);
279 }
280 
281 static u_long
282 powernv_timebase_freq(platform_t plat, struct cpuref *cpuref)
283 {
284 	char buf[8];
285 	phandle_t cpu, dev, root;
286 	int res;
287 	int32_t ticks = -1;
288 
289 	root = OF_peer(0);
290 	dev = OF_child(root);
291 	while (dev != 0) {
292 		res = OF_getprop(dev, "name", buf, sizeof(buf));
293 		if (res > 0 && strcmp(buf, "cpus") == 0)
294 			break;
295 		dev = OF_peer(dev);
296 	}
297 
298 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
299 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
300 		if (res > 0 && strcmp(buf, "cpu") == 0)
301 			break;
302 	}
303 	if (cpu == 0)
304 		return (512000000);
305 
306 	OF_getencprop(cpu, "timebase-frequency", &ticks, sizeof(ticks));
307 
308 	if (ticks <= 0)
309 		panic("Unable to determine timebase frequency!");
310 
311 	return (ticks);
312 
313 }
314 
315 static int
316 powernv_cpuref_init(void)
317 {
318 	phandle_t cpu, dev;
319 	char buf[32];
320 	int a, res, tmp_cpuref_cnt;
321 	static struct cpuref tmp_cpuref[MAXCPU];
322 	cell_t interrupt_servers[32];
323 	uint64_t bsp;
324 
325 	if (platform_cpuref_valid)
326 		return (0);
327 
328 	dev = OF_peer(0);
329 	dev = OF_child(dev);
330 	while (dev != 0) {
331 		res = OF_getprop(dev, "name", buf, sizeof(buf));
332 		if (res > 0 && strcmp(buf, "cpus") == 0)
333 			break;
334 		dev = OF_peer(dev);
335 	}
336 
337 	bsp = 0;
338 	tmp_cpuref_cnt = 0;
339 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
340 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
341 		if (res > 0 && strcmp(buf, "cpu") == 0) {
342 			if (!ofw_bus_node_status_okay(cpu))
343 				continue;
344 			res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
345 			if (res > 0) {
346 				OF_getencprop(cpu, "ibm,ppc-interrupt-server#s",
347 				    interrupt_servers, res);
348 
349 				for (a = 0; a < res/sizeof(cell_t); a++) {
350 					tmp_cpuref[tmp_cpuref_cnt].cr_hwref = interrupt_servers[a];
351 					tmp_cpuref[tmp_cpuref_cnt].cr_cpuid = tmp_cpuref_cnt;
352 					tmp_cpuref[tmp_cpuref_cnt].cr_domain =
353 					    powernv_node_numa_domain(NULL, cpu);
354 					if (interrupt_servers[a] == (uint32_t)powernv_boot_pir)
355 						bsp = tmp_cpuref_cnt;
356 
357 					tmp_cpuref_cnt++;
358 				}
359 			}
360 		}
361 	}
362 
363 	/* Map IDs, so BSP has CPUID 0 regardless of hwref */
364 	for (a = bsp; a < tmp_cpuref_cnt; a++) {
365 		platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
366 		platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
367 		platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
368 		platform_cpuref_cnt++;
369 	}
370 	for (a = 0; a < bsp; a++) {
371 		platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
372 		platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
373 		platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
374 		platform_cpuref_cnt++;
375 	}
376 
377 	platform_cpuref_valid = 1;
378 
379 	return (0);
380 }
381 
382 static int
383 powernv_smp_first_cpu(platform_t plat, struct cpuref *cpuref)
384 {
385 	if (platform_cpuref_valid == 0)
386 		return (EINVAL);
387 
388 	cpuref->cr_cpuid = 0;
389 	cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
390 	cpuref->cr_domain = platform_cpuref[0].cr_domain;
391 
392 	return (0);
393 }
394 
395 static int
396 powernv_smp_next_cpu(platform_t plat, struct cpuref *cpuref)
397 {
398 	int id;
399 
400 	if (platform_cpuref_valid == 0)
401 		return (EINVAL);
402 
403 	id = cpuref->cr_cpuid + 1;
404 	if (id >= platform_cpuref_cnt)
405 		return (ENOENT);
406 
407 	cpuref->cr_cpuid = platform_cpuref[id].cr_cpuid;
408 	cpuref->cr_hwref = platform_cpuref[id].cr_hwref;
409 	cpuref->cr_domain = platform_cpuref[id].cr_domain;
410 
411 	return (0);
412 }
413 
414 static int
415 powernv_smp_get_bsp(platform_t plat, struct cpuref *cpuref)
416 {
417 
418 	cpuref->cr_cpuid = platform_cpuref[0].cr_cpuid;
419 	cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
420 	cpuref->cr_domain = platform_cpuref[0].cr_domain;
421 	return (0);
422 }
423 
424 #ifdef SMP
425 static int
426 powernv_smp_start_cpu(platform_t plat, struct pcpu *pc)
427 {
428 	int result;
429 
430 	ap_pcpu = pc;
431 	powerpc_sync();
432 
433 	result = opal_call(OPAL_START_CPU, pc->pc_hwref, EXC_RST);
434 	if (result != OPAL_SUCCESS) {
435 		printf("OPAL error (%d): unable to start AP %d\n",
436 		    result, (int)pc->pc_hwref);
437 		return (ENXIO);
438 	}
439 
440 	return (0);
441 }
442 
443 static void
444 powernv_smp_probe_threads(platform_t plat)
445 {
446 	char buf[8];
447 	phandle_t cpu, dev, root;
448 	int res, nthreads;
449 
450 	root = OF_peer(0);
451 
452 	dev = OF_child(root);
453 	while (dev != 0) {
454 		res = OF_getprop(dev, "name", buf, sizeof(buf));
455 		if (res > 0 && strcmp(buf, "cpus") == 0)
456 			break;
457 		dev = OF_peer(dev);
458 	}
459 
460 	nthreads = 1;
461 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
462 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
463 		if (res <= 0 || strcmp(buf, "cpu") != 0)
464 			continue;
465 
466 		res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
467 
468 		if (res >= 0)
469 			nthreads = res / sizeof(cell_t);
470 		else
471 			nthreads = 1;
472 		break;
473 	}
474 
475 	smp_threads_per_core = nthreads;
476 	if (mp_ncpus % nthreads == 0)
477 		mp_ncores = mp_ncpus / nthreads;
478 }
479 
480 static struct cpu_group *
481 cpu_group_init(struct cpu_group *group, struct cpu_group *parent,
482     const cpuset_t *cpus, int children, int level, int flags)
483 {
484 	struct cpu_group *child;
485 
486 	child = children != 0 ? smp_topo_alloc(children) : NULL;
487 
488 	group->cg_parent = parent;
489 	group->cg_child = child;
490 	CPU_COPY(cpus, &group->cg_mask);
491 	group->cg_count = CPU_COUNT(cpus);
492 	group->cg_children = children;
493 	group->cg_level = level;
494 	group->cg_flags = flags;
495 
496 	return (child);
497 }
498 
499 static struct cpu_group *
500 powernv_smp_topo(platform_t plat)
501 {
502 	struct cpu_group *core, *dom, *root;
503 	cpuset_t corecpus, domcpus;
504 	int cpuid, i, j, k, ncores;
505 
506 	if (mp_ncpus % smp_threads_per_core != 0) {
507 		printf("%s: irregular SMP topology (%d threads, %d per core)\n",
508 		    __func__, mp_ncpus, smp_threads_per_core);
509 		return (smp_topo_none());
510 	}
511 
512 	root = smp_topo_alloc(1);
513 	dom = cpu_group_init(root, NULL, &all_cpus, vm_ndomains, CG_SHARE_NONE,
514 	    0);
515 
516 	/*
517 	 * Redundant layers will be collapsed by the caller so we don't need a
518 	 * special case for a single domain.
519 	 */
520 	for (i = 0; i < vm_ndomains; i++, dom++) {
521 		CPU_COPY(&cpuset_domain[i], &domcpus);
522 		ncores = CPU_COUNT(&domcpus) / smp_threads_per_core;
523 		KASSERT(CPU_COUNT(&domcpus) % smp_threads_per_core == 0,
524 		    ("%s: domain %d core count not divisible by thread count",
525 		    __func__, i));
526 
527 		core = cpu_group_init(dom, root, &domcpus, ncores, CG_SHARE_L3,
528 		    0);
529 		for (j = 0; j < ncores; j++, core++) {
530 			/*
531 			 * Assume that consecutive CPU IDs correspond to sibling
532 			 * threads.
533 			 */
534 			CPU_ZERO(&corecpus);
535 			for (k = 0; k < smp_threads_per_core; k++) {
536 				cpuid = CPU_FFS(&domcpus) - 1;
537 				CPU_CLR(cpuid, &domcpus);
538 				CPU_SET(cpuid, &corecpus);
539 			}
540 			(void)cpu_group_init(core, dom, &corecpus, 0,
541 			    CG_SHARE_L1, CG_FLAG_SMT);
542 		}
543 	}
544 
545 	return (root);
546 }
547 
548 #endif
549 
550 static void
551 powernv_reset(platform_t platform)
552 {
553 
554 	opal_call(OPAL_CEC_REBOOT);
555 }
556 
557 static void
558 powernv_smp_ap_init(platform_t platform)
559 {
560 
561 	if (powernv_smp_ap_extra_init != NULL)
562 		powernv_smp_ap_extra_init();
563 }
564 
565 static void
566 powernv_cpu_idle(sbintime_t sbt)
567 {
568 }
569 
570 static int
571 powernv_node_numa_domain(platform_t platform, phandle_t node)
572 {
573 	/* XXX: Is locking necessary in here? */
574 	static int numa_domains[MAXMEMDOM];
575 	static int numa_max_domain;
576 	cell_t associativity[5];
577 	int i, res;
578 
579 #ifndef NUMA
580 	return (0);
581 #endif
582 	i = 0;
583 	TUNABLE_INT_FETCH("vm.numa.disabled", &i);
584 	if (i)
585 		return (0);
586 
587 	res = OF_getencprop(node, "ibm,associativity",
588 		associativity, sizeof(associativity));
589 
590 	/*
591 	 * If this node doesn't have associativity, or if there are not
592 	 * enough elements in it, check its parent.
593 	 */
594 	if (res < (int)(sizeof(cell_t) * (platform_associativity + 1))) {
595 		node = OF_parent(node);
596 		/* If already at the root, use default domain. */
597 		if (node == 0)
598 			return (0);
599 		return (powernv_node_numa_domain(platform, node));
600 	}
601 
602 	for (i = 0; i < numa_max_domain; i++) {
603 		if (numa_domains[i] == associativity[platform_associativity])
604 			return (i);
605 	}
606 	if (i < MAXMEMDOM)
607 		numa_domains[numa_max_domain++] =
608 		    associativity[platform_associativity];
609 	else
610 		i = 0;
611 
612 	return (i);
613 }
614 
615 /* Set up the Nest MMU on POWER9 relatively early, but after pmap is setup. */
616 static void
617 powernv_setup_nmmu(void *unused)
618 {
619 	if (opal_check() != 0)
620 		return;
621 	opal_call(OPAL_NMMU_SET_PTCR, -1, mfspr(SPR_PTCR));
622 }
623 
624 SYSINIT(powernv_setup_nmmu, SI_SUB_CPU, SI_ORDER_ANY, powernv_setup_nmmu, NULL);
625