1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/eventhandler.h> 36 #include <sys/systm.h> 37 #include <sys/module.h> 38 #include <sys/conf.h> 39 #include <sys/cpu.h> 40 #include <sys/clock.h> 41 #include <sys/ctype.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/reboot.h> 47 #include <sys/rman.h> 48 #include <sys/sysctl.h> 49 #include <sys/unistd.h> 50 51 #include <machine/bus.h> 52 #include <machine/intr_machdep.h> 53 #include <machine/md_var.h> 54 55 #include <dev/iicbus/iicbus.h> 56 #include <dev/iicbus/iiconf.h> 57 #include <dev/led/led.h> 58 #include <dev/ofw/openfirm.h> 59 #include <dev/ofw/ofw_bus.h> 60 #include <dev/ofw/ofw_bus_subr.h> 61 #include <powerpc/powermac/macgpiovar.h> 62 #include <powerpc/powermac/powermac_thermal.h> 63 64 #include "clock_if.h" 65 #include "iicbus_if.h" 66 67 struct smu_cmd { 68 volatile uint8_t cmd; 69 uint8_t len; 70 uint8_t data[254]; 71 72 STAILQ_ENTRY(smu_cmd) cmd_q; 73 }; 74 75 STAILQ_HEAD(smu_cmdq, smu_cmd); 76 77 struct smu_fan { 78 struct pmac_fan fan; 79 device_t dev; 80 cell_t reg; 81 82 enum { 83 SMU_FAN_RPM, 84 SMU_FAN_PWM 85 } type; 86 int setpoint; 87 int old_style; 88 int rpm; 89 }; 90 91 /* We can read the PWM and the RPM from a PWM controlled fan. 92 * Offer both values via sysctl. 93 */ 94 enum { 95 SMU_PWM_SYSCTL_PWM = 1 << 8, 96 SMU_PWM_SYSCTL_RPM = 2 << 8 97 }; 98 99 struct smu_sensor { 100 struct pmac_therm therm; 101 device_t dev; 102 103 cell_t reg; 104 enum { 105 SMU_CURRENT_SENSOR, 106 SMU_VOLTAGE_SENSOR, 107 SMU_POWER_SENSOR, 108 SMU_TEMP_SENSOR 109 } type; 110 }; 111 112 struct smu_softc { 113 device_t sc_dev; 114 struct mtx sc_mtx; 115 116 struct resource *sc_memr; 117 int sc_memrid; 118 int sc_u3; 119 120 bus_dma_tag_t sc_dmatag; 121 bus_space_tag_t sc_bt; 122 bus_space_handle_t sc_mailbox; 123 124 struct smu_cmd *sc_cmd, *sc_cur_cmd; 125 bus_addr_t sc_cmd_phys; 126 bus_dmamap_t sc_cmd_dmamap; 127 struct smu_cmdq sc_cmdq; 128 129 struct smu_fan *sc_fans; 130 int sc_nfans; 131 int old_style_fans; 132 struct smu_sensor *sc_sensors; 133 int sc_nsensors; 134 135 int sc_doorbellirqid; 136 struct resource *sc_doorbellirq; 137 void *sc_doorbellirqcookie; 138 139 struct proc *sc_fanmgt_proc; 140 time_t sc_lastuserchange; 141 142 /* Calibration data */ 143 uint16_t sc_cpu_diode_scale; 144 int16_t sc_cpu_diode_offset; 145 146 uint16_t sc_cpu_volt_scale; 147 int16_t sc_cpu_volt_offset; 148 uint16_t sc_cpu_curr_scale; 149 int16_t sc_cpu_curr_offset; 150 151 uint16_t sc_slots_pow_scale; 152 int16_t sc_slots_pow_offset; 153 154 struct cdev *sc_leddev; 155 }; 156 157 /* regular bus attachment functions */ 158 159 static int smu_probe(device_t); 160 static int smu_attach(device_t); 161 static const struct ofw_bus_devinfo * 162 smu_get_devinfo(device_t bus, device_t dev); 163 164 /* cpufreq notification hooks */ 165 166 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level); 167 static void smu_cpufreq_post_change(device_t, const struct cf_level *level); 168 169 /* clock interface */ 170 static int smu_gettime(device_t dev, struct timespec *ts); 171 static int smu_settime(device_t dev, struct timespec *ts); 172 173 /* utility functions */ 174 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait); 175 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, 176 size_t len); 177 static void smu_attach_i2c(device_t dev, phandle_t i2croot); 178 static void smu_attach_fans(device_t dev, phandle_t fanroot); 179 static void smu_attach_sensors(device_t dev, phandle_t sensroot); 180 static void smu_set_sleepled(void *xdev, int onoff); 181 static int smu_server_mode(SYSCTL_HANDLER_ARGS); 182 static void smu_doorbell_intr(void *xdev); 183 static void smu_shutdown(void *xdev, int howto); 184 185 /* where to find the doorbell GPIO */ 186 187 static device_t smu_doorbell = NULL; 188 189 static device_method_t smu_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, smu_probe), 192 DEVMETHOD(device_attach, smu_attach), 193 194 /* Clock interface */ 195 DEVMETHOD(clock_gettime, smu_gettime), 196 DEVMETHOD(clock_settime, smu_settime), 197 198 /* ofw_bus interface */ 199 DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str), 200 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo), 201 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), 202 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), 203 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), 204 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), 205 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), 206 207 { 0, 0 }, 208 }; 209 210 static driver_t smu_driver = { 211 "smu", 212 smu_methods, 213 sizeof(struct smu_softc) 214 }; 215 216 static devclass_t smu_devclass; 217 218 DRIVER_MODULE(smu, ofwbus, smu_driver, smu_devclass, 0, 0); 219 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information"); 220 221 #define SMU_MAILBOX 0x8000860c 222 #define SMU_FANMGT_INTERVAL 1000 /* ms */ 223 224 /* Command types */ 225 #define SMU_ADC 0xd8 226 #define SMU_FAN 0x4a 227 #define SMU_RPM_STATUS 0x01 228 #define SMU_RPM_SETPOINT 0x02 229 #define SMU_PWM_STATUS 0x11 230 #define SMU_PWM_SETPOINT 0x12 231 #define SMU_I2C 0x9a 232 #define SMU_I2C_SIMPLE 0x00 233 #define SMU_I2C_NORMAL 0x01 234 #define SMU_I2C_COMBINED 0x02 235 #define SMU_MISC 0xee 236 #define SMU_MISC_GET_DATA 0x02 237 #define SMU_MISC_LED_CTRL 0x04 238 #define SMU_POWER 0xaa 239 #define SMU_POWER_EVENTS 0x8f 240 #define SMU_PWR_GET_POWERUP 0x00 241 #define SMU_PWR_SET_POWERUP 0x01 242 #define SMU_PWR_CLR_POWERUP 0x02 243 #define SMU_RTC 0x8e 244 #define SMU_RTC_GET 0x81 245 #define SMU_RTC_SET 0x80 246 247 /* Power event types */ 248 #define SMU_WAKEUP_KEYPRESS 0x01 249 #define SMU_WAKEUP_AC_INSERT 0x02 250 #define SMU_WAKEUP_AC_CHANGE 0x04 251 #define SMU_WAKEUP_RING 0x10 252 253 /* Data blocks */ 254 #define SMU_CPUTEMP_CAL 0x18 255 #define SMU_CPUVOLT_CAL 0x21 256 #define SMU_SLOTPW_CAL 0x78 257 258 /* Partitions */ 259 #define SMU_PARTITION 0x3e 260 #define SMU_PARTITION_LATEST 0x01 261 #define SMU_PARTITION_BASE 0x02 262 #define SMU_PARTITION_UPDATE 0x03 263 264 static int 265 smu_probe(device_t dev) 266 { 267 const char *name = ofw_bus_get_name(dev); 268 269 if (strcmp(name, "smu") != 0) 270 return (ENXIO); 271 272 device_set_desc(dev, "Apple System Management Unit"); 273 return (0); 274 } 275 276 static void 277 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 278 { 279 struct smu_softc *sc = xsc; 280 281 sc->sc_cmd_phys = segs[0].ds_addr; 282 } 283 284 static int 285 smu_attach(device_t dev) 286 { 287 struct smu_softc *sc; 288 phandle_t node, child; 289 uint8_t data[12]; 290 291 sc = device_get_softc(dev); 292 293 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF); 294 sc->sc_cur_cmd = NULL; 295 sc->sc_doorbellirqid = -1; 296 297 sc->sc_u3 = 0; 298 if (OF_finddevice("/u3") != -1) 299 sc->sc_u3 = 1; 300 301 /* 302 * Map the mailbox area. This should be determined from firmware, 303 * but I have not found a simple way to do that. 304 */ 305 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT, 306 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL, 307 NULL, &(sc->sc_dmatag)); 308 sc->sc_bt = &bs_le_tag; 309 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox); 310 311 /* 312 * Allocate the command buffer. This can be anywhere in the low 4 GB 313 * of memory. 314 */ 315 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | 316 BUS_DMA_ZERO, &sc->sc_cmd_dmamap); 317 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap, 318 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0); 319 STAILQ_INIT(&sc->sc_cmdq); 320 321 /* 322 * Set up handlers to change CPU voltage when CPU frequency is changed. 323 */ 324 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev, 325 EVENTHANDLER_PRI_ANY); 326 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev, 327 EVENTHANDLER_PRI_ANY); 328 329 node = ofw_bus_get_node(dev); 330 331 /* Some SMUs have RPM and PWM controlled fans which do not sit 332 * under the same node. So we have to attach them separately. 333 */ 334 smu_attach_fans(dev, node); 335 336 /* 337 * Now detect and attach the other child devices. 338 */ 339 for (child = OF_child(node); child != 0; child = OF_peer(child)) { 340 char name[32]; 341 memset(name, 0, sizeof(name)); 342 OF_getprop(child, "name", name, sizeof(name)); 343 344 if (strncmp(name, "sensors", 8) == 0) 345 smu_attach_sensors(dev, child); 346 347 if (strncmp(name, "smu-i2c-control", 15) == 0) 348 smu_attach_i2c(dev, child); 349 } 350 351 /* Some SMUs have the I2C children directly under the bus. */ 352 smu_attach_i2c(dev, node); 353 354 /* 355 * Collect calibration constants. 356 */ 357 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data)); 358 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5]; 359 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7]; 360 361 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data)); 362 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5]; 363 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7]; 364 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9]; 365 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11]; 366 367 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data)); 368 sc->sc_slots_pow_scale = (data[4] << 8) + data[5]; 369 sc->sc_slots_pow_offset = (data[6] << 8) + data[7]; 370 371 /* 372 * Set up LED interface 373 */ 374 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled"); 375 376 /* 377 * Reset on power loss behavior 378 */ 379 380 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 381 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 382 "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0, 383 smu_server_mode, "I", "Enable reboot after power failure"); 384 385 /* 386 * Set up doorbell interrupt. 387 */ 388 sc->sc_doorbellirqid = 0; 389 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ, 390 &sc->sc_doorbellirqid, RF_ACTIVE); 391 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq, 392 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev, 393 &sc->sc_doorbellirqcookie); 394 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq), 395 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW); 396 397 /* 398 * Connect RTC interface. 399 */ 400 clock_register(dev, 1000); 401 402 /* 403 * Learn about shutdown events 404 */ 405 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev, 406 SHUTDOWN_PRI_LAST); 407 408 return (bus_generic_attach(dev)); 409 } 410 411 static const struct ofw_bus_devinfo * 412 smu_get_devinfo(device_t bus, device_t dev) 413 { 414 415 return (device_get_ivars(dev)); 416 } 417 418 static void 419 smu_send_cmd(device_t dev, struct smu_cmd *cmd) 420 { 421 struct smu_softc *sc; 422 423 sc = device_get_softc(dev); 424 425 mtx_assert(&sc->sc_mtx, MA_OWNED); 426 427 if (sc->sc_u3) 428 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */ 429 430 sc->sc_cur_cmd = cmd; 431 432 /* Copy the command to the mailbox */ 433 sc->sc_cmd->cmd = cmd->cmd; 434 sc->sc_cmd->len = cmd->len; 435 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data)); 436 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE); 437 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys); 438 439 /* Flush the cacheline it is in -- SMU bypasses the cache */ 440 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory"); 441 442 /* Ring SMU doorbell */ 443 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT); 444 } 445 446 static void 447 smu_doorbell_intr(void *xdev) 448 { 449 device_t smu; 450 struct smu_softc *sc; 451 int doorbell_ack; 452 453 smu = xdev; 454 doorbell_ack = macgpio_read(smu_doorbell); 455 sc = device_get_softc(smu); 456 457 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) 458 return; 459 460 mtx_lock(&sc->sc_mtx); 461 462 if (sc->sc_cur_cmd == NULL) /* spurious */ 463 goto done; 464 465 /* Check result. First invalidate the cache again... */ 466 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory"); 467 468 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD); 469 470 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd; 471 sc->sc_cur_cmd->len = sc->sc_cmd->len; 472 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data, 473 sizeof(sc->sc_cmd->data)); 474 wakeup(sc->sc_cur_cmd); 475 sc->sc_cur_cmd = NULL; 476 if (sc->sc_u3) 477 powerpc_pow_enabled = 1; 478 479 done: 480 /* Queue next command if one is pending */ 481 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) { 482 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq); 483 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q); 484 smu_send_cmd(smu, sc->sc_cur_cmd); 485 } 486 487 mtx_unlock(&sc->sc_mtx); 488 } 489 490 static int 491 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait) 492 { 493 struct smu_softc *sc; 494 uint8_t cmd_code; 495 int error; 496 497 sc = device_get_softc(dev); 498 cmd_code = cmd->cmd; 499 500 mtx_lock(&sc->sc_mtx); 501 if (sc->sc_cur_cmd != NULL) { 502 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q); 503 } else 504 smu_send_cmd(dev, cmd); 505 mtx_unlock(&sc->sc_mtx); 506 507 if (!wait) 508 return (0); 509 510 if (sc->sc_doorbellirqid < 0) { 511 /* Poll if the IRQ has not been set up yet */ 512 do { 513 DELAY(50); 514 smu_doorbell_intr(dev); 515 } while (sc->sc_cur_cmd != NULL); 516 } else { 517 /* smu_doorbell_intr will wake us when the command is ACK'ed */ 518 error = tsleep(cmd, 0, "smu", 800 * hz / 1000); 519 if (error != 0) 520 smu_doorbell_intr(dev); /* One last chance */ 521 522 if (error != 0) { 523 mtx_lock(&sc->sc_mtx); 524 if (cmd->cmd == cmd_code) { /* Never processed */ 525 /* Abort this command if we timed out */ 526 if (sc->sc_cur_cmd == cmd) 527 sc->sc_cur_cmd = NULL; 528 else 529 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd, 530 cmd_q); 531 mtx_unlock(&sc->sc_mtx); 532 return (error); 533 } 534 error = 0; 535 mtx_unlock(&sc->sc_mtx); 536 } 537 } 538 539 /* SMU acks the command by inverting the command bits */ 540 if (cmd->cmd == ((~cmd_code) & 0xff)) 541 error = 0; 542 else 543 error = EIO; 544 545 return (error); 546 } 547 548 static int 549 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len) 550 { 551 struct smu_cmd cmd; 552 uint8_t addr[4]; 553 554 cmd.cmd = SMU_PARTITION; 555 cmd.len = 2; 556 cmd.data[0] = SMU_PARTITION_LATEST; 557 cmd.data[1] = id; 558 559 smu_run_cmd(dev, &cmd, 1); 560 561 addr[0] = addr[1] = 0; 562 addr[2] = cmd.data[0]; 563 addr[3] = cmd.data[1]; 564 565 cmd.cmd = SMU_MISC; 566 cmd.len = 7; 567 cmd.data[0] = SMU_MISC_GET_DATA; 568 cmd.data[1] = sizeof(addr); 569 memcpy(&cmd.data[2], addr, sizeof(addr)); 570 cmd.data[6] = len; 571 572 smu_run_cmd(dev, &cmd, 1); 573 memcpy(buf, cmd.data, len); 574 return (0); 575 } 576 577 static void 578 smu_slew_cpu_voltage(device_t dev, int to) 579 { 580 struct smu_cmd cmd; 581 582 cmd.cmd = SMU_POWER; 583 cmd.len = 8; 584 cmd.data[0] = 'V'; 585 cmd.data[1] = 'S'; 586 cmd.data[2] = 'L'; 587 cmd.data[3] = 'E'; 588 cmd.data[4] = 'W'; 589 cmd.data[5] = 0xff; 590 cmd.data[6] = 1; 591 cmd.data[7] = to; 592 593 smu_run_cmd(dev, &cmd, 1); 594 } 595 596 static void 597 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level) 598 { 599 /* 600 * Make sure the CPU voltage is raised before we raise 601 * the clock. 602 */ 603 604 if (level->rel_set[0].freq == 10000 /* max */) 605 smu_slew_cpu_voltage(dev, 0); 606 } 607 608 static void 609 smu_cpufreq_post_change(device_t dev, const struct cf_level *level) 610 { 611 /* We are safe to reduce CPU voltage after a downward transition */ 612 613 if (level->rel_set[0].freq < 10000 /* max */) 614 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */ 615 } 616 617 /* Routines for probing the SMU doorbell GPIO */ 618 static int doorbell_probe(device_t dev); 619 static int doorbell_attach(device_t dev); 620 621 static device_method_t doorbell_methods[] = { 622 /* Device interface */ 623 DEVMETHOD(device_probe, doorbell_probe), 624 DEVMETHOD(device_attach, doorbell_attach), 625 { 0, 0 }, 626 }; 627 628 static driver_t doorbell_driver = { 629 "smudoorbell", 630 doorbell_methods, 631 0 632 }; 633 634 static devclass_t doorbell_devclass; 635 636 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 637 0, 0, BUS_PASS_SUPPORTDEV); 638 639 static int 640 doorbell_probe(device_t dev) 641 { 642 const char *name = ofw_bus_get_name(dev); 643 644 if (strcmp(name, "smu-doorbell") != 0) 645 return (ENXIO); 646 647 device_set_desc(dev, "SMU Doorbell GPIO"); 648 device_quiet(dev); 649 return (0); 650 } 651 652 static int 653 doorbell_attach(device_t dev) 654 { 655 smu_doorbell = dev; 656 return (0); 657 } 658 659 /* 660 * Sensor and fan management 661 */ 662 663 static int 664 smu_fan_check_old_style(struct smu_fan *fan) 665 { 666 device_t smu = fan->dev; 667 struct smu_softc *sc = device_get_softc(smu); 668 struct smu_cmd cmd; 669 int error; 670 671 if (sc->old_style_fans != -1) 672 return (sc->old_style_fans); 673 674 /* 675 * Apple has two fan control mechanisms. We can't distinguish 676 * them except by seeing if the new one fails. If the new one 677 * fails, use the old one. 678 */ 679 680 cmd.cmd = SMU_FAN; 681 cmd.len = 2; 682 cmd.data[0] = 0x31; 683 cmd.data[1] = fan->reg; 684 685 do { 686 error = smu_run_cmd(smu, &cmd, 1); 687 } while (error == EWOULDBLOCK); 688 689 sc->old_style_fans = (error != 0); 690 691 return (sc->old_style_fans); 692 } 693 694 static int 695 smu_fan_set_rpm(struct smu_fan *fan, int rpm) 696 { 697 device_t smu = fan->dev; 698 struct smu_cmd cmd; 699 int error; 700 701 cmd.cmd = SMU_FAN; 702 error = EIO; 703 704 /* Clamp to allowed range */ 705 rpm = max(fan->fan.min_rpm, rpm); 706 rpm = min(fan->fan.max_rpm, rpm); 707 708 smu_fan_check_old_style(fan); 709 710 if (!fan->old_style) { 711 cmd.len = 4; 712 cmd.data[0] = 0x30; 713 cmd.data[1] = fan->reg; 714 cmd.data[2] = (rpm >> 8) & 0xff; 715 cmd.data[3] = rpm & 0xff; 716 717 error = smu_run_cmd(smu, &cmd, 1); 718 if (error && error != EWOULDBLOCK) 719 fan->old_style = 1; 720 } else { 721 cmd.len = 14; 722 cmd.data[0] = 0x00; /* RPM fan. */ 723 cmd.data[1] = 1 << fan->reg; 724 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff; 725 cmd.data[3 + 2*fan->reg] = rpm & 0xff; 726 error = smu_run_cmd(smu, &cmd, 1); 727 } 728 729 if (error == 0) 730 fan->setpoint = rpm; 731 732 return (error); 733 } 734 735 static int 736 smu_fan_read_rpm(struct smu_fan *fan) 737 { 738 device_t smu = fan->dev; 739 struct smu_cmd cmd; 740 int rpm, error; 741 742 smu_fan_check_old_style(fan); 743 744 if (!fan->old_style) { 745 cmd.cmd = SMU_FAN; 746 cmd.len = 2; 747 cmd.data[0] = 0x31; 748 cmd.data[1] = fan->reg; 749 750 error = smu_run_cmd(smu, &cmd, 1); 751 if (error && error != EWOULDBLOCK) 752 fan->old_style = 1; 753 754 rpm = (cmd.data[0] << 8) | cmd.data[1]; 755 } 756 757 if (fan->old_style) { 758 cmd.cmd = SMU_FAN; 759 cmd.len = 1; 760 cmd.data[0] = SMU_RPM_STATUS; 761 762 error = smu_run_cmd(smu, &cmd, 1); 763 if (error) 764 return (error); 765 766 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 767 } 768 769 return (rpm); 770 } 771 static int 772 smu_fan_set_pwm(struct smu_fan *fan, int pwm) 773 { 774 device_t smu = fan->dev; 775 struct smu_cmd cmd; 776 int error; 777 778 cmd.cmd = SMU_FAN; 779 error = EIO; 780 781 /* Clamp to allowed range */ 782 pwm = max(fan->fan.min_rpm, pwm); 783 pwm = min(fan->fan.max_rpm, pwm); 784 785 /* 786 * Apple has two fan control mechanisms. We can't distinguish 787 * them except by seeing if the new one fails. If the new one 788 * fails, use the old one. 789 */ 790 791 if (!fan->old_style) { 792 cmd.len = 4; 793 cmd.data[0] = 0x30; 794 cmd.data[1] = fan->reg; 795 cmd.data[2] = (pwm >> 8) & 0xff; 796 cmd.data[3] = pwm & 0xff; 797 798 error = smu_run_cmd(smu, &cmd, 1); 799 if (error && error != EWOULDBLOCK) 800 fan->old_style = 1; 801 } 802 803 if (fan->old_style) { 804 cmd.len = 14; 805 cmd.data[0] = 0x10; /* PWM fan. */ 806 cmd.data[1] = 1 << fan->reg; 807 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff; 808 cmd.data[3 + 2*fan->reg] = pwm & 0xff; 809 error = smu_run_cmd(smu, &cmd, 1); 810 } 811 812 if (error == 0) 813 fan->setpoint = pwm; 814 815 return (error); 816 } 817 818 static int 819 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm) 820 { 821 device_t smu = fan->dev; 822 struct smu_cmd cmd; 823 int error; 824 825 if (!fan->old_style) { 826 cmd.cmd = SMU_FAN; 827 cmd.len = 2; 828 cmd.data[0] = 0x31; 829 cmd.data[1] = fan->reg; 830 831 error = smu_run_cmd(smu, &cmd, 1); 832 if (error && error != EWOULDBLOCK) 833 fan->old_style = 1; 834 835 *rpm = (cmd.data[0] << 8) | cmd.data[1]; 836 } 837 838 if (fan->old_style) { 839 cmd.cmd = SMU_FAN; 840 cmd.len = 1; 841 cmd.data[0] = SMU_PWM_STATUS; 842 843 error = smu_run_cmd(smu, &cmd, 1); 844 if (error) 845 return (error); 846 847 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 848 } 849 if (fan->old_style) { 850 cmd.cmd = SMU_FAN; 851 cmd.len = 14; 852 cmd.data[0] = SMU_PWM_SETPOINT; 853 cmd.data[1] = 1 << fan->reg; 854 855 error = smu_run_cmd(smu, &cmd, 1); 856 if (error) 857 return (error); 858 859 *pwm = cmd.data[fan->reg*2+2]; 860 } 861 return (0); 862 } 863 864 static int 865 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS) 866 { 867 device_t smu; 868 struct smu_softc *sc; 869 struct smu_fan *fan; 870 int pwm = 0, rpm, error = 0; 871 872 smu = arg1; 873 sc = device_get_softc(smu); 874 fan = &sc->sc_fans[arg2 & 0xff]; 875 876 if (fan->type == SMU_FAN_RPM) { 877 rpm = smu_fan_read_rpm(fan); 878 if (rpm < 0) 879 return (rpm); 880 881 error = sysctl_handle_int(oidp, &rpm, 0, req); 882 } else { 883 error = smu_fan_read_pwm(fan, &pwm, &rpm); 884 if (error < 0) 885 return (EIO); 886 887 switch (arg2 & 0xff00) { 888 case SMU_PWM_SYSCTL_PWM: 889 error = sysctl_handle_int(oidp, &pwm, 0, req); 890 break; 891 case SMU_PWM_SYSCTL_RPM: 892 error = sysctl_handle_int(oidp, &rpm, 0, req); 893 break; 894 default: 895 /* This should never happen */ 896 return (EINVAL); 897 } 898 } 899 /* We can only read the RPM from a PWM controlled fan, so return. */ 900 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM) 901 return (0); 902 903 if (error || !req->newptr) 904 return (error); 905 906 sc->sc_lastuserchange = time_uptime; 907 908 if (fan->type == SMU_FAN_RPM) 909 return (smu_fan_set_rpm(fan, rpm)); 910 else 911 return (smu_fan_set_pwm(fan, pwm)); 912 } 913 914 static void 915 smu_fill_fan_prop(device_t dev, phandle_t child, int id) 916 { 917 struct smu_fan *fan; 918 struct smu_softc *sc; 919 char type[32]; 920 921 sc = device_get_softc(dev); 922 fan = &sc->sc_fans[id]; 923 924 OF_getprop(child, "device_type", type, sizeof(type)); 925 /* We have either RPM or PWM controlled fans. */ 926 if (strcmp(type, "fan-rpm-control") == 0) 927 fan->type = SMU_FAN_RPM; 928 else 929 fan->type = SMU_FAN_PWM; 930 931 fan->dev = dev; 932 fan->old_style = 0; 933 OF_getprop(child, "reg", &fan->reg, 934 sizeof(cell_t)); 935 OF_getprop(child, "min-value", &fan->fan.min_rpm, 936 sizeof(int)); 937 OF_getprop(child, "max-value", &fan->fan.max_rpm, 938 sizeof(int)); 939 OF_getprop(child, "zone", &fan->fan.zone, 940 sizeof(int)); 941 942 if (OF_getprop(child, "unmanaged-value", 943 &fan->fan.default_rpm, 944 sizeof(int)) != sizeof(int)) 945 fan->fan.default_rpm = fan->fan.max_rpm; 946 947 OF_getprop(child, "location", fan->fan.name, 948 sizeof(fan->fan.name)); 949 950 if (fan->type == SMU_FAN_RPM) 951 fan->setpoint = smu_fan_read_rpm(fan); 952 else 953 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm); 954 } 955 956 /* On the first call count the number of fans. In the second call, 957 * after allocating the fan struct, fill the properties of the fans. 958 */ 959 static int 960 smu_count_fans(device_t dev) 961 { 962 struct smu_softc *sc; 963 phandle_t child, node, root; 964 int nfans = 0; 965 966 node = ofw_bus_get_node(dev); 967 sc = device_get_softc(dev); 968 969 /* First find the fanroots and count the number of fans. */ 970 for (root = OF_child(node); root != 0; root = OF_peer(root)) { 971 char name[32]; 972 memset(name, 0, sizeof(name)); 973 OF_getprop(root, "name", name, sizeof(name)); 974 if (strncmp(name, "rpm-fans", 9) == 0 || 975 strncmp(name, "pwm-fans", 9) == 0 || 976 strncmp(name, "fans", 5) == 0) 977 for (child = OF_child(root); child != 0; 978 child = OF_peer(child)) { 979 nfans++; 980 /* When allocated, fill the fan properties. */ 981 if (sc->sc_fans != NULL) { 982 smu_fill_fan_prop(dev, child, 983 nfans - 1); 984 } 985 } 986 } 987 if (nfans == 0) { 988 device_printf(dev, "WARNING: No fans detected!\n"); 989 return (0); 990 } 991 return (nfans); 992 } 993 994 static void 995 smu_attach_fans(device_t dev, phandle_t fanroot) 996 { 997 struct smu_fan *fan; 998 struct smu_softc *sc; 999 struct sysctl_oid *oid, *fanroot_oid; 1000 struct sysctl_ctx_list *ctx; 1001 char sysctl_name[32]; 1002 int i, j; 1003 1004 sc = device_get_softc(dev); 1005 1006 /* Get the number of fans. */ 1007 sc->sc_nfans = smu_count_fans(dev); 1008 if (sc->sc_nfans == 0) 1009 return; 1010 1011 /* Now we're able to allocate memory for the fans struct. */ 1012 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU, 1013 M_WAITOK | M_ZERO); 1014 1015 /* Now fill in the properties. */ 1016 smu_count_fans(dev); 1017 1018 /* Register fans with pmac_thermal */ 1019 for (i = 0; i < sc->sc_nfans; i++) 1020 pmac_thermal_fan_register(&sc->sc_fans[i].fan); 1021 1022 ctx = device_get_sysctl_ctx(dev); 1023 fanroot_oid = SYSCTL_ADD_NODE(ctx, 1024 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans", 1025 CTLFLAG_RD, 0, "SMU Fan Information"); 1026 1027 /* Add sysctls */ 1028 for (i = 0; i < sc->sc_nfans; i++) { 1029 fan = &sc->sc_fans[i]; 1030 for (j = 0; j < strlen(fan->fan.name); j++) { 1031 sysctl_name[j] = tolower(fan->fan.name[j]); 1032 if (isspace(sysctl_name[j])) 1033 sysctl_name[j] = '_'; 1034 } 1035 sysctl_name[j] = 0; 1036 if (fan->type == SMU_FAN_RPM) { 1037 oid = SYSCTL_ADD_NODE(ctx, 1038 SYSCTL_CHILDREN(fanroot_oid), 1039 OID_AUTO, sysctl_name, 1040 CTLFLAG_RD, 0, "Fan Information"); 1041 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1042 "minrpm", CTLFLAG_RD, 1043 &fan->fan.min_rpm, 0, 1044 "Minimum allowed RPM"); 1045 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1046 "maxrpm", CTLFLAG_RD, 1047 &fan->fan.max_rpm, 0, 1048 "Maximum allowed RPM"); 1049 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1050 "rpm",CTLTYPE_INT | CTLFLAG_RW | 1051 CTLFLAG_MPSAFE, dev, i, 1052 smu_fanrpm_sysctl, "I", "Fan RPM"); 1053 1054 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm; 1055 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm; 1056 1057 } else { 1058 oid = SYSCTL_ADD_NODE(ctx, 1059 SYSCTL_CHILDREN(fanroot_oid), 1060 OID_AUTO, sysctl_name, 1061 CTLFLAG_RD, 0, "Fan Information"); 1062 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1063 "minpwm", CTLFLAG_RD, 1064 &fan->fan.min_rpm, 0, 1065 "Minimum allowed PWM in %"); 1066 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1067 "maxpwm", CTLFLAG_RD, 1068 &fan->fan.max_rpm, 0, 1069 "Maximum allowed PWM in %"); 1070 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1071 "pwm",CTLTYPE_INT | CTLFLAG_RW | 1072 CTLFLAG_MPSAFE, dev, 1073 SMU_PWM_SYSCTL_PWM | i, 1074 smu_fanrpm_sysctl, "I", "Fan PWM in %"); 1075 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1076 "rpm",CTLTYPE_INT | CTLFLAG_RD | 1077 CTLFLAG_MPSAFE, dev, 1078 SMU_PWM_SYSCTL_RPM | i, 1079 smu_fanrpm_sysctl, "I", "Fan RPM"); 1080 fan->fan.read = NULL; 1081 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm; 1082 1083 } 1084 if (bootverbose) 1085 device_printf(dev, "Fan: %s type: %d\n", 1086 fan->fan.name, fan->type); 1087 } 1088 } 1089 1090 static int 1091 smu_sensor_read(struct smu_sensor *sens) 1092 { 1093 device_t smu = sens->dev; 1094 struct smu_cmd cmd; 1095 struct smu_softc *sc; 1096 int64_t value; 1097 int error; 1098 1099 cmd.cmd = SMU_ADC; 1100 cmd.len = 1; 1101 cmd.data[0] = sens->reg; 1102 error = 0; 1103 1104 error = smu_run_cmd(smu, &cmd, 1); 1105 if (error != 0) 1106 return (-1); 1107 1108 sc = device_get_softc(smu); 1109 value = (cmd.data[0] << 8) | cmd.data[1]; 1110 1111 switch (sens->type) { 1112 case SMU_TEMP_SENSOR: 1113 value *= sc->sc_cpu_diode_scale; 1114 value >>= 3; 1115 value += ((int64_t)sc->sc_cpu_diode_offset) << 9; 1116 value <<= 1; 1117 1118 /* Convert from 16.16 fixed point degC into integer 0.1 K. */ 1119 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731; 1120 break; 1121 case SMU_VOLTAGE_SENSOR: 1122 value *= sc->sc_cpu_volt_scale; 1123 value += sc->sc_cpu_volt_offset; 1124 value <<= 4; 1125 1126 /* Convert from 16.16 fixed point V into mV. */ 1127 value *= 15625; 1128 value /= 1024; 1129 value /= 1000; 1130 break; 1131 case SMU_CURRENT_SENSOR: 1132 value *= sc->sc_cpu_curr_scale; 1133 value += sc->sc_cpu_curr_offset; 1134 value <<= 4; 1135 1136 /* Convert from 16.16 fixed point A into mA. */ 1137 value *= 15625; 1138 value /= 1024; 1139 value /= 1000; 1140 break; 1141 case SMU_POWER_SENSOR: 1142 value *= sc->sc_slots_pow_scale; 1143 value += sc->sc_slots_pow_offset; 1144 value <<= 4; 1145 1146 /* Convert from 16.16 fixed point W into mW. */ 1147 value *= 15625; 1148 value /= 1024; 1149 value /= 1000; 1150 break; 1151 } 1152 1153 return (value); 1154 } 1155 1156 static int 1157 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS) 1158 { 1159 device_t smu; 1160 struct smu_softc *sc; 1161 struct smu_sensor *sens; 1162 int value, error; 1163 1164 smu = arg1; 1165 sc = device_get_softc(smu); 1166 sens = &sc->sc_sensors[arg2]; 1167 1168 value = smu_sensor_read(sens); 1169 if (value < 0) 1170 return (EBUSY); 1171 1172 error = sysctl_handle_int(oidp, &value, 0, req); 1173 1174 return (error); 1175 } 1176 1177 static void 1178 smu_attach_sensors(device_t dev, phandle_t sensroot) 1179 { 1180 struct smu_sensor *sens; 1181 struct smu_softc *sc; 1182 struct sysctl_oid *sensroot_oid; 1183 struct sysctl_ctx_list *ctx; 1184 phandle_t child; 1185 char type[32]; 1186 int i; 1187 1188 sc = device_get_softc(dev); 1189 sc->sc_nsensors = 0; 1190 1191 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) 1192 sc->sc_nsensors++; 1193 1194 if (sc->sc_nsensors == 0) { 1195 device_printf(dev, "WARNING: No sensors detected!\n"); 1196 return; 1197 } 1198 1199 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor), 1200 M_SMU, M_WAITOK | M_ZERO); 1201 1202 sens = sc->sc_sensors; 1203 sc->sc_nsensors = 0; 1204 1205 ctx = device_get_sysctl_ctx(dev); 1206 sensroot_oid = SYSCTL_ADD_NODE(ctx, 1207 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors", 1208 CTLFLAG_RD, 0, "SMU Sensor Information"); 1209 1210 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) { 1211 char sysctl_name[40], sysctl_desc[40]; 1212 const char *units; 1213 1214 sens->dev = dev; 1215 OF_getprop(child, "device_type", type, sizeof(type)); 1216 1217 if (strcmp(type, "current-sensor") == 0) { 1218 sens->type = SMU_CURRENT_SENSOR; 1219 units = "mA"; 1220 } else if (strcmp(type, "temp-sensor") == 0) { 1221 sens->type = SMU_TEMP_SENSOR; 1222 units = "C"; 1223 } else if (strcmp(type, "voltage-sensor") == 0) { 1224 sens->type = SMU_VOLTAGE_SENSOR; 1225 units = "mV"; 1226 } else if (strcmp(type, "power-sensor") == 0) { 1227 sens->type = SMU_POWER_SENSOR; 1228 units = "mW"; 1229 } else { 1230 continue; 1231 } 1232 1233 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t)); 1234 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int)); 1235 OF_getprop(child, "location", sens->therm.name, 1236 sizeof(sens->therm.name)); 1237 1238 for (i = 0; i < strlen(sens->therm.name); i++) { 1239 sysctl_name[i] = tolower(sens->therm.name[i]); 1240 if (isspace(sysctl_name[i])) 1241 sysctl_name[i] = '_'; 1242 } 1243 sysctl_name[i] = 0; 1244 1245 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units); 1246 1247 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO, 1248 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 1249 dev, sc->sc_nsensors, smu_sensor_sysctl, 1250 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc); 1251 1252 if (sens->type == SMU_TEMP_SENSOR) { 1253 /* Make up some numbers */ 1254 sens->therm.target_temp = 500 + 2731; /* 50 C */ 1255 sens->therm.max_temp = 900 + 2731; /* 90 C */ 1256 1257 sens->therm.read = 1258 (int (*)(struct pmac_therm *))smu_sensor_read; 1259 pmac_thermal_sensor_register(&sens->therm); 1260 } 1261 1262 sens++; 1263 sc->sc_nsensors++; 1264 } 1265 } 1266 1267 static void 1268 smu_set_sleepled(void *xdev, int onoff) 1269 { 1270 static struct smu_cmd cmd; 1271 device_t smu = xdev; 1272 1273 cmd.cmd = SMU_MISC; 1274 cmd.len = 3; 1275 cmd.data[0] = SMU_MISC_LED_CTRL; 1276 cmd.data[1] = 0; 1277 cmd.data[2] = onoff; 1278 1279 smu_run_cmd(smu, &cmd, 0); 1280 } 1281 1282 static int 1283 smu_server_mode(SYSCTL_HANDLER_ARGS) 1284 { 1285 struct smu_cmd cmd; 1286 u_int server_mode; 1287 device_t smu = arg1; 1288 int error; 1289 1290 cmd.cmd = SMU_POWER_EVENTS; 1291 cmd.len = 1; 1292 cmd.data[0] = SMU_PWR_GET_POWERUP; 1293 1294 error = smu_run_cmd(smu, &cmd, 1); 1295 1296 if (error) 1297 return (error); 1298 1299 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0; 1300 1301 error = sysctl_handle_int(oidp, &server_mode, 0, req); 1302 1303 if (error || !req->newptr) 1304 return (error); 1305 1306 if (server_mode == 1) 1307 cmd.data[0] = SMU_PWR_SET_POWERUP; 1308 else if (server_mode == 0) 1309 cmd.data[0] = SMU_PWR_CLR_POWERUP; 1310 else 1311 return (EINVAL); 1312 1313 cmd.len = 3; 1314 cmd.data[1] = 0; 1315 cmd.data[2] = SMU_WAKEUP_AC_INSERT; 1316 1317 return (smu_run_cmd(smu, &cmd, 1)); 1318 } 1319 1320 static void 1321 smu_shutdown(void *xdev, int howto) 1322 { 1323 device_t smu = xdev; 1324 struct smu_cmd cmd; 1325 1326 cmd.cmd = SMU_POWER; 1327 if (howto & RB_HALT) 1328 strcpy(cmd.data, "SHUTDOWN"); 1329 else 1330 strcpy(cmd.data, "RESTART"); 1331 1332 cmd.len = strlen(cmd.data); 1333 1334 smu_run_cmd(smu, &cmd, 1); 1335 1336 for (;;); 1337 } 1338 1339 static int 1340 smu_gettime(device_t dev, struct timespec *ts) 1341 { 1342 struct smu_cmd cmd; 1343 struct clocktime ct; 1344 1345 cmd.cmd = SMU_RTC; 1346 cmd.len = 1; 1347 cmd.data[0] = SMU_RTC_GET; 1348 1349 if (smu_run_cmd(dev, &cmd, 1) != 0) 1350 return (ENXIO); 1351 1352 ct.nsec = 0; 1353 ct.sec = bcd2bin(cmd.data[0]); 1354 ct.min = bcd2bin(cmd.data[1]); 1355 ct.hour = bcd2bin(cmd.data[2]); 1356 ct.dow = bcd2bin(cmd.data[3]); 1357 ct.day = bcd2bin(cmd.data[4]); 1358 ct.mon = bcd2bin(cmd.data[5]); 1359 ct.year = bcd2bin(cmd.data[6]) + 2000; 1360 1361 return (clock_ct_to_ts(&ct, ts)); 1362 } 1363 1364 static int 1365 smu_settime(device_t dev, struct timespec *ts) 1366 { 1367 static struct smu_cmd cmd; 1368 struct clocktime ct; 1369 1370 cmd.cmd = SMU_RTC; 1371 cmd.len = 8; 1372 cmd.data[0] = SMU_RTC_SET; 1373 1374 clock_ts_to_ct(ts, &ct); 1375 1376 cmd.data[1] = bin2bcd(ct.sec); 1377 cmd.data[2] = bin2bcd(ct.min); 1378 cmd.data[3] = bin2bcd(ct.hour); 1379 cmd.data[4] = bin2bcd(ct.dow); 1380 cmd.data[5] = bin2bcd(ct.day); 1381 cmd.data[6] = bin2bcd(ct.mon); 1382 cmd.data[7] = bin2bcd(ct.year - 2000); 1383 1384 return (smu_run_cmd(dev, &cmd, 0)); 1385 } 1386 1387 /* SMU I2C Interface */ 1388 1389 static int smuiic_probe(device_t dev); 1390 static int smuiic_attach(device_t dev); 1391 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs); 1392 static phandle_t smuiic_get_node(device_t bus, device_t dev); 1393 1394 static device_method_t smuiic_methods[] = { 1395 /* device interface */ 1396 DEVMETHOD(device_probe, smuiic_probe), 1397 DEVMETHOD(device_attach, smuiic_attach), 1398 1399 /* iicbus interface */ 1400 DEVMETHOD(iicbus_callback, iicbus_null_callback), 1401 DEVMETHOD(iicbus_transfer, smuiic_transfer), 1402 1403 /* ofw_bus interface */ 1404 DEVMETHOD(ofw_bus_get_node, smuiic_get_node), 1405 1406 { 0, 0 } 1407 }; 1408 1409 struct smuiic_softc { 1410 struct mtx sc_mtx; 1411 volatile int sc_iic_inuse; 1412 int sc_busno; 1413 }; 1414 1415 static driver_t smuiic_driver = { 1416 "iichb", 1417 smuiic_methods, 1418 sizeof(struct smuiic_softc) 1419 }; 1420 static devclass_t smuiic_devclass; 1421 1422 DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0); 1423 1424 static void 1425 smu_attach_i2c(device_t smu, phandle_t i2croot) 1426 { 1427 phandle_t child; 1428 device_t cdev; 1429 struct ofw_bus_devinfo *dinfo; 1430 char name[32]; 1431 1432 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) { 1433 if (OF_getprop(child, "name", name, sizeof(name)) <= 0) 1434 continue; 1435 1436 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0) 1437 continue; 1438 1439 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU, 1440 M_WAITOK | M_ZERO); 1441 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) { 1442 free(dinfo, M_SMU); 1443 continue; 1444 } 1445 1446 cdev = device_add_child(smu, NULL, -1); 1447 if (cdev == NULL) { 1448 device_printf(smu, "<%s>: device_add_child failed\n", 1449 dinfo->obd_name); 1450 ofw_bus_gen_destroy_devinfo(dinfo); 1451 free(dinfo, M_SMU); 1452 continue; 1453 } 1454 device_set_ivars(cdev, dinfo); 1455 } 1456 } 1457 1458 static int 1459 smuiic_probe(device_t dev) 1460 { 1461 const char *name; 1462 1463 name = ofw_bus_get_name(dev); 1464 if (name == NULL) 1465 return (ENXIO); 1466 1467 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) { 1468 device_set_desc(dev, "SMU I2C controller"); 1469 return (0); 1470 } 1471 1472 return (ENXIO); 1473 } 1474 1475 static int 1476 smuiic_attach(device_t dev) 1477 { 1478 struct smuiic_softc *sc = device_get_softc(dev); 1479 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF); 1480 sc->sc_iic_inuse = 0; 1481 1482 /* Get our bus number */ 1483 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno, 1484 sizeof(sc->sc_busno)); 1485 1486 /* Add the IIC bus layer */ 1487 device_add_child(dev, "iicbus", -1); 1488 1489 return (bus_generic_attach(dev)); 1490 } 1491 1492 static int 1493 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) 1494 { 1495 struct smuiic_softc *sc = device_get_softc(dev); 1496 struct smu_cmd cmd; 1497 int i, j, error; 1498 1499 mtx_lock(&sc->sc_mtx); 1500 while (sc->sc_iic_inuse) 1501 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100); 1502 1503 sc->sc_iic_inuse = 1; 1504 error = 0; 1505 1506 for (i = 0; i < nmsgs; i++) { 1507 cmd.cmd = SMU_I2C; 1508 cmd.data[0] = sc->sc_busno; 1509 if (msgs[i].flags & IIC_M_NOSTOP) 1510 cmd.data[1] = SMU_I2C_COMBINED; 1511 else 1512 cmd.data[1] = SMU_I2C_SIMPLE; 1513 1514 cmd.data[2] = msgs[i].slave; 1515 if (msgs[i].flags & IIC_M_RD) 1516 cmd.data[2] |= 1; 1517 1518 if (msgs[i].flags & IIC_M_NOSTOP) { 1519 KASSERT(msgs[i].len < 4, 1520 ("oversize I2C combined message")); 1521 1522 cmd.data[3] = min(msgs[i].len, 3); 1523 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3)); 1524 i++; /* Advance to next part of message */ 1525 } else { 1526 cmd.data[3] = 0; 1527 memset(&cmd.data[4], 0, 3); 1528 } 1529 1530 cmd.data[7] = msgs[i].slave; 1531 if (msgs[i].flags & IIC_M_RD) 1532 cmd.data[7] |= 1; 1533 1534 cmd.data[8] = msgs[i].len; 1535 if (msgs[i].flags & IIC_M_RD) { 1536 memset(&cmd.data[9], 0xff, msgs[i].len); 1537 cmd.len = 9; 1538 } else { 1539 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len); 1540 cmd.len = 9 + msgs[i].len; 1541 } 1542 1543 mtx_unlock(&sc->sc_mtx); 1544 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1545 mtx_lock(&sc->sc_mtx); 1546 1547 for (j = 0; j < 10; j++) { 1548 cmd.cmd = SMU_I2C; 1549 cmd.len = 1; 1550 cmd.data[0] = 0; 1551 memset(&cmd.data[1], 0xff, msgs[i].len); 1552 1553 mtx_unlock(&sc->sc_mtx); 1554 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1555 mtx_lock(&sc->sc_mtx); 1556 1557 if (!(cmd.data[0] & 0x80)) 1558 break; 1559 1560 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10); 1561 } 1562 1563 if (cmd.data[0] & 0x80) { 1564 error = EIO; 1565 msgs[i].len = 0; 1566 goto exit; 1567 } 1568 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len); 1569 msgs[i].len = cmd.len - 1; 1570 } 1571 1572 exit: 1573 sc->sc_iic_inuse = 0; 1574 mtx_unlock(&sc->sc_mtx); 1575 wakeup(sc); 1576 return (error); 1577 } 1578 1579 static phandle_t 1580 smuiic_get_node(device_t bus, device_t dev) 1581 { 1582 1583 return (ofw_bus_get_node(bus)); 1584 } 1585 1586