1 /*- 2 * Copyright (c) 2009 Nathan Whitehorn 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 19 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 20 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 21 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/systm.h> 34 #include <sys/module.h> 35 #include <sys/conf.h> 36 #include <sys/cpu.h> 37 #include <sys/clock.h> 38 #include <sys/ctype.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/reboot.h> 42 #include <sys/rman.h> 43 #include <sys/sysctl.h> 44 #include <sys/unistd.h> 45 46 #include <machine/bus.h> 47 #include <machine/intr_machdep.h> 48 #include <machine/md_var.h> 49 50 #include <dev/iicbus/iicbus.h> 51 #include <dev/iicbus/iiconf.h> 52 #include <dev/led/led.h> 53 #include <dev/ofw/openfirm.h> 54 #include <dev/ofw/ofw_bus.h> 55 #include <dev/ofw/ofw_bus_subr.h> 56 #include <powerpc/powermac/macgpiovar.h> 57 #include <powerpc/powermac/powermac_thermal.h> 58 59 #include "clock_if.h" 60 #include "iicbus_if.h" 61 62 struct smu_cmd { 63 volatile uint8_t cmd; 64 uint8_t len; 65 uint8_t data[254]; 66 67 STAILQ_ENTRY(smu_cmd) cmd_q; 68 }; 69 70 STAILQ_HEAD(smu_cmdq, smu_cmd); 71 72 struct smu_fan { 73 struct pmac_fan fan; 74 device_t dev; 75 cell_t reg; 76 77 enum { 78 SMU_FAN_RPM, 79 SMU_FAN_PWM 80 } type; 81 int setpoint; 82 int old_style; 83 int rpm; 84 }; 85 86 /* We can read the PWM and the RPM from a PWM controlled fan. 87 * Offer both values via sysctl. 88 */ 89 enum { 90 SMU_PWM_SYSCTL_PWM = 1 << 8, 91 SMU_PWM_SYSCTL_RPM = 2 << 8 92 }; 93 94 struct smu_sensor { 95 struct pmac_therm therm; 96 device_t dev; 97 98 cell_t reg; 99 enum { 100 SMU_CURRENT_SENSOR, 101 SMU_VOLTAGE_SENSOR, 102 SMU_POWER_SENSOR, 103 SMU_TEMP_SENSOR 104 } type; 105 }; 106 107 struct smu_softc { 108 device_t sc_dev; 109 struct mtx sc_mtx; 110 111 struct resource *sc_memr; 112 int sc_memrid; 113 int sc_u3; 114 115 bus_dma_tag_t sc_dmatag; 116 bus_space_tag_t sc_bt; 117 bus_space_handle_t sc_mailbox; 118 119 struct smu_cmd *sc_cmd, *sc_cur_cmd; 120 bus_addr_t sc_cmd_phys; 121 bus_dmamap_t sc_cmd_dmamap; 122 struct smu_cmdq sc_cmdq; 123 124 struct smu_fan *sc_fans; 125 int sc_nfans; 126 int old_style_fans; 127 struct smu_sensor *sc_sensors; 128 int sc_nsensors; 129 130 int sc_doorbellirqid; 131 struct resource *sc_doorbellirq; 132 void *sc_doorbellirqcookie; 133 134 struct proc *sc_fanmgt_proc; 135 time_t sc_lastuserchange; 136 137 /* Calibration data */ 138 uint16_t sc_cpu_diode_scale; 139 int16_t sc_cpu_diode_offset; 140 141 uint16_t sc_cpu_volt_scale; 142 int16_t sc_cpu_volt_offset; 143 uint16_t sc_cpu_curr_scale; 144 int16_t sc_cpu_curr_offset; 145 146 uint16_t sc_slots_pow_scale; 147 int16_t sc_slots_pow_offset; 148 149 struct cdev *sc_leddev; 150 }; 151 152 /* regular bus attachment functions */ 153 154 static int smu_probe(device_t); 155 static int smu_attach(device_t); 156 static const struct ofw_bus_devinfo * 157 smu_get_devinfo(device_t bus, device_t dev); 158 159 /* cpufreq notification hooks */ 160 161 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level); 162 static void smu_cpufreq_post_change(device_t, const struct cf_level *level); 163 164 /* clock interface */ 165 static int smu_gettime(device_t dev, struct timespec *ts); 166 static int smu_settime(device_t dev, struct timespec *ts); 167 168 /* utility functions */ 169 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait); 170 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, 171 size_t len); 172 static void smu_attach_i2c(device_t dev, phandle_t i2croot); 173 static void smu_attach_fans(device_t dev, phandle_t fanroot); 174 static void smu_attach_sensors(device_t dev, phandle_t sensroot); 175 static void smu_set_sleepled(void *xdev, int onoff); 176 static int smu_server_mode(SYSCTL_HANDLER_ARGS); 177 static void smu_doorbell_intr(void *xdev); 178 static void smu_shutdown(void *xdev, int howto); 179 180 /* where to find the doorbell GPIO */ 181 182 static device_t smu_doorbell = NULL; 183 184 static device_method_t smu_methods[] = { 185 /* Device interface */ 186 DEVMETHOD(device_probe, smu_probe), 187 DEVMETHOD(device_attach, smu_attach), 188 189 /* Clock interface */ 190 DEVMETHOD(clock_gettime, smu_gettime), 191 DEVMETHOD(clock_settime, smu_settime), 192 193 /* ofw_bus interface */ 194 DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str), 195 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo), 196 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), 197 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), 198 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), 199 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), 200 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), 201 202 { 0, 0 }, 203 }; 204 205 static driver_t smu_driver = { 206 "smu", 207 smu_methods, 208 sizeof(struct smu_softc) 209 }; 210 211 static devclass_t smu_devclass; 212 213 DRIVER_MODULE(smu, ofwbus, smu_driver, smu_devclass, 0, 0); 214 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information"); 215 216 #define SMU_MAILBOX 0x8000860c 217 #define SMU_FANMGT_INTERVAL 1000 /* ms */ 218 219 /* Command types */ 220 #define SMU_ADC 0xd8 221 #define SMU_FAN 0x4a 222 #define SMU_RPM_STATUS 0x01 223 #define SMU_RPM_SETPOINT 0x02 224 #define SMU_PWM_STATUS 0x11 225 #define SMU_PWM_SETPOINT 0x12 226 #define SMU_I2C 0x9a 227 #define SMU_I2C_SIMPLE 0x00 228 #define SMU_I2C_NORMAL 0x01 229 #define SMU_I2C_COMBINED 0x02 230 #define SMU_MISC 0xee 231 #define SMU_MISC_GET_DATA 0x02 232 #define SMU_MISC_LED_CTRL 0x04 233 #define SMU_POWER 0xaa 234 #define SMU_POWER_EVENTS 0x8f 235 #define SMU_PWR_GET_POWERUP 0x00 236 #define SMU_PWR_SET_POWERUP 0x01 237 #define SMU_PWR_CLR_POWERUP 0x02 238 #define SMU_RTC 0x8e 239 #define SMU_RTC_GET 0x81 240 #define SMU_RTC_SET 0x80 241 242 /* Power event types */ 243 #define SMU_WAKEUP_KEYPRESS 0x01 244 #define SMU_WAKEUP_AC_INSERT 0x02 245 #define SMU_WAKEUP_AC_CHANGE 0x04 246 #define SMU_WAKEUP_RING 0x10 247 248 /* Data blocks */ 249 #define SMU_CPUTEMP_CAL 0x18 250 #define SMU_CPUVOLT_CAL 0x21 251 #define SMU_SLOTPW_CAL 0x78 252 253 /* Partitions */ 254 #define SMU_PARTITION 0x3e 255 #define SMU_PARTITION_LATEST 0x01 256 #define SMU_PARTITION_BASE 0x02 257 #define SMU_PARTITION_UPDATE 0x03 258 259 static int 260 smu_probe(device_t dev) 261 { 262 const char *name = ofw_bus_get_name(dev); 263 264 if (strcmp(name, "smu") != 0) 265 return (ENXIO); 266 267 device_set_desc(dev, "Apple System Management Unit"); 268 return (0); 269 } 270 271 static void 272 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 273 { 274 struct smu_softc *sc = xsc; 275 276 sc->sc_cmd_phys = segs[0].ds_addr; 277 } 278 279 static int 280 smu_attach(device_t dev) 281 { 282 struct smu_softc *sc; 283 phandle_t node, child; 284 uint8_t data[12]; 285 286 sc = device_get_softc(dev); 287 288 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF); 289 sc->sc_cur_cmd = NULL; 290 sc->sc_doorbellirqid = -1; 291 292 sc->sc_u3 = 0; 293 if (OF_finddevice("/u3") != -1) 294 sc->sc_u3 = 1; 295 296 /* 297 * Map the mailbox area. This should be determined from firmware, 298 * but I have not found a simple way to do that. 299 */ 300 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT, 301 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL, 302 NULL, &(sc->sc_dmatag)); 303 sc->sc_bt = &bs_le_tag; 304 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox); 305 306 /* 307 * Allocate the command buffer. This can be anywhere in the low 4 GB 308 * of memory. 309 */ 310 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | 311 BUS_DMA_ZERO, &sc->sc_cmd_dmamap); 312 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap, 313 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0); 314 STAILQ_INIT(&sc->sc_cmdq); 315 316 /* 317 * Set up handlers to change CPU voltage when CPU frequency is changed. 318 */ 319 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev, 320 EVENTHANDLER_PRI_ANY); 321 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev, 322 EVENTHANDLER_PRI_ANY); 323 324 node = ofw_bus_get_node(dev); 325 326 /* Some SMUs have RPM and PWM controlled fans which do not sit 327 * under the same node. So we have to attach them separately. 328 */ 329 smu_attach_fans(dev, node); 330 331 /* 332 * Now detect and attach the other child devices. 333 */ 334 for (child = OF_child(node); child != 0; child = OF_peer(child)) { 335 char name[32]; 336 memset(name, 0, sizeof(name)); 337 OF_getprop(child, "name", name, sizeof(name)); 338 339 if (strncmp(name, "sensors", 8) == 0) 340 smu_attach_sensors(dev, child); 341 342 if (strncmp(name, "smu-i2c-control", 15) == 0) 343 smu_attach_i2c(dev, child); 344 } 345 346 /* Some SMUs have the I2C children directly under the bus. */ 347 smu_attach_i2c(dev, node); 348 349 /* 350 * Collect calibration constants. 351 */ 352 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data)); 353 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5]; 354 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7]; 355 356 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data)); 357 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5]; 358 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7]; 359 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9]; 360 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11]; 361 362 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data)); 363 sc->sc_slots_pow_scale = (data[4] << 8) + data[5]; 364 sc->sc_slots_pow_offset = (data[6] << 8) + data[7]; 365 366 /* 367 * Set up LED interface 368 */ 369 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled"); 370 371 /* 372 * Reset on power loss behavior 373 */ 374 375 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 376 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 377 "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0, 378 smu_server_mode, "I", "Enable reboot after power failure"); 379 380 /* 381 * Set up doorbell interrupt. 382 */ 383 sc->sc_doorbellirqid = 0; 384 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ, 385 &sc->sc_doorbellirqid, RF_ACTIVE); 386 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq, 387 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev, 388 &sc->sc_doorbellirqcookie); 389 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq), 390 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW); 391 392 /* 393 * Connect RTC interface. 394 */ 395 clock_register(dev, 1000); 396 397 /* 398 * Learn about shutdown events 399 */ 400 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev, 401 SHUTDOWN_PRI_LAST); 402 403 return (bus_generic_attach(dev)); 404 } 405 406 static const struct ofw_bus_devinfo * 407 smu_get_devinfo(device_t bus, device_t dev) 408 { 409 410 return (device_get_ivars(dev)); 411 } 412 413 static void 414 smu_send_cmd(device_t dev, struct smu_cmd *cmd) 415 { 416 struct smu_softc *sc; 417 418 sc = device_get_softc(dev); 419 420 mtx_assert(&sc->sc_mtx, MA_OWNED); 421 422 if (sc->sc_u3) 423 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */ 424 425 sc->sc_cur_cmd = cmd; 426 427 /* Copy the command to the mailbox */ 428 sc->sc_cmd->cmd = cmd->cmd; 429 sc->sc_cmd->len = cmd->len; 430 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data)); 431 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE); 432 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys); 433 434 /* Flush the cacheline it is in -- SMU bypasses the cache */ 435 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory"); 436 437 /* Ring SMU doorbell */ 438 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT); 439 } 440 441 static void 442 smu_doorbell_intr(void *xdev) 443 { 444 device_t smu; 445 struct smu_softc *sc; 446 int doorbell_ack; 447 448 smu = xdev; 449 doorbell_ack = macgpio_read(smu_doorbell); 450 sc = device_get_softc(smu); 451 452 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) 453 return; 454 455 mtx_lock(&sc->sc_mtx); 456 457 if (sc->sc_cur_cmd == NULL) /* spurious */ 458 goto done; 459 460 /* Check result. First invalidate the cache again... */ 461 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory"); 462 463 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD); 464 465 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd; 466 sc->sc_cur_cmd->len = sc->sc_cmd->len; 467 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data, 468 sizeof(sc->sc_cmd->data)); 469 wakeup(sc->sc_cur_cmd); 470 sc->sc_cur_cmd = NULL; 471 if (sc->sc_u3) 472 powerpc_pow_enabled = 1; 473 474 done: 475 /* Queue next command if one is pending */ 476 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) { 477 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq); 478 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q); 479 smu_send_cmd(smu, sc->sc_cur_cmd); 480 } 481 482 mtx_unlock(&sc->sc_mtx); 483 } 484 485 static int 486 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait) 487 { 488 struct smu_softc *sc; 489 uint8_t cmd_code; 490 int error; 491 492 sc = device_get_softc(dev); 493 cmd_code = cmd->cmd; 494 495 mtx_lock(&sc->sc_mtx); 496 if (sc->sc_cur_cmd != NULL) { 497 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q); 498 } else 499 smu_send_cmd(dev, cmd); 500 mtx_unlock(&sc->sc_mtx); 501 502 if (!wait) 503 return (0); 504 505 if (sc->sc_doorbellirqid < 0) { 506 /* Poll if the IRQ has not been set up yet */ 507 do { 508 DELAY(50); 509 smu_doorbell_intr(dev); 510 } while (sc->sc_cur_cmd != NULL); 511 } else { 512 /* smu_doorbell_intr will wake us when the command is ACK'ed */ 513 error = tsleep(cmd, 0, "smu", 800 * hz / 1000); 514 if (error != 0) 515 smu_doorbell_intr(dev); /* One last chance */ 516 517 if (error != 0) { 518 mtx_lock(&sc->sc_mtx); 519 if (cmd->cmd == cmd_code) { /* Never processed */ 520 /* Abort this command if we timed out */ 521 if (sc->sc_cur_cmd == cmd) 522 sc->sc_cur_cmd = NULL; 523 else 524 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd, 525 cmd_q); 526 mtx_unlock(&sc->sc_mtx); 527 return (error); 528 } 529 error = 0; 530 mtx_unlock(&sc->sc_mtx); 531 } 532 } 533 534 /* SMU acks the command by inverting the command bits */ 535 if (cmd->cmd == ((~cmd_code) & 0xff)) 536 error = 0; 537 else 538 error = EIO; 539 540 return (error); 541 } 542 543 static int 544 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len) 545 { 546 struct smu_cmd cmd; 547 uint8_t addr[4]; 548 549 cmd.cmd = SMU_PARTITION; 550 cmd.len = 2; 551 cmd.data[0] = SMU_PARTITION_LATEST; 552 cmd.data[1] = id; 553 554 smu_run_cmd(dev, &cmd, 1); 555 556 addr[0] = addr[1] = 0; 557 addr[2] = cmd.data[0]; 558 addr[3] = cmd.data[1]; 559 560 cmd.cmd = SMU_MISC; 561 cmd.len = 7; 562 cmd.data[0] = SMU_MISC_GET_DATA; 563 cmd.data[1] = sizeof(addr); 564 memcpy(&cmd.data[2], addr, sizeof(addr)); 565 cmd.data[6] = len; 566 567 smu_run_cmd(dev, &cmd, 1); 568 memcpy(buf, cmd.data, len); 569 return (0); 570 } 571 572 static void 573 smu_slew_cpu_voltage(device_t dev, int to) 574 { 575 struct smu_cmd cmd; 576 577 cmd.cmd = SMU_POWER; 578 cmd.len = 8; 579 cmd.data[0] = 'V'; 580 cmd.data[1] = 'S'; 581 cmd.data[2] = 'L'; 582 cmd.data[3] = 'E'; 583 cmd.data[4] = 'W'; 584 cmd.data[5] = 0xff; 585 cmd.data[6] = 1; 586 cmd.data[7] = to; 587 588 smu_run_cmd(dev, &cmd, 1); 589 } 590 591 static void 592 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level) 593 { 594 /* 595 * Make sure the CPU voltage is raised before we raise 596 * the clock. 597 */ 598 599 if (level->rel_set[0].freq == 10000 /* max */) 600 smu_slew_cpu_voltage(dev, 0); 601 } 602 603 static void 604 smu_cpufreq_post_change(device_t dev, const struct cf_level *level) 605 { 606 /* We are safe to reduce CPU voltage after a downward transition */ 607 608 if (level->rel_set[0].freq < 10000 /* max */) 609 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */ 610 } 611 612 /* Routines for probing the SMU doorbell GPIO */ 613 static int doorbell_probe(device_t dev); 614 static int doorbell_attach(device_t dev); 615 616 static device_method_t doorbell_methods[] = { 617 /* Device interface */ 618 DEVMETHOD(device_probe, doorbell_probe), 619 DEVMETHOD(device_attach, doorbell_attach), 620 { 0, 0 }, 621 }; 622 623 static driver_t doorbell_driver = { 624 "smudoorbell", 625 doorbell_methods, 626 0 627 }; 628 629 static devclass_t doorbell_devclass; 630 631 DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 0, 0); 632 633 static int 634 doorbell_probe(device_t dev) 635 { 636 const char *name = ofw_bus_get_name(dev); 637 638 if (strcmp(name, "smu-doorbell") != 0) 639 return (ENXIO); 640 641 device_set_desc(dev, "SMU Doorbell GPIO"); 642 device_quiet(dev); 643 return (0); 644 } 645 646 static int 647 doorbell_attach(device_t dev) 648 { 649 smu_doorbell = dev; 650 return (0); 651 } 652 653 /* 654 * Sensor and fan management 655 */ 656 657 static int 658 smu_fan_check_old_style(struct smu_fan *fan) 659 { 660 device_t smu = fan->dev; 661 struct smu_softc *sc = device_get_softc(smu); 662 struct smu_cmd cmd; 663 int error; 664 665 if (sc->old_style_fans != -1) 666 return (sc->old_style_fans); 667 668 /* 669 * Apple has two fan control mechanisms. We can't distinguish 670 * them except by seeing if the new one fails. If the new one 671 * fails, use the old one. 672 */ 673 674 cmd.cmd = SMU_FAN; 675 cmd.len = 2; 676 cmd.data[0] = 0x31; 677 cmd.data[1] = fan->reg; 678 679 do { 680 error = smu_run_cmd(smu, &cmd, 1); 681 } while (error == EWOULDBLOCK); 682 683 sc->old_style_fans = (error != 0); 684 685 return (sc->old_style_fans); 686 } 687 688 static int 689 smu_fan_set_rpm(struct smu_fan *fan, int rpm) 690 { 691 device_t smu = fan->dev; 692 struct smu_cmd cmd; 693 int error; 694 695 cmd.cmd = SMU_FAN; 696 error = EIO; 697 698 /* Clamp to allowed range */ 699 rpm = max(fan->fan.min_rpm, rpm); 700 rpm = min(fan->fan.max_rpm, rpm); 701 702 smu_fan_check_old_style(fan); 703 704 if (!fan->old_style) { 705 cmd.len = 4; 706 cmd.data[0] = 0x30; 707 cmd.data[1] = fan->reg; 708 cmd.data[2] = (rpm >> 8) & 0xff; 709 cmd.data[3] = rpm & 0xff; 710 711 error = smu_run_cmd(smu, &cmd, 1); 712 if (error && error != EWOULDBLOCK) 713 fan->old_style = 1; 714 } else { 715 cmd.len = 14; 716 cmd.data[0] = 0x00; /* RPM fan. */ 717 cmd.data[1] = 1 << fan->reg; 718 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff; 719 cmd.data[3 + 2*fan->reg] = rpm & 0xff; 720 error = smu_run_cmd(smu, &cmd, 1); 721 } 722 723 if (error == 0) 724 fan->setpoint = rpm; 725 726 return (error); 727 } 728 729 static int 730 smu_fan_read_rpm(struct smu_fan *fan) 731 { 732 device_t smu = fan->dev; 733 struct smu_cmd cmd; 734 int rpm, error; 735 736 smu_fan_check_old_style(fan); 737 738 if (!fan->old_style) { 739 cmd.cmd = SMU_FAN; 740 cmd.len = 2; 741 cmd.data[0] = 0x31; 742 cmd.data[1] = fan->reg; 743 744 error = smu_run_cmd(smu, &cmd, 1); 745 if (error && error != EWOULDBLOCK) 746 fan->old_style = 1; 747 748 rpm = (cmd.data[0] << 8) | cmd.data[1]; 749 } 750 751 if (fan->old_style) { 752 cmd.cmd = SMU_FAN; 753 cmd.len = 1; 754 cmd.data[0] = SMU_RPM_STATUS; 755 756 error = smu_run_cmd(smu, &cmd, 1); 757 if (error) 758 return (error); 759 760 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 761 } 762 763 return (rpm); 764 } 765 static int 766 smu_fan_set_pwm(struct smu_fan *fan, int pwm) 767 { 768 device_t smu = fan->dev; 769 struct smu_cmd cmd; 770 int error; 771 772 cmd.cmd = SMU_FAN; 773 error = EIO; 774 775 /* Clamp to allowed range */ 776 pwm = max(fan->fan.min_rpm, pwm); 777 pwm = min(fan->fan.max_rpm, pwm); 778 779 /* 780 * Apple has two fan control mechanisms. We can't distinguish 781 * them except by seeing if the new one fails. If the new one 782 * fails, use the old one. 783 */ 784 785 if (!fan->old_style) { 786 cmd.len = 4; 787 cmd.data[0] = 0x30; 788 cmd.data[1] = fan->reg; 789 cmd.data[2] = (pwm >> 8) & 0xff; 790 cmd.data[3] = pwm & 0xff; 791 792 error = smu_run_cmd(smu, &cmd, 1); 793 if (error && error != EWOULDBLOCK) 794 fan->old_style = 1; 795 } 796 797 if (fan->old_style) { 798 cmd.len = 14; 799 cmd.data[0] = 0x10; /* PWM fan. */ 800 cmd.data[1] = 1 << fan->reg; 801 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff; 802 cmd.data[3 + 2*fan->reg] = pwm & 0xff; 803 error = smu_run_cmd(smu, &cmd, 1); 804 } 805 806 if (error == 0) 807 fan->setpoint = pwm; 808 809 return (error); 810 } 811 812 static int 813 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm) 814 { 815 device_t smu = fan->dev; 816 struct smu_cmd cmd; 817 int error; 818 819 if (!fan->old_style) { 820 cmd.cmd = SMU_FAN; 821 cmd.len = 2; 822 cmd.data[0] = 0x31; 823 cmd.data[1] = fan->reg; 824 825 error = smu_run_cmd(smu, &cmd, 1); 826 if (error && error != EWOULDBLOCK) 827 fan->old_style = 1; 828 829 *rpm = (cmd.data[0] << 8) | cmd.data[1]; 830 } 831 832 if (fan->old_style) { 833 cmd.cmd = SMU_FAN; 834 cmd.len = 1; 835 cmd.data[0] = SMU_PWM_STATUS; 836 837 error = smu_run_cmd(smu, &cmd, 1); 838 if (error) 839 return (error); 840 841 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 842 } 843 if (fan->old_style) { 844 cmd.cmd = SMU_FAN; 845 cmd.len = 14; 846 cmd.data[0] = SMU_PWM_SETPOINT; 847 cmd.data[1] = 1 << fan->reg; 848 849 error = smu_run_cmd(smu, &cmd, 1); 850 if (error) 851 return (error); 852 853 *pwm = cmd.data[fan->reg*2+2]; 854 } 855 return (0); 856 } 857 858 static int 859 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS) 860 { 861 device_t smu; 862 struct smu_softc *sc; 863 struct smu_fan *fan; 864 int pwm = 0, rpm, error = 0; 865 866 smu = arg1; 867 sc = device_get_softc(smu); 868 fan = &sc->sc_fans[arg2 & 0xff]; 869 870 if (fan->type == SMU_FAN_RPM) { 871 rpm = smu_fan_read_rpm(fan); 872 if (rpm < 0) 873 return (rpm); 874 875 error = sysctl_handle_int(oidp, &rpm, 0, req); 876 } else { 877 error = smu_fan_read_pwm(fan, &pwm, &rpm); 878 if (error < 0) 879 return (EIO); 880 881 switch (arg2 & 0xff00) { 882 case SMU_PWM_SYSCTL_PWM: 883 error = sysctl_handle_int(oidp, &pwm, 0, req); 884 break; 885 case SMU_PWM_SYSCTL_RPM: 886 error = sysctl_handle_int(oidp, &rpm, 0, req); 887 break; 888 default: 889 /* This should never happen */ 890 return (EINVAL); 891 }; 892 } 893 /* We can only read the RPM from a PWM controlled fan, so return. */ 894 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM) 895 return (0); 896 897 if (error || !req->newptr) 898 return (error); 899 900 sc->sc_lastuserchange = time_uptime; 901 902 if (fan->type == SMU_FAN_RPM) 903 return (smu_fan_set_rpm(fan, rpm)); 904 else 905 return (smu_fan_set_pwm(fan, pwm)); 906 } 907 908 static void 909 smu_fill_fan_prop(device_t dev, phandle_t child, int id) 910 { 911 struct smu_fan *fan; 912 struct smu_softc *sc; 913 char type[32]; 914 915 sc = device_get_softc(dev); 916 fan = &sc->sc_fans[id]; 917 918 OF_getprop(child, "device_type", type, sizeof(type)); 919 /* We have either RPM or PWM controlled fans. */ 920 if (strcmp(type, "fan-rpm-control") == 0) 921 fan->type = SMU_FAN_RPM; 922 else 923 fan->type = SMU_FAN_PWM; 924 925 fan->dev = dev; 926 fan->old_style = 0; 927 OF_getprop(child, "reg", &fan->reg, 928 sizeof(cell_t)); 929 OF_getprop(child, "min-value", &fan->fan.min_rpm, 930 sizeof(int)); 931 OF_getprop(child, "max-value", &fan->fan.max_rpm, 932 sizeof(int)); 933 OF_getprop(child, "zone", &fan->fan.zone, 934 sizeof(int)); 935 936 if (OF_getprop(child, "unmanaged-value", 937 &fan->fan.default_rpm, 938 sizeof(int)) != sizeof(int)) 939 fan->fan.default_rpm = fan->fan.max_rpm; 940 941 OF_getprop(child, "location", fan->fan.name, 942 sizeof(fan->fan.name)); 943 944 if (fan->type == SMU_FAN_RPM) 945 fan->setpoint = smu_fan_read_rpm(fan); 946 else 947 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm); 948 } 949 950 /* On the first call count the number of fans. In the second call, 951 * after allocating the fan struct, fill the properties of the fans. 952 */ 953 static int 954 smu_count_fans(device_t dev) 955 { 956 struct smu_softc *sc; 957 phandle_t child, node, root; 958 int nfans = 0; 959 960 node = ofw_bus_get_node(dev); 961 sc = device_get_softc(dev); 962 963 /* First find the fanroots and count the number of fans. */ 964 for (root = OF_child(node); root != 0; root = OF_peer(root)) { 965 char name[32]; 966 memset(name, 0, sizeof(name)); 967 OF_getprop(root, "name", name, sizeof(name)); 968 if (strncmp(name, "rpm-fans", 9) == 0 || 969 strncmp(name, "pwm-fans", 9) == 0 || 970 strncmp(name, "fans", 5) == 0) 971 for (child = OF_child(root); child != 0; 972 child = OF_peer(child)) { 973 nfans++; 974 /* When allocated, fill the fan properties. */ 975 if (sc->sc_fans != NULL) { 976 smu_fill_fan_prop(dev, child, 977 nfans - 1); 978 } 979 } 980 } 981 if (nfans == 0) { 982 device_printf(dev, "WARNING: No fans detected!\n"); 983 return (0); 984 } 985 return (nfans); 986 } 987 988 static void 989 smu_attach_fans(device_t dev, phandle_t fanroot) 990 { 991 struct smu_fan *fan; 992 struct smu_softc *sc; 993 struct sysctl_oid *oid, *fanroot_oid; 994 struct sysctl_ctx_list *ctx; 995 char sysctl_name[32]; 996 int i, j; 997 998 sc = device_get_softc(dev); 999 1000 /* Get the number of fans. */ 1001 sc->sc_nfans = smu_count_fans(dev); 1002 if (sc->sc_nfans == 0) 1003 return; 1004 1005 /* Now we're able to allocate memory for the fans struct. */ 1006 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU, 1007 M_WAITOK | M_ZERO); 1008 1009 /* Now fill in the properties. */ 1010 smu_count_fans(dev); 1011 1012 /* Register fans with pmac_thermal */ 1013 for (i = 0; i < sc->sc_nfans; i++) 1014 pmac_thermal_fan_register(&sc->sc_fans[i].fan); 1015 1016 ctx = device_get_sysctl_ctx(dev); 1017 fanroot_oid = SYSCTL_ADD_NODE(ctx, 1018 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans", 1019 CTLFLAG_RD, 0, "SMU Fan Information"); 1020 1021 /* Add sysctls */ 1022 for (i = 0; i < sc->sc_nfans; i++) { 1023 fan = &sc->sc_fans[i]; 1024 for (j = 0; j < strlen(fan->fan.name); j++) { 1025 sysctl_name[j] = tolower(fan->fan.name[j]); 1026 if (isspace(sysctl_name[j])) 1027 sysctl_name[j] = '_'; 1028 } 1029 sysctl_name[j] = 0; 1030 if (fan->type == SMU_FAN_RPM) { 1031 oid = SYSCTL_ADD_NODE(ctx, 1032 SYSCTL_CHILDREN(fanroot_oid), 1033 OID_AUTO, sysctl_name, 1034 CTLFLAG_RD, 0, "Fan Information"); 1035 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1036 "minrpm", CTLFLAG_RD, 1037 &fan->fan.min_rpm, 0, 1038 "Minimum allowed RPM"); 1039 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1040 "maxrpm", CTLFLAG_RD, 1041 &fan->fan.max_rpm, 0, 1042 "Maximum allowed RPM"); 1043 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1044 "rpm",CTLTYPE_INT | CTLFLAG_RW | 1045 CTLFLAG_MPSAFE, dev, i, 1046 smu_fanrpm_sysctl, "I", "Fan RPM"); 1047 1048 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm; 1049 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm; 1050 1051 } else { 1052 oid = SYSCTL_ADD_NODE(ctx, 1053 SYSCTL_CHILDREN(fanroot_oid), 1054 OID_AUTO, sysctl_name, 1055 CTLFLAG_RD, 0, "Fan Information"); 1056 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1057 "minpwm", CTLFLAG_RD, 1058 &fan->fan.min_rpm, 0, 1059 "Minimum allowed PWM in %"); 1060 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1061 "maxpwm", CTLFLAG_RD, 1062 &fan->fan.max_rpm, 0, 1063 "Maximum allowed PWM in %"); 1064 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1065 "pwm",CTLTYPE_INT | CTLFLAG_RW | 1066 CTLFLAG_MPSAFE, dev, 1067 SMU_PWM_SYSCTL_PWM | i, 1068 smu_fanrpm_sysctl, "I", "Fan PWM in %"); 1069 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1070 "rpm",CTLTYPE_INT | CTLFLAG_RD | 1071 CTLFLAG_MPSAFE, dev, 1072 SMU_PWM_SYSCTL_RPM | i, 1073 smu_fanrpm_sysctl, "I", "Fan RPM"); 1074 fan->fan.read = NULL; 1075 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm; 1076 1077 } 1078 if (bootverbose) 1079 device_printf(dev, "Fan: %s type: %d\n", 1080 fan->fan.name, fan->type); 1081 } 1082 } 1083 1084 static int 1085 smu_sensor_read(struct smu_sensor *sens) 1086 { 1087 device_t smu = sens->dev; 1088 struct smu_cmd cmd; 1089 struct smu_softc *sc; 1090 int64_t value; 1091 int error; 1092 1093 cmd.cmd = SMU_ADC; 1094 cmd.len = 1; 1095 cmd.data[0] = sens->reg; 1096 error = 0; 1097 1098 error = smu_run_cmd(smu, &cmd, 1); 1099 if (error != 0) 1100 return (-1); 1101 1102 sc = device_get_softc(smu); 1103 value = (cmd.data[0] << 8) | cmd.data[1]; 1104 1105 switch (sens->type) { 1106 case SMU_TEMP_SENSOR: 1107 value *= sc->sc_cpu_diode_scale; 1108 value >>= 3; 1109 value += ((int64_t)sc->sc_cpu_diode_offset) << 9; 1110 value <<= 1; 1111 1112 /* Convert from 16.16 fixed point degC into integer 0.1 K. */ 1113 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2732; 1114 break; 1115 case SMU_VOLTAGE_SENSOR: 1116 value *= sc->sc_cpu_volt_scale; 1117 value += sc->sc_cpu_volt_offset; 1118 value <<= 4; 1119 1120 /* Convert from 16.16 fixed point V into mV. */ 1121 value *= 15625; 1122 value /= 1024; 1123 value /= 1000; 1124 break; 1125 case SMU_CURRENT_SENSOR: 1126 value *= sc->sc_cpu_curr_scale; 1127 value += sc->sc_cpu_curr_offset; 1128 value <<= 4; 1129 1130 /* Convert from 16.16 fixed point A into mA. */ 1131 value *= 15625; 1132 value /= 1024; 1133 value /= 1000; 1134 break; 1135 case SMU_POWER_SENSOR: 1136 value *= sc->sc_slots_pow_scale; 1137 value += sc->sc_slots_pow_offset; 1138 value <<= 4; 1139 1140 /* Convert from 16.16 fixed point W into mW. */ 1141 value *= 15625; 1142 value /= 1024; 1143 value /= 1000; 1144 break; 1145 } 1146 1147 return (value); 1148 } 1149 1150 static int 1151 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS) 1152 { 1153 device_t smu; 1154 struct smu_softc *sc; 1155 struct smu_sensor *sens; 1156 int value, error; 1157 1158 smu = arg1; 1159 sc = device_get_softc(smu); 1160 sens = &sc->sc_sensors[arg2]; 1161 1162 value = smu_sensor_read(sens); 1163 if (value < 0) 1164 return (EBUSY); 1165 1166 error = sysctl_handle_int(oidp, &value, 0, req); 1167 1168 return (error); 1169 } 1170 1171 static void 1172 smu_attach_sensors(device_t dev, phandle_t sensroot) 1173 { 1174 struct smu_sensor *sens; 1175 struct smu_softc *sc; 1176 struct sysctl_oid *sensroot_oid; 1177 struct sysctl_ctx_list *ctx; 1178 phandle_t child; 1179 char type[32]; 1180 int i; 1181 1182 sc = device_get_softc(dev); 1183 sc->sc_nsensors = 0; 1184 1185 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) 1186 sc->sc_nsensors++; 1187 1188 if (sc->sc_nsensors == 0) { 1189 device_printf(dev, "WARNING: No sensors detected!\n"); 1190 return; 1191 } 1192 1193 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor), 1194 M_SMU, M_WAITOK | M_ZERO); 1195 1196 sens = sc->sc_sensors; 1197 sc->sc_nsensors = 0; 1198 1199 ctx = device_get_sysctl_ctx(dev); 1200 sensroot_oid = SYSCTL_ADD_NODE(ctx, 1201 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors", 1202 CTLFLAG_RD, 0, "SMU Sensor Information"); 1203 1204 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) { 1205 char sysctl_name[40], sysctl_desc[40]; 1206 const char *units; 1207 1208 sens->dev = dev; 1209 OF_getprop(child, "device_type", type, sizeof(type)); 1210 1211 if (strcmp(type, "current-sensor") == 0) { 1212 sens->type = SMU_CURRENT_SENSOR; 1213 units = "mA"; 1214 } else if (strcmp(type, "temp-sensor") == 0) { 1215 sens->type = SMU_TEMP_SENSOR; 1216 units = "C"; 1217 } else if (strcmp(type, "voltage-sensor") == 0) { 1218 sens->type = SMU_VOLTAGE_SENSOR; 1219 units = "mV"; 1220 } else if (strcmp(type, "power-sensor") == 0) { 1221 sens->type = SMU_POWER_SENSOR; 1222 units = "mW"; 1223 } else { 1224 continue; 1225 } 1226 1227 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t)); 1228 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int)); 1229 OF_getprop(child, "location", sens->therm.name, 1230 sizeof(sens->therm.name)); 1231 1232 for (i = 0; i < strlen(sens->therm.name); i++) { 1233 sysctl_name[i] = tolower(sens->therm.name[i]); 1234 if (isspace(sysctl_name[i])) 1235 sysctl_name[i] = '_'; 1236 } 1237 sysctl_name[i] = 0; 1238 1239 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units); 1240 1241 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO, 1242 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 1243 dev, sc->sc_nsensors, smu_sensor_sysctl, 1244 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc); 1245 1246 if (sens->type == SMU_TEMP_SENSOR) { 1247 /* Make up some numbers */ 1248 sens->therm.target_temp = 500 + 2732; /* 50 C */ 1249 sens->therm.max_temp = 900 + 2732; /* 90 C */ 1250 1251 sens->therm.read = 1252 (int (*)(struct pmac_therm *))smu_sensor_read; 1253 pmac_thermal_sensor_register(&sens->therm); 1254 } 1255 1256 sens++; 1257 sc->sc_nsensors++; 1258 } 1259 } 1260 1261 static void 1262 smu_set_sleepled(void *xdev, int onoff) 1263 { 1264 static struct smu_cmd cmd; 1265 device_t smu = xdev; 1266 1267 cmd.cmd = SMU_MISC; 1268 cmd.len = 3; 1269 cmd.data[0] = SMU_MISC_LED_CTRL; 1270 cmd.data[1] = 0; 1271 cmd.data[2] = onoff; 1272 1273 smu_run_cmd(smu, &cmd, 0); 1274 } 1275 1276 static int 1277 smu_server_mode(SYSCTL_HANDLER_ARGS) 1278 { 1279 struct smu_cmd cmd; 1280 u_int server_mode; 1281 device_t smu = arg1; 1282 int error; 1283 1284 cmd.cmd = SMU_POWER_EVENTS; 1285 cmd.len = 1; 1286 cmd.data[0] = SMU_PWR_GET_POWERUP; 1287 1288 error = smu_run_cmd(smu, &cmd, 1); 1289 1290 if (error) 1291 return (error); 1292 1293 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0; 1294 1295 error = sysctl_handle_int(oidp, &server_mode, 0, req); 1296 1297 if (error || !req->newptr) 1298 return (error); 1299 1300 if (server_mode == 1) 1301 cmd.data[0] = SMU_PWR_SET_POWERUP; 1302 else if (server_mode == 0) 1303 cmd.data[0] = SMU_PWR_CLR_POWERUP; 1304 else 1305 return (EINVAL); 1306 1307 cmd.len = 3; 1308 cmd.data[1] = 0; 1309 cmd.data[2] = SMU_WAKEUP_AC_INSERT; 1310 1311 return (smu_run_cmd(smu, &cmd, 1)); 1312 } 1313 1314 static void 1315 smu_shutdown(void *xdev, int howto) 1316 { 1317 device_t smu = xdev; 1318 struct smu_cmd cmd; 1319 1320 cmd.cmd = SMU_POWER; 1321 if (howto & RB_HALT) 1322 strcpy(cmd.data, "SHUTDOWN"); 1323 else 1324 strcpy(cmd.data, "RESTART"); 1325 1326 cmd.len = strlen(cmd.data); 1327 1328 smu_run_cmd(smu, &cmd, 1); 1329 1330 for (;;); 1331 } 1332 1333 static int 1334 smu_gettime(device_t dev, struct timespec *ts) 1335 { 1336 struct smu_cmd cmd; 1337 struct clocktime ct; 1338 1339 cmd.cmd = SMU_RTC; 1340 cmd.len = 1; 1341 cmd.data[0] = SMU_RTC_GET; 1342 1343 if (smu_run_cmd(dev, &cmd, 1) != 0) 1344 return (ENXIO); 1345 1346 ct.nsec = 0; 1347 ct.sec = bcd2bin(cmd.data[0]); 1348 ct.min = bcd2bin(cmd.data[1]); 1349 ct.hour = bcd2bin(cmd.data[2]); 1350 ct.dow = bcd2bin(cmd.data[3]); 1351 ct.day = bcd2bin(cmd.data[4]); 1352 ct.mon = bcd2bin(cmd.data[5]); 1353 ct.year = bcd2bin(cmd.data[6]) + 2000; 1354 1355 return (clock_ct_to_ts(&ct, ts)); 1356 } 1357 1358 static int 1359 smu_settime(device_t dev, struct timespec *ts) 1360 { 1361 static struct smu_cmd cmd; 1362 struct clocktime ct; 1363 1364 cmd.cmd = SMU_RTC; 1365 cmd.len = 8; 1366 cmd.data[0] = SMU_RTC_SET; 1367 1368 clock_ts_to_ct(ts, &ct); 1369 1370 cmd.data[1] = bin2bcd(ct.sec); 1371 cmd.data[2] = bin2bcd(ct.min); 1372 cmd.data[3] = bin2bcd(ct.hour); 1373 cmd.data[4] = bin2bcd(ct.dow); 1374 cmd.data[5] = bin2bcd(ct.day); 1375 cmd.data[6] = bin2bcd(ct.mon); 1376 cmd.data[7] = bin2bcd(ct.year - 2000); 1377 1378 return (smu_run_cmd(dev, &cmd, 0)); 1379 } 1380 1381 /* SMU I2C Interface */ 1382 1383 static int smuiic_probe(device_t dev); 1384 static int smuiic_attach(device_t dev); 1385 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs); 1386 static phandle_t smuiic_get_node(device_t bus, device_t dev); 1387 1388 static device_method_t smuiic_methods[] = { 1389 /* device interface */ 1390 DEVMETHOD(device_probe, smuiic_probe), 1391 DEVMETHOD(device_attach, smuiic_attach), 1392 1393 /* iicbus interface */ 1394 DEVMETHOD(iicbus_callback, iicbus_null_callback), 1395 DEVMETHOD(iicbus_transfer, smuiic_transfer), 1396 1397 /* ofw_bus interface */ 1398 DEVMETHOD(ofw_bus_get_node, smuiic_get_node), 1399 1400 { 0, 0 } 1401 }; 1402 1403 struct smuiic_softc { 1404 struct mtx sc_mtx; 1405 volatile int sc_iic_inuse; 1406 int sc_busno; 1407 }; 1408 1409 static driver_t smuiic_driver = { 1410 "iichb", 1411 smuiic_methods, 1412 sizeof(struct smuiic_softc) 1413 }; 1414 static devclass_t smuiic_devclass; 1415 1416 DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0); 1417 1418 static void 1419 smu_attach_i2c(device_t smu, phandle_t i2croot) 1420 { 1421 phandle_t child; 1422 device_t cdev; 1423 struct ofw_bus_devinfo *dinfo; 1424 char name[32]; 1425 1426 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) { 1427 if (OF_getprop(child, "name", name, sizeof(name)) <= 0) 1428 continue; 1429 1430 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0) 1431 continue; 1432 1433 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU, 1434 M_WAITOK | M_ZERO); 1435 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) { 1436 free(dinfo, M_SMU); 1437 continue; 1438 } 1439 1440 cdev = device_add_child(smu, NULL, -1); 1441 if (cdev == NULL) { 1442 device_printf(smu, "<%s>: device_add_child failed\n", 1443 dinfo->obd_name); 1444 ofw_bus_gen_destroy_devinfo(dinfo); 1445 free(dinfo, M_SMU); 1446 continue; 1447 } 1448 device_set_ivars(cdev, dinfo); 1449 } 1450 } 1451 1452 static int 1453 smuiic_probe(device_t dev) 1454 { 1455 const char *name; 1456 1457 name = ofw_bus_get_name(dev); 1458 if (name == NULL) 1459 return (ENXIO); 1460 1461 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) { 1462 device_set_desc(dev, "SMU I2C controller"); 1463 return (0); 1464 } 1465 1466 return (ENXIO); 1467 } 1468 1469 static int 1470 smuiic_attach(device_t dev) 1471 { 1472 struct smuiic_softc *sc = device_get_softc(dev); 1473 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF); 1474 sc->sc_iic_inuse = 0; 1475 1476 /* Get our bus number */ 1477 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno, 1478 sizeof(sc->sc_busno)); 1479 1480 /* Add the IIC bus layer */ 1481 device_add_child(dev, "iicbus", -1); 1482 1483 return (bus_generic_attach(dev)); 1484 } 1485 1486 static int 1487 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) 1488 { 1489 struct smuiic_softc *sc = device_get_softc(dev); 1490 struct smu_cmd cmd; 1491 int i, j, error; 1492 1493 mtx_lock(&sc->sc_mtx); 1494 while (sc->sc_iic_inuse) 1495 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100); 1496 1497 sc->sc_iic_inuse = 1; 1498 error = 0; 1499 1500 for (i = 0; i < nmsgs; i++) { 1501 cmd.cmd = SMU_I2C; 1502 cmd.data[0] = sc->sc_busno; 1503 if (msgs[i].flags & IIC_M_NOSTOP) 1504 cmd.data[1] = SMU_I2C_COMBINED; 1505 else 1506 cmd.data[1] = SMU_I2C_SIMPLE; 1507 1508 cmd.data[2] = msgs[i].slave; 1509 if (msgs[i].flags & IIC_M_RD) 1510 cmd.data[2] |= 1; 1511 1512 if (msgs[i].flags & IIC_M_NOSTOP) { 1513 KASSERT(msgs[i].len < 4, 1514 ("oversize I2C combined message")); 1515 1516 cmd.data[3] = min(msgs[i].len, 3); 1517 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3)); 1518 i++; /* Advance to next part of message */ 1519 } else { 1520 cmd.data[3] = 0; 1521 memset(&cmd.data[4], 0, 3); 1522 } 1523 1524 cmd.data[7] = msgs[i].slave; 1525 if (msgs[i].flags & IIC_M_RD) 1526 cmd.data[7] |= 1; 1527 1528 cmd.data[8] = msgs[i].len; 1529 if (msgs[i].flags & IIC_M_RD) { 1530 memset(&cmd.data[9], 0xff, msgs[i].len); 1531 cmd.len = 9; 1532 } else { 1533 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len); 1534 cmd.len = 9 + msgs[i].len; 1535 } 1536 1537 mtx_unlock(&sc->sc_mtx); 1538 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1539 mtx_lock(&sc->sc_mtx); 1540 1541 for (j = 0; j < 10; j++) { 1542 cmd.cmd = SMU_I2C; 1543 cmd.len = 1; 1544 cmd.data[0] = 0; 1545 memset(&cmd.data[1], 0xff, msgs[i].len); 1546 1547 mtx_unlock(&sc->sc_mtx); 1548 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1549 mtx_lock(&sc->sc_mtx); 1550 1551 if (!(cmd.data[0] & 0x80)) 1552 break; 1553 1554 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10); 1555 } 1556 1557 if (cmd.data[0] & 0x80) { 1558 error = EIO; 1559 msgs[i].len = 0; 1560 goto exit; 1561 } 1562 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len); 1563 msgs[i].len = cmd.len - 1; 1564 } 1565 1566 exit: 1567 sc->sc_iic_inuse = 0; 1568 mtx_unlock(&sc->sc_mtx); 1569 wakeup(sc); 1570 return (error); 1571 } 1572 1573 static phandle_t 1574 smuiic_get_node(device_t bus, device_t dev) 1575 { 1576 1577 return (ofw_bus_get_node(bus)); 1578 } 1579 1580