xref: /freebsd/sys/powerpc/powermac/smu.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 2009 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/systm.h>
34 #include <sys/module.h>
35 #include <sys/conf.h>
36 #include <sys/cpu.h>
37 #include <sys/clock.h>
38 #include <sys/ctype.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/reboot.h>
42 #include <sys/rman.h>
43 #include <sys/sysctl.h>
44 #include <sys/unistd.h>
45 
46 #include <machine/bus.h>
47 #include <machine/intr_machdep.h>
48 #include <machine/md_var.h>
49 
50 #include <dev/iicbus/iicbus.h>
51 #include <dev/iicbus/iiconf.h>
52 #include <dev/led/led.h>
53 #include <dev/ofw/openfirm.h>
54 #include <dev/ofw/ofw_bus.h>
55 #include <dev/ofw/ofw_bus_subr.h>
56 #include <powerpc/powermac/macgpiovar.h>
57 #include <powerpc/powermac/powermac_thermal.h>
58 
59 #include "clock_if.h"
60 #include "iicbus_if.h"
61 
62 struct smu_cmd {
63 	volatile uint8_t cmd;
64 	uint8_t		len;
65 	uint8_t		data[254];
66 
67 	STAILQ_ENTRY(smu_cmd) cmd_q;
68 };
69 
70 STAILQ_HEAD(smu_cmdq, smu_cmd);
71 
72 struct smu_fan {
73 	struct pmac_fan fan;
74 	device_t dev;
75 	cell_t	reg;
76 
77 	enum {
78 		SMU_FAN_RPM,
79 		SMU_FAN_PWM
80 	} type;
81 	int	old_style;
82 	int	setpoint;
83 	int     rpm;
84 };
85 
86 /* We can read the PWM and the RPM from a PWM controlled fan.
87  * Offer both values via sysctl.
88  */
89 enum {
90 	SMU_PWM_SYSCTL_PWM   = 1 << 8,
91 	SMU_PWM_SYSCTL_RPM   = 2 << 8
92 };
93 
94 struct smu_sensor {
95 	struct pmac_therm therm;
96 	device_t dev;
97 
98 	cell_t	reg;
99 	enum {
100 		SMU_CURRENT_SENSOR,
101 		SMU_VOLTAGE_SENSOR,
102 		SMU_POWER_SENSOR,
103 		SMU_TEMP_SENSOR
104 	} type;
105 };
106 
107 struct smu_softc {
108 	device_t	sc_dev;
109 	struct mtx	sc_mtx;
110 
111 	struct resource	*sc_memr;
112 	int		sc_memrid;
113 	int		sc_u3;
114 
115 	bus_dma_tag_t	sc_dmatag;
116 	bus_space_tag_t	sc_bt;
117 	bus_space_handle_t sc_mailbox;
118 
119 	struct smu_cmd	*sc_cmd, *sc_cur_cmd;
120 	bus_addr_t	sc_cmd_phys;
121 	bus_dmamap_t	sc_cmd_dmamap;
122 	struct smu_cmdq	sc_cmdq;
123 
124 	struct smu_fan	*sc_fans;
125 	int		sc_nfans;
126 	struct smu_sensor *sc_sensors;
127 	int		sc_nsensors;
128 
129 	int		sc_doorbellirqid;
130 	struct resource	*sc_doorbellirq;
131 	void		*sc_doorbellirqcookie;
132 
133 	struct proc	*sc_fanmgt_proc;
134 	time_t		sc_lastuserchange;
135 
136 	/* Calibration data */
137 	uint16_t	sc_cpu_diode_scale;
138 	int16_t		sc_cpu_diode_offset;
139 
140 	uint16_t	sc_cpu_volt_scale;
141 	int16_t		sc_cpu_volt_offset;
142 	uint16_t	sc_cpu_curr_scale;
143 	int16_t		sc_cpu_curr_offset;
144 
145 	uint16_t	sc_slots_pow_scale;
146 	int16_t		sc_slots_pow_offset;
147 
148 	struct cdev 	*sc_leddev;
149 };
150 
151 /* regular bus attachment functions */
152 
153 static int	smu_probe(device_t);
154 static int	smu_attach(device_t);
155 static const struct ofw_bus_devinfo *
156     smu_get_devinfo(device_t bus, device_t dev);
157 
158 /* cpufreq notification hooks */
159 
160 static void	smu_cpufreq_pre_change(device_t, const struct cf_level *level);
161 static void	smu_cpufreq_post_change(device_t, const struct cf_level *level);
162 
163 /* clock interface */
164 static int	smu_gettime(device_t dev, struct timespec *ts);
165 static int	smu_settime(device_t dev, struct timespec *ts);
166 
167 /* utility functions */
168 static int	smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
169 static int	smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
170 		    size_t len);
171 static void	smu_attach_i2c(device_t dev, phandle_t i2croot);
172 static void	smu_attach_fans(device_t dev, phandle_t fanroot);
173 static void	smu_attach_sensors(device_t dev, phandle_t sensroot);
174 static void	smu_set_sleepled(void *xdev, int onoff);
175 static int	smu_server_mode(SYSCTL_HANDLER_ARGS);
176 static void	smu_doorbell_intr(void *xdev);
177 static void	smu_shutdown(void *xdev, int howto);
178 
179 /* where to find the doorbell GPIO */
180 
181 static device_t	smu_doorbell = NULL;
182 
183 static device_method_t  smu_methods[] = {
184 	/* Device interface */
185 	DEVMETHOD(device_probe,		smu_probe),
186 	DEVMETHOD(device_attach,	smu_attach),
187 
188 	/* Clock interface */
189 	DEVMETHOD(clock_gettime,	smu_gettime),
190 	DEVMETHOD(clock_settime,	smu_settime),
191 
192 	/* ofw_bus interface */
193 	DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str),
194 	DEVMETHOD(ofw_bus_get_devinfo,	smu_get_devinfo),
195 	DEVMETHOD(ofw_bus_get_compat,	ofw_bus_gen_get_compat),
196 	DEVMETHOD(ofw_bus_get_model,	ofw_bus_gen_get_model),
197 	DEVMETHOD(ofw_bus_get_name,	ofw_bus_gen_get_name),
198 	DEVMETHOD(ofw_bus_get_node,	ofw_bus_gen_get_node),
199 	DEVMETHOD(ofw_bus_get_type,	ofw_bus_gen_get_type),
200 
201 	{ 0, 0 },
202 };
203 
204 static driver_t smu_driver = {
205 	"smu",
206 	smu_methods,
207 	sizeof(struct smu_softc)
208 };
209 
210 static devclass_t smu_devclass;
211 
212 DRIVER_MODULE(smu, nexus, smu_driver, smu_devclass, 0, 0);
213 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
214 
215 #define SMU_MAILBOX		0x8000860c
216 #define SMU_FANMGT_INTERVAL	1000 /* ms */
217 
218 /* Command types */
219 #define SMU_ADC			0xd8
220 #define SMU_FAN			0x4a
221 #define SMU_RPM_STATUS		0x01
222 #define SMU_RPM_SETPOINT	0x02
223 #define SMU_PWM_STATUS		0x11
224 #define SMU_PWM_SETPOINT	0x12
225 #define SMU_I2C			0x9a
226 #define  SMU_I2C_SIMPLE		0x00
227 #define  SMU_I2C_NORMAL		0x01
228 #define  SMU_I2C_COMBINED	0x02
229 #define SMU_MISC		0xee
230 #define  SMU_MISC_GET_DATA	0x02
231 #define  SMU_MISC_LED_CTRL	0x04
232 #define SMU_POWER		0xaa
233 #define SMU_POWER_EVENTS	0x8f
234 #define  SMU_PWR_GET_POWERUP	0x00
235 #define  SMU_PWR_SET_POWERUP	0x01
236 #define  SMU_PWR_CLR_POWERUP	0x02
237 #define SMU_RTC			0x8e
238 #define  SMU_RTC_GET		0x81
239 #define  SMU_RTC_SET		0x80
240 
241 /* Power event types */
242 #define SMU_WAKEUP_KEYPRESS	0x01
243 #define SMU_WAKEUP_AC_INSERT	0x02
244 #define SMU_WAKEUP_AC_CHANGE	0x04
245 #define SMU_WAKEUP_RING		0x10
246 
247 /* Data blocks */
248 #define SMU_CPUTEMP_CAL		0x18
249 #define SMU_CPUVOLT_CAL		0x21
250 #define SMU_SLOTPW_CAL		0x78
251 
252 /* Partitions */
253 #define SMU_PARTITION		0x3e
254 #define SMU_PARTITION_LATEST	0x01
255 #define SMU_PARTITION_BASE	0x02
256 #define SMU_PARTITION_UPDATE	0x03
257 
258 static int
259 smu_probe(device_t dev)
260 {
261 	const char *name = ofw_bus_get_name(dev);
262 
263 	if (strcmp(name, "smu") != 0)
264 		return (ENXIO);
265 
266 	device_set_desc(dev, "Apple System Management Unit");
267 	return (0);
268 }
269 
270 static void
271 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
272 {
273 	struct smu_softc *sc = xsc;
274 
275 	sc->sc_cmd_phys = segs[0].ds_addr;
276 }
277 
278 static int
279 smu_attach(device_t dev)
280 {
281 	struct smu_softc *sc;
282 	phandle_t	node, child;
283 	uint8_t		data[12];
284 
285 	sc = device_get_softc(dev);
286 
287 	mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
288 	sc->sc_cur_cmd = NULL;
289 	sc->sc_doorbellirqid = -1;
290 
291 	sc->sc_u3 = 0;
292 	if (OF_finddevice("/u3") != -1)
293 		sc->sc_u3 = 1;
294 
295 	/*
296 	 * Map the mailbox area. This should be determined from firmware,
297 	 * but I have not found a simple way to do that.
298 	 */
299 	bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
300 	    BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
301 	    NULL, &(sc->sc_dmatag));
302 	sc->sc_bt = &bs_le_tag;
303 	bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
304 
305 	/*
306 	 * Allocate the command buffer. This can be anywhere in the low 4 GB
307 	 * of memory.
308 	 */
309 	bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
310 	    BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
311 	bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
312 	    sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
313 	STAILQ_INIT(&sc->sc_cmdq);
314 
315 	/*
316 	 * Set up handlers to change CPU voltage when CPU frequency is changed.
317 	 */
318 	EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
319 	    EVENTHANDLER_PRI_ANY);
320 	EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
321 	    EVENTHANDLER_PRI_ANY);
322 
323 	node = ofw_bus_get_node(dev);
324 
325 	/* Some SMUs have RPM and PWM controlled fans which do not sit
326 	 * under the same node. So we have to attach them separately.
327 	 */
328 	smu_attach_fans(dev, node);
329 
330 	/*
331 	 * Now detect and attach the other child devices.
332 	 */
333 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
334 		char name[32];
335 		memset(name, 0, sizeof(name));
336 		OF_getprop(child, "name", name, sizeof(name));
337 
338 		if (strncmp(name, "sensors", 8) == 0)
339 			smu_attach_sensors(dev, child);
340 
341 		if (strncmp(name, "smu-i2c-control", 15) == 0)
342 			smu_attach_i2c(dev, child);
343 	}
344 
345 	/* Some SMUs have the I2C children directly under the bus. */
346 	smu_attach_i2c(dev, node);
347 
348 	/*
349 	 * Collect calibration constants.
350 	 */
351 	smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
352 	sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
353 	sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
354 
355 	smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
356 	sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
357 	sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
358 	sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
359 	sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
360 
361 	smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
362 	sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
363 	sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
364 
365 	/*
366 	 * Set up LED interface
367 	 */
368 	sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
369 
370 	/*
371 	 * Reset on power loss behavior
372 	 */
373 
374 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
375             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
376 	    "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0,
377 	    smu_server_mode, "I", "Enable reboot after power failure");
378 
379 	/*
380 	 * Set up doorbell interrupt.
381 	 */
382 	sc->sc_doorbellirqid = 0;
383 	sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
384 	    &sc->sc_doorbellirqid, RF_ACTIVE);
385 	bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
386 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
387 	    &sc->sc_doorbellirqcookie);
388 	powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
389 	    INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
390 
391 	/*
392 	 * Connect RTC interface.
393 	 */
394 	clock_register(dev, 1000);
395 
396 	/*
397 	 * Learn about shutdown events
398 	 */
399 	EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
400 	    SHUTDOWN_PRI_LAST);
401 
402 	return (bus_generic_attach(dev));
403 }
404 
405 static const struct ofw_bus_devinfo *
406 smu_get_devinfo(device_t bus, device_t dev)
407 {
408 
409 	return (device_get_ivars(dev));
410 }
411 
412 static void
413 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
414 {
415 	struct smu_softc *sc;
416 
417 	sc = device_get_softc(dev);
418 
419 	mtx_assert(&sc->sc_mtx, MA_OWNED);
420 
421 	if (sc->sc_u3)
422 		powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
423 
424 	sc->sc_cur_cmd = cmd;
425 
426 	/* Copy the command to the mailbox */
427 	sc->sc_cmd->cmd = cmd->cmd;
428 	sc->sc_cmd->len = cmd->len;
429 	memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
430 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
431 	bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
432 
433 	/* Flush the cacheline it is in -- SMU bypasses the cache */
434 	__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
435 
436 	/* Ring SMU doorbell */
437 	macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
438 }
439 
440 static void
441 smu_doorbell_intr(void *xdev)
442 {
443 	device_t smu;
444 	struct smu_softc *sc;
445 	int doorbell_ack;
446 
447 	smu = xdev;
448 	doorbell_ack = macgpio_read(smu_doorbell);
449 	sc = device_get_softc(smu);
450 
451 	if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
452 		return;
453 
454 	mtx_lock(&sc->sc_mtx);
455 
456 	if (sc->sc_cur_cmd == NULL)	/* spurious */
457 		goto done;
458 
459 	/* Check result. First invalidate the cache again... */
460 	__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
461 
462 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
463 
464 	sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
465 	sc->sc_cur_cmd->len = sc->sc_cmd->len;
466 	memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
467 	    sizeof(sc->sc_cmd->data));
468 	wakeup(sc->sc_cur_cmd);
469 	sc->sc_cur_cmd = NULL;
470 	if (sc->sc_u3)
471 		powerpc_pow_enabled = 1;
472 
473     done:
474 	/* Queue next command if one is pending */
475 	if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
476 		sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
477 		STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
478 		smu_send_cmd(smu, sc->sc_cur_cmd);
479 	}
480 
481 	mtx_unlock(&sc->sc_mtx);
482 }
483 
484 static int
485 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
486 {
487 	struct smu_softc *sc;
488 	uint8_t cmd_code;
489 	int error;
490 
491 	sc = device_get_softc(dev);
492 	cmd_code = cmd->cmd;
493 
494 	mtx_lock(&sc->sc_mtx);
495 	if (sc->sc_cur_cmd != NULL) {
496 		STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
497 	} else
498 		smu_send_cmd(dev, cmd);
499 	mtx_unlock(&sc->sc_mtx);
500 
501 	if (!wait)
502 		return (0);
503 
504 	if (sc->sc_doorbellirqid < 0) {
505 		/* Poll if the IRQ has not been set up yet */
506 		do {
507 			DELAY(50);
508 			smu_doorbell_intr(dev);
509 		} while (sc->sc_cur_cmd != NULL);
510 	} else {
511 		/* smu_doorbell_intr will wake us when the command is ACK'ed */
512 		error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
513 		if (error != 0)
514 			smu_doorbell_intr(dev);	/* One last chance */
515 
516 		if (error != 0) {
517 		    mtx_lock(&sc->sc_mtx);
518 		    if (cmd->cmd == cmd_code) {	/* Never processed */
519 			/* Abort this command if we timed out */
520 			if (sc->sc_cur_cmd == cmd)
521 				sc->sc_cur_cmd = NULL;
522 			else
523 				STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
524 				    cmd_q);
525 			mtx_unlock(&sc->sc_mtx);
526 			return (error);
527 		    }
528 		    error = 0;
529 		    mtx_unlock(&sc->sc_mtx);
530 		}
531 	}
532 
533 	/* SMU acks the command by inverting the command bits */
534 	if (cmd->cmd == ((~cmd_code) & 0xff))
535 		error = 0;
536 	else
537 		error = EIO;
538 
539 	return (error);
540 }
541 
542 static int
543 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
544 {
545 	struct smu_cmd cmd;
546 	uint8_t addr[4];
547 
548 	cmd.cmd = SMU_PARTITION;
549 	cmd.len = 2;
550 	cmd.data[0] = SMU_PARTITION_LATEST;
551 	cmd.data[1] = id;
552 
553 	smu_run_cmd(dev, &cmd, 1);
554 
555 	addr[0] = addr[1] = 0;
556 	addr[2] = cmd.data[0];
557 	addr[3] = cmd.data[1];
558 
559 	cmd.cmd = SMU_MISC;
560 	cmd.len = 7;
561 	cmd.data[0] = SMU_MISC_GET_DATA;
562 	cmd.data[1] = sizeof(addr);
563 	memcpy(&cmd.data[2], addr, sizeof(addr));
564 	cmd.data[6] = len;
565 
566 	smu_run_cmd(dev, &cmd, 1);
567 	memcpy(buf, cmd.data, len);
568 	return (0);
569 }
570 
571 static void
572 smu_slew_cpu_voltage(device_t dev, int to)
573 {
574 	struct smu_cmd cmd;
575 
576 	cmd.cmd = SMU_POWER;
577 	cmd.len = 8;
578 	cmd.data[0] = 'V';
579 	cmd.data[1] = 'S';
580 	cmd.data[2] = 'L';
581 	cmd.data[3] = 'E';
582 	cmd.data[4] = 'W';
583 	cmd.data[5] = 0xff;
584 	cmd.data[6] = 1;
585 	cmd.data[7] = to;
586 
587 	smu_run_cmd(dev, &cmd, 1);
588 }
589 
590 static void
591 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
592 {
593 	/*
594 	 * Make sure the CPU voltage is raised before we raise
595 	 * the clock.
596 	 */
597 
598 	if (level->rel_set[0].freq == 10000 /* max */)
599 		smu_slew_cpu_voltage(dev, 0);
600 }
601 
602 static void
603 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
604 {
605 	/* We are safe to reduce CPU voltage after a downward transition */
606 
607 	if (level->rel_set[0].freq < 10000 /* max */)
608 		smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
609 }
610 
611 /* Routines for probing the SMU doorbell GPIO */
612 static int doorbell_probe(device_t dev);
613 static int doorbell_attach(device_t dev);
614 
615 static device_method_t  doorbell_methods[] = {
616 	/* Device interface */
617 	DEVMETHOD(device_probe,		doorbell_probe),
618 	DEVMETHOD(device_attach,	doorbell_attach),
619 	{ 0, 0 },
620 };
621 
622 static driver_t doorbell_driver = {
623 	"smudoorbell",
624 	doorbell_methods,
625 	0
626 };
627 
628 static devclass_t doorbell_devclass;
629 
630 DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 0, 0);
631 
632 static int
633 doorbell_probe(device_t dev)
634 {
635 	const char *name = ofw_bus_get_name(dev);
636 
637 	if (strcmp(name, "smu-doorbell") != 0)
638 		return (ENXIO);
639 
640 	device_set_desc(dev, "SMU Doorbell GPIO");
641 	device_quiet(dev);
642 	return (0);
643 }
644 
645 static int
646 doorbell_attach(device_t dev)
647 {
648 	smu_doorbell = dev;
649 	return (0);
650 }
651 
652 /*
653  * Sensor and fan management
654  */
655 
656 static int
657 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
658 {
659 	device_t smu = fan->dev;
660 	struct smu_cmd cmd;
661 	int error;
662 
663 	cmd.cmd = SMU_FAN;
664 	error = EIO;
665 
666 	/* Clamp to allowed range */
667 	rpm = max(fan->fan.min_rpm, rpm);
668 	rpm = min(fan->fan.max_rpm, rpm);
669 
670 	/*
671 	 * Apple has two fan control mechanisms. We can't distinguish
672 	 * them except by seeing if the new one fails. If the new one
673 	 * fails, use the old one.
674 	 */
675 
676 	if (!fan->old_style) {
677 		cmd.len = 4;
678 		cmd.data[0] = 0x30;
679 		cmd.data[1] = fan->reg;
680 		cmd.data[2] = (rpm >> 8) & 0xff;
681 		cmd.data[3] = rpm & 0xff;
682 
683 		error = smu_run_cmd(smu, &cmd, 1);
684 		if (error && error != EWOULDBLOCK)
685 			fan->old_style = 1;
686 	}
687 
688 	if (fan->old_style) {
689 		cmd.len = 14;
690 		cmd.data[0] = 0x00; /* RPM fan. */
691 		cmd.data[1] = 1 << fan->reg;
692 		cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
693 		cmd.data[3 + 2*fan->reg] = rpm & 0xff;
694 		error = smu_run_cmd(smu, &cmd, 1);
695 	}
696 
697 	if (error == 0)
698 		fan->setpoint = rpm;
699 
700 	return (error);
701 }
702 
703 static int
704 smu_fan_read_rpm(struct smu_fan *fan)
705 {
706 	device_t smu = fan->dev;
707 	struct smu_cmd cmd;
708 	int rpm, error;
709 
710 	if (!fan->old_style) {
711 		cmd.cmd = SMU_FAN;
712 		cmd.len = 2;
713 		cmd.data[0] = 0x31;
714 		cmd.data[1] = fan->reg;
715 
716 		error = smu_run_cmd(smu, &cmd, 1);
717 		if (error && error != EWOULDBLOCK)
718 			fan->old_style = 1;
719 
720 		rpm = (cmd.data[0] << 8) | cmd.data[1];
721 	}
722 
723 	if (fan->old_style) {
724 		cmd.cmd = SMU_FAN;
725 		cmd.len = 1;
726 		cmd.data[0] = SMU_RPM_STATUS;
727 
728 		error = smu_run_cmd(smu, &cmd, 1);
729 		if (error)
730 			return (error);
731 
732 		rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
733 	}
734 
735 	return (rpm);
736 }
737 static int
738 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
739 {
740 	device_t smu = fan->dev;
741 	struct smu_cmd cmd;
742 	int error;
743 
744 	cmd.cmd = SMU_FAN;
745 	error = EIO;
746 
747 	/* Clamp to allowed range */
748 	pwm = max(fan->fan.min_rpm, pwm);
749 	pwm = min(fan->fan.max_rpm, pwm);
750 
751 	/*
752 	 * Apple has two fan control mechanisms. We can't distinguish
753 	 * them except by seeing if the new one fails. If the new one
754 	 * fails, use the old one.
755 	 */
756 
757 	if (!fan->old_style) {
758 		cmd.len = 4;
759 		cmd.data[0] = 0x30;
760 		cmd.data[1] = fan->reg;
761 		cmd.data[2] = (pwm >> 8) & 0xff;
762 		cmd.data[3] = pwm & 0xff;
763 
764 		error = smu_run_cmd(smu, &cmd, 1);
765 		if (error && error != EWOULDBLOCK)
766 			fan->old_style = 1;
767 	}
768 
769 	if (fan->old_style) {
770 		cmd.len = 14;
771 		cmd.data[0] = 0x10; /* PWM fan. */
772 		cmd.data[1] = 1 << fan->reg;
773 		cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
774 		cmd.data[3 + 2*fan->reg] = pwm & 0xff;
775 		error = smu_run_cmd(smu, &cmd, 1);
776 	}
777 
778 	if (error == 0)
779 		fan->setpoint = pwm;
780 
781 	return (error);
782 }
783 
784 static int
785 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
786 {
787 	device_t smu = fan->dev;
788 	struct smu_cmd cmd;
789 	int error;
790 
791 	if (!fan->old_style) {
792 		cmd.cmd = SMU_FAN;
793 		cmd.len = 2;
794 		cmd.data[0] = 0x31;
795 		cmd.data[1] = fan->reg;
796 
797 		error = smu_run_cmd(smu, &cmd, 1);
798 		if (error && error != EWOULDBLOCK)
799 			fan->old_style = 1;
800 
801 		*rpm = (cmd.data[0] << 8) | cmd.data[1];
802 	}
803 
804 	if (fan->old_style) {
805 		cmd.cmd = SMU_FAN;
806 		cmd.len = 1;
807 		cmd.data[0] = SMU_PWM_STATUS;
808 
809 		error = smu_run_cmd(smu, &cmd, 1);
810 		if (error)
811 			return (error);
812 
813 		*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
814 	}
815 	if (fan->old_style) {
816 		cmd.cmd = SMU_FAN;
817 		cmd.len = 14;
818 		cmd.data[0] = SMU_PWM_SETPOINT;
819 		cmd.data[1] = 1 << fan->reg;
820 
821 		error = smu_run_cmd(smu, &cmd, 1);
822 		if (error)
823 			return (error);
824 
825 		*pwm = cmd.data[fan->reg*2+2];
826 	}
827 	return (0);
828 }
829 
830 static int
831 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
832 {
833 	device_t smu;
834 	struct smu_softc *sc;
835 	struct smu_fan *fan;
836 	int pwm = 0, rpm, error = 0;
837 
838 	smu = arg1;
839 	sc = device_get_softc(smu);
840 	fan = &sc->sc_fans[arg2 & 0xff];
841 
842 	if (fan->type == SMU_FAN_RPM) {
843 		rpm = smu_fan_read_rpm(fan);
844 		if (rpm < 0)
845 			return (rpm);
846 
847 		error = sysctl_handle_int(oidp, &rpm, 0, req);
848 	} else {
849 		error = smu_fan_read_pwm(fan, &pwm, &rpm);
850 		if (error < 0)
851 			return (EIO);
852 
853 		switch (arg2 & 0xff00) {
854 		case SMU_PWM_SYSCTL_PWM:
855 			error = sysctl_handle_int(oidp, &pwm, 0, req);
856 			break;
857 		case SMU_PWM_SYSCTL_RPM:
858 			error = sysctl_handle_int(oidp, &rpm, 0, req);
859 			break;
860 		default:
861 			/* This should never happen */
862 			return (EINVAL);
863 		};
864 	}
865 	/* We can only read the RPM from a PWM controlled fan, so return. */
866 	if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
867 		return (0);
868 
869 	if (error || !req->newptr)
870 		return (error);
871 
872 	sc->sc_lastuserchange = time_uptime;
873 
874 	if (fan->type == SMU_FAN_RPM)
875 		return (smu_fan_set_rpm(fan, rpm));
876 	else
877 		return (smu_fan_set_pwm(fan, pwm));
878 }
879 
880 static void
881 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
882 {
883 	struct smu_fan *fan;
884 	struct smu_softc *sc;
885 	char type[32];
886 
887 	sc = device_get_softc(dev);
888 	fan = &sc->sc_fans[id];
889 
890 	OF_getprop(child, "device_type", type, sizeof(type));
891 	/* We have either RPM or PWM controlled fans. */
892 	if (strcmp(type, "fan-rpm-control") == 0)
893 		fan->type = SMU_FAN_RPM;
894 	else
895 		fan->type = SMU_FAN_PWM;
896 
897 	fan->dev = dev;
898 	fan->old_style = 0;
899 	OF_getprop(child, "reg", &fan->reg,
900 		   sizeof(cell_t));
901 	OF_getprop(child, "min-value", &fan->fan.min_rpm,
902 		   sizeof(int));
903 	OF_getprop(child, "max-value", &fan->fan.max_rpm,
904 		   sizeof(int));
905 	OF_getprop(child, "zone", &fan->fan.zone,
906 		   sizeof(int));
907 
908 	if (OF_getprop(child, "unmanaged-value",
909 		       &fan->fan.default_rpm,
910 		       sizeof(int)) != sizeof(int))
911 		fan->fan.default_rpm = fan->fan.max_rpm;
912 
913 	OF_getprop(child, "location", fan->fan.name,
914 		   sizeof(fan->fan.name));
915 
916 	if (fan->type == SMU_FAN_RPM)
917 		fan->setpoint = smu_fan_read_rpm(fan);
918 	else
919 		smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
920 }
921 
922 /* On the first call count the number of fans. In the second call,
923  * after allocating the fan struct, fill the properties of the fans.
924  */
925 static int
926 smu_count_fans(device_t dev)
927 {
928 	struct smu_softc *sc;
929 	phandle_t child, node, root;
930 	int nfans = 0;
931 
932 	node = ofw_bus_get_node(dev);
933 	sc = device_get_softc(dev);
934 
935 	/* First find the fanroots and count the number of fans. */
936 	for (root = OF_child(node); root != 0; root = OF_peer(root)) {
937 		char name[32];
938 		memset(name, 0, sizeof(name));
939 		OF_getprop(root, "name", name, sizeof(name));
940 		if (strncmp(name, "rpm-fans", 9) == 0 ||
941 		    strncmp(name, "pwm-fans", 9) == 0 ||
942 		    strncmp(name, "fans", 5) == 0)
943 			for (child = OF_child(root); child != 0;
944 			     child = OF_peer(child)) {
945 				nfans++;
946 				/* When allocated, fill the fan properties. */
947 				if (sc->sc_fans != NULL)
948 					smu_fill_fan_prop(dev, child,
949 							  nfans - 1);
950 			}
951 	}
952 	if (nfans == 0) {
953 		device_printf(dev, "WARNING: No fans detected!\n");
954 		return (0);
955 	}
956 	return (nfans);
957 }
958 
959 static void
960 smu_attach_fans(device_t dev, phandle_t fanroot)
961 {
962 	struct smu_fan *fan;
963 	struct smu_softc *sc;
964 	struct sysctl_oid *oid, *fanroot_oid;
965 	struct sysctl_ctx_list *ctx;
966 	char sysctl_name[32];
967 	int i, j;
968 
969 	sc = device_get_softc(dev);
970 
971 	/* Get the number of fans. */
972 	sc->sc_nfans = smu_count_fans(dev);
973 	if (sc->sc_nfans == 0)
974 		return;
975 
976 	/* Now we're able to allocate memory for the fans struct. */
977 	sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
978 	    M_WAITOK | M_ZERO);
979 
980 	/* Now fill in the properties. */
981 	smu_count_fans(dev);
982 
983 	/* Register fans with pmac_thermal */
984 	for (i = 0; i < sc->sc_nfans; i++)
985 		pmac_thermal_fan_register(&sc->sc_fans[i].fan);
986 
987 	ctx = device_get_sysctl_ctx(dev);
988 	fanroot_oid = SYSCTL_ADD_NODE(ctx,
989 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
990 	    CTLFLAG_RD, 0, "SMU Fan Information");
991 
992 	/* Add sysctls */
993 	for (i = 0; i < sc->sc_nfans; i++) {
994 		fan = &sc->sc_fans[i];
995 		for (j = 0; j < strlen(fan->fan.name); j++) {
996 			sysctl_name[j] = tolower(fan->fan.name[j]);
997 			if (isspace(sysctl_name[j]))
998 				sysctl_name[j] = '_';
999 		}
1000 		sysctl_name[j] = 0;
1001 		if (fan->type == SMU_FAN_RPM) {
1002 			oid = SYSCTL_ADD_NODE(ctx,
1003 					      SYSCTL_CHILDREN(fanroot_oid),
1004 					      OID_AUTO, sysctl_name,
1005 					      CTLFLAG_RD, 0, "Fan Information");
1006 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1007 				       "minrpm", CTLTYPE_INT | CTLFLAG_RD,
1008 				       &fan->fan.min_rpm, sizeof(int),
1009 				       "Minimum allowed RPM");
1010 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1011 				       "maxrpm", CTLTYPE_INT | CTLFLAG_RD,
1012 				       &fan->fan.max_rpm, sizeof(int),
1013 				       "Maximum allowed RPM");
1014 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1015 					"rpm",CTLTYPE_INT | CTLFLAG_RW |
1016 					CTLFLAG_MPSAFE, dev, i,
1017 					smu_fanrpm_sysctl, "I", "Fan RPM");
1018 
1019 			fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1020 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1021 
1022 		} else {
1023 			oid = SYSCTL_ADD_NODE(ctx,
1024 					      SYSCTL_CHILDREN(fanroot_oid),
1025 					      OID_AUTO, sysctl_name,
1026 					      CTLFLAG_RD, 0, "Fan Information");
1027 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1028 				       "minpwm", CTLTYPE_INT | CTLFLAG_RD,
1029 				       &fan->fan.min_rpm, sizeof(int),
1030 				       "Minimum allowed PWM in %");
1031 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1032 				       "maxpwm", CTLTYPE_INT | CTLFLAG_RD,
1033 				       &fan->fan.max_rpm, sizeof(int),
1034 				       "Maximum allowed PWM in %");
1035 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1036 					"pwm",CTLTYPE_INT | CTLFLAG_RW |
1037 					CTLFLAG_MPSAFE, dev,
1038 					SMU_PWM_SYSCTL_PWM | i,
1039 					smu_fanrpm_sysctl, "I", "Fan PWM in %");
1040 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1041 					"rpm",CTLTYPE_INT | CTLFLAG_RD |
1042 					CTLFLAG_MPSAFE, dev,
1043 					SMU_PWM_SYSCTL_RPM | i,
1044 					smu_fanrpm_sysctl, "I", "Fan RPM");
1045 			fan->fan.read = NULL;
1046 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1047 
1048 		}
1049 		if (bootverbose)
1050 			device_printf(dev, "Fan: %s type: %d\n",
1051 				      fan->fan.name, fan->type);
1052 	}
1053 }
1054 
1055 static int
1056 smu_sensor_read(struct smu_sensor *sens)
1057 {
1058 	device_t smu = sens->dev;
1059 	struct smu_cmd cmd;
1060 	struct smu_softc *sc;
1061 	int64_t value;
1062 	int error;
1063 
1064 	cmd.cmd = SMU_ADC;
1065 	cmd.len = 1;
1066 	cmd.data[0] = sens->reg;
1067 	error = 0;
1068 
1069 	error = smu_run_cmd(smu, &cmd, 1);
1070 	if (error != 0)
1071 		return (-1);
1072 
1073 	sc = device_get_softc(smu);
1074 	value = (cmd.data[0] << 8) | cmd.data[1];
1075 
1076 	switch (sens->type) {
1077 	case SMU_TEMP_SENSOR:
1078 		value *= sc->sc_cpu_diode_scale;
1079 		value >>= 3;
1080 		value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1081 		value <<= 1;
1082 
1083 		/* Convert from 16.16 fixed point degC into integer 0.1 K. */
1084 		value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2732;
1085 		break;
1086 	case SMU_VOLTAGE_SENSOR:
1087 		value *= sc->sc_cpu_volt_scale;
1088 		value += sc->sc_cpu_volt_offset;
1089 		value <<= 4;
1090 
1091 		/* Convert from 16.16 fixed point V into mV. */
1092 		value *= 15625;
1093 		value /= 1024;
1094 		value /= 1000;
1095 		break;
1096 	case SMU_CURRENT_SENSOR:
1097 		value *= sc->sc_cpu_curr_scale;
1098 		value += sc->sc_cpu_curr_offset;
1099 		value <<= 4;
1100 
1101 		/* Convert from 16.16 fixed point A into mA. */
1102 		value *= 15625;
1103 		value /= 1024;
1104 		value /= 1000;
1105 		break;
1106 	case SMU_POWER_SENSOR:
1107 		value *= sc->sc_slots_pow_scale;
1108 		value += sc->sc_slots_pow_offset;
1109 		value <<= 4;
1110 
1111 		/* Convert from 16.16 fixed point W into mW. */
1112 		value *= 15625;
1113 		value /= 1024;
1114 		value /= 1000;
1115 		break;
1116 	}
1117 
1118 	return (value);
1119 }
1120 
1121 static int
1122 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1123 {
1124 	device_t smu;
1125 	struct smu_softc *sc;
1126 	struct smu_sensor *sens;
1127 	int value, error;
1128 
1129 	smu = arg1;
1130 	sc = device_get_softc(smu);
1131 	sens = &sc->sc_sensors[arg2];
1132 
1133 	value = smu_sensor_read(sens);
1134 	if (value < 0)
1135 		return (EBUSY);
1136 
1137 	error = sysctl_handle_int(oidp, &value, 0, req);
1138 
1139 	return (error);
1140 }
1141 
1142 static void
1143 smu_attach_sensors(device_t dev, phandle_t sensroot)
1144 {
1145 	struct smu_sensor *sens;
1146 	struct smu_softc *sc;
1147 	struct sysctl_oid *sensroot_oid;
1148 	struct sysctl_ctx_list *ctx;
1149 	phandle_t child;
1150 	char type[32];
1151 	int i;
1152 
1153 	sc = device_get_softc(dev);
1154 	sc->sc_nsensors = 0;
1155 
1156 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1157 		sc->sc_nsensors++;
1158 
1159 	if (sc->sc_nsensors == 0) {
1160 		device_printf(dev, "WARNING: No sensors detected!\n");
1161 		return;
1162 	}
1163 
1164 	sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1165 	    M_SMU, M_WAITOK | M_ZERO);
1166 
1167 	sens = sc->sc_sensors;
1168 	sc->sc_nsensors = 0;
1169 
1170 	ctx = device_get_sysctl_ctx(dev);
1171 	sensroot_oid = SYSCTL_ADD_NODE(ctx,
1172 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1173 	    CTLFLAG_RD, 0, "SMU Sensor Information");
1174 
1175 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1176 		char sysctl_name[40], sysctl_desc[40];
1177 		const char *units;
1178 
1179 		sens->dev = dev;
1180 		OF_getprop(child, "device_type", type, sizeof(type));
1181 
1182 		if (strcmp(type, "current-sensor") == 0) {
1183 			sens->type = SMU_CURRENT_SENSOR;
1184 			units = "mA";
1185 		} else if (strcmp(type, "temp-sensor") == 0) {
1186 			sens->type = SMU_TEMP_SENSOR;
1187 			units = "C";
1188 		} else if (strcmp(type, "voltage-sensor") == 0) {
1189 			sens->type = SMU_VOLTAGE_SENSOR;
1190 			units = "mV";
1191 		} else if (strcmp(type, "power-sensor") == 0) {
1192 			sens->type = SMU_POWER_SENSOR;
1193 			units = "mW";
1194 		} else {
1195 			continue;
1196 		}
1197 
1198 		OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1199 		OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1200 		OF_getprop(child, "location", sens->therm.name,
1201 		    sizeof(sens->therm.name));
1202 
1203 		for (i = 0; i < strlen(sens->therm.name); i++) {
1204 			sysctl_name[i] = tolower(sens->therm.name[i]);
1205 			if (isspace(sysctl_name[i]))
1206 				sysctl_name[i] = '_';
1207 		}
1208 		sysctl_name[i] = 0;
1209 
1210 		sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1211 
1212 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1213 		    sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1214 		    dev, sc->sc_nsensors, smu_sensor_sysctl,
1215 		    (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1216 
1217 		if (sens->type == SMU_TEMP_SENSOR) {
1218 			/* Make up some numbers */
1219 			sens->therm.target_temp = 500 + 2732; /* 50 C */
1220 			sens->therm.max_temp = 900 + 2732; /* 90 C */
1221 
1222 			sens->therm.read =
1223 			    (int (*)(struct pmac_therm *))smu_sensor_read;
1224 			pmac_thermal_sensor_register(&sens->therm);
1225 		}
1226 
1227 		sens++;
1228 		sc->sc_nsensors++;
1229 	}
1230 }
1231 
1232 static void
1233 smu_set_sleepled(void *xdev, int onoff)
1234 {
1235 	static struct smu_cmd cmd;
1236 	device_t smu = xdev;
1237 
1238 	cmd.cmd = SMU_MISC;
1239 	cmd.len = 3;
1240 	cmd.data[0] = SMU_MISC_LED_CTRL;
1241 	cmd.data[1] = 0;
1242 	cmd.data[2] = onoff;
1243 
1244 	smu_run_cmd(smu, &cmd, 0);
1245 }
1246 
1247 static int
1248 smu_server_mode(SYSCTL_HANDLER_ARGS)
1249 {
1250 	struct smu_cmd cmd;
1251 	u_int server_mode;
1252 	device_t smu = arg1;
1253 	int error;
1254 
1255 	cmd.cmd = SMU_POWER_EVENTS;
1256 	cmd.len = 1;
1257 	cmd.data[0] = SMU_PWR_GET_POWERUP;
1258 
1259 	error = smu_run_cmd(smu, &cmd, 1);
1260 
1261 	if (error)
1262 		return (error);
1263 
1264 	server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1265 
1266 	error = sysctl_handle_int(oidp, &server_mode, 0, req);
1267 
1268 	if (error || !req->newptr)
1269 		return (error);
1270 
1271 	if (server_mode == 1)
1272 		cmd.data[0] = SMU_PWR_SET_POWERUP;
1273 	else if (server_mode == 0)
1274 		cmd.data[0] = SMU_PWR_CLR_POWERUP;
1275 	else
1276 		return (EINVAL);
1277 
1278 	cmd.len = 3;
1279 	cmd.data[1] = 0;
1280 	cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1281 
1282 	return (smu_run_cmd(smu, &cmd, 1));
1283 }
1284 
1285 static void
1286 smu_shutdown(void *xdev, int howto)
1287 {
1288 	device_t smu = xdev;
1289 	struct smu_cmd cmd;
1290 
1291 	cmd.cmd = SMU_POWER;
1292 	if (howto & RB_HALT)
1293 		strcpy(cmd.data, "SHUTDOWN");
1294 	else
1295 		strcpy(cmd.data, "RESTART");
1296 
1297 	cmd.len = strlen(cmd.data);
1298 
1299 	smu_run_cmd(smu, &cmd, 1);
1300 
1301 	for (;;);
1302 }
1303 
1304 static int
1305 smu_gettime(device_t dev, struct timespec *ts)
1306 {
1307 	struct smu_cmd cmd;
1308 	struct clocktime ct;
1309 
1310 	cmd.cmd = SMU_RTC;
1311 	cmd.len = 1;
1312 	cmd.data[0] = SMU_RTC_GET;
1313 
1314 	if (smu_run_cmd(dev, &cmd, 1) != 0)
1315 		return (ENXIO);
1316 
1317 	ct.nsec	= 0;
1318 	ct.sec	= bcd2bin(cmd.data[0]);
1319 	ct.min	= bcd2bin(cmd.data[1]);
1320 	ct.hour	= bcd2bin(cmd.data[2]);
1321 	ct.dow	= bcd2bin(cmd.data[3]);
1322 	ct.day	= bcd2bin(cmd.data[4]);
1323 	ct.mon	= bcd2bin(cmd.data[5]);
1324 	ct.year	= bcd2bin(cmd.data[6]) + 2000;
1325 
1326 	return (clock_ct_to_ts(&ct, ts));
1327 }
1328 
1329 static int
1330 smu_settime(device_t dev, struct timespec *ts)
1331 {
1332 	static struct smu_cmd cmd;
1333 	struct clocktime ct;
1334 
1335 	cmd.cmd = SMU_RTC;
1336 	cmd.len = 8;
1337 	cmd.data[0] = SMU_RTC_SET;
1338 
1339 	clock_ts_to_ct(ts, &ct);
1340 
1341 	cmd.data[1] = bin2bcd(ct.sec);
1342 	cmd.data[2] = bin2bcd(ct.min);
1343 	cmd.data[3] = bin2bcd(ct.hour);
1344 	cmd.data[4] = bin2bcd(ct.dow);
1345 	cmd.data[5] = bin2bcd(ct.day);
1346 	cmd.data[6] = bin2bcd(ct.mon);
1347 	cmd.data[7] = bin2bcd(ct.year - 2000);
1348 
1349 	return (smu_run_cmd(dev, &cmd, 0));
1350 }
1351 
1352 /* SMU I2C Interface */
1353 
1354 static int smuiic_probe(device_t dev);
1355 static int smuiic_attach(device_t dev);
1356 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1357 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1358 
1359 static device_method_t smuiic_methods[] = {
1360 	/* device interface */
1361 	DEVMETHOD(device_probe,         smuiic_probe),
1362 	DEVMETHOD(device_attach,        smuiic_attach),
1363 
1364 	/* iicbus interface */
1365 	DEVMETHOD(iicbus_callback,      iicbus_null_callback),
1366 	DEVMETHOD(iicbus_transfer,      smuiic_transfer),
1367 
1368 	/* ofw_bus interface */
1369 	DEVMETHOD(ofw_bus_get_node,     smuiic_get_node),
1370 
1371 	{ 0, 0 }
1372 };
1373 
1374 struct smuiic_softc {
1375 	struct mtx	sc_mtx;
1376 	volatile int	sc_iic_inuse;
1377 	int		sc_busno;
1378 };
1379 
1380 static driver_t smuiic_driver = {
1381 	"iichb",
1382 	smuiic_methods,
1383 	sizeof(struct smuiic_softc)
1384 };
1385 static devclass_t smuiic_devclass;
1386 
1387 DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0);
1388 
1389 static void
1390 smu_attach_i2c(device_t smu, phandle_t i2croot)
1391 {
1392 	phandle_t child;
1393 	device_t cdev;
1394 	struct ofw_bus_devinfo *dinfo;
1395 	char name[32];
1396 
1397 	for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1398 		if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1399 			continue;
1400 
1401 		if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1402 			continue;
1403 
1404 		dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1405 		    M_WAITOK | M_ZERO);
1406 		if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1407 			free(dinfo, M_SMU);
1408 			continue;
1409 		}
1410 
1411 		cdev = device_add_child(smu, NULL, -1);
1412 		if (cdev == NULL) {
1413 			device_printf(smu, "<%s>: device_add_child failed\n",
1414 			    dinfo->obd_name);
1415 			ofw_bus_gen_destroy_devinfo(dinfo);
1416 			free(dinfo, M_SMU);
1417 			continue;
1418 		}
1419 		device_set_ivars(cdev, dinfo);
1420 	}
1421 }
1422 
1423 static int
1424 smuiic_probe(device_t dev)
1425 {
1426 	const char *name;
1427 
1428 	name = ofw_bus_get_name(dev);
1429 	if (name == NULL)
1430 		return (ENXIO);
1431 
1432 	if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1433 		device_set_desc(dev, "SMU I2C controller");
1434 		return (0);
1435 	}
1436 
1437 	return (ENXIO);
1438 }
1439 
1440 static int
1441 smuiic_attach(device_t dev)
1442 {
1443 	struct smuiic_softc *sc = device_get_softc(dev);
1444 	mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1445 	sc->sc_iic_inuse = 0;
1446 
1447 	/* Get our bus number */
1448 	OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1449 	    sizeof(sc->sc_busno));
1450 
1451 	/* Add the IIC bus layer */
1452 	device_add_child(dev, "iicbus", -1);
1453 
1454 	return (bus_generic_attach(dev));
1455 }
1456 
1457 static int
1458 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1459 {
1460 	struct smuiic_softc *sc = device_get_softc(dev);
1461 	struct smu_cmd cmd;
1462 	int i, j, error;
1463 
1464 	mtx_lock(&sc->sc_mtx);
1465 	while (sc->sc_iic_inuse)
1466 		mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1467 
1468 	sc->sc_iic_inuse = 1;
1469 	error = 0;
1470 
1471 	for (i = 0; i < nmsgs; i++) {
1472 		cmd.cmd = SMU_I2C;
1473 		cmd.data[0] = sc->sc_busno;
1474 		if (msgs[i].flags & IIC_M_NOSTOP)
1475 			cmd.data[1] = SMU_I2C_COMBINED;
1476 		else
1477 			cmd.data[1] = SMU_I2C_SIMPLE;
1478 
1479 		cmd.data[2] = msgs[i].slave;
1480 		if (msgs[i].flags & IIC_M_RD)
1481 			cmd.data[2] |= 1;
1482 
1483 		if (msgs[i].flags & IIC_M_NOSTOP) {
1484 			KASSERT(msgs[i].len < 4,
1485 			    ("oversize I2C combined message"));
1486 
1487 			cmd.data[3] = min(msgs[i].len, 3);
1488 			memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1489 			i++; /* Advance to next part of message */
1490 		} else {
1491 			cmd.data[3] = 0;
1492 			memset(&cmd.data[4], 0, 3);
1493 		}
1494 
1495 		cmd.data[7] = msgs[i].slave;
1496 		if (msgs[i].flags & IIC_M_RD)
1497 			cmd.data[7] |= 1;
1498 
1499 		cmd.data[8] = msgs[i].len;
1500 		if (msgs[i].flags & IIC_M_RD) {
1501 			memset(&cmd.data[9], 0xff, msgs[i].len);
1502 			cmd.len = 9;
1503 		} else {
1504 			memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1505 			cmd.len = 9 + msgs[i].len;
1506 		}
1507 
1508 		mtx_unlock(&sc->sc_mtx);
1509 		smu_run_cmd(device_get_parent(dev), &cmd, 1);
1510 		mtx_lock(&sc->sc_mtx);
1511 
1512 		for (j = 0; j < 10; j++) {
1513 			cmd.cmd = SMU_I2C;
1514 			cmd.len = 1;
1515 			cmd.data[0] = 0;
1516 			memset(&cmd.data[1], 0xff, msgs[i].len);
1517 
1518 			mtx_unlock(&sc->sc_mtx);
1519 			smu_run_cmd(device_get_parent(dev), &cmd, 1);
1520 			mtx_lock(&sc->sc_mtx);
1521 
1522 			if (!(cmd.data[0] & 0x80))
1523 				break;
1524 
1525 			mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1526 		}
1527 
1528 		if (cmd.data[0] & 0x80) {
1529 			error = EIO;
1530 			msgs[i].len = 0;
1531 			goto exit;
1532 		}
1533 		memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1534 		msgs[i].len = cmd.len - 1;
1535 	}
1536 
1537     exit:
1538 	sc->sc_iic_inuse = 0;
1539 	mtx_unlock(&sc->sc_mtx);
1540 	wakeup(sc);
1541 	return (error);
1542 }
1543 
1544 static phandle_t
1545 smuiic_get_node(device_t bus, device_t dev)
1546 {
1547 
1548 	return (ofw_bus_get_node(bus));
1549 }
1550 
1551