1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2009 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/eventhandler.h> 36 #include <sys/systm.h> 37 #include <sys/module.h> 38 #include <sys/conf.h> 39 #include <sys/cpu.h> 40 #include <sys/clock.h> 41 #include <sys/ctype.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/reboot.h> 47 #include <sys/rman.h> 48 #include <sys/sysctl.h> 49 #include <sys/unistd.h> 50 51 #include <machine/bus.h> 52 #include <machine/intr_machdep.h> 53 #include <machine/md_var.h> 54 55 #include <dev/iicbus/iicbus.h> 56 #include <dev/iicbus/iiconf.h> 57 #include <dev/led/led.h> 58 #include <dev/ofw/openfirm.h> 59 #include <dev/ofw/ofw_bus.h> 60 #include <dev/ofw/ofw_bus_subr.h> 61 #include <powerpc/powermac/macgpiovar.h> 62 #include <powerpc/powermac/powermac_thermal.h> 63 64 #include "clock_if.h" 65 #include "iicbus_if.h" 66 67 struct smu_cmd { 68 volatile uint8_t cmd; 69 uint8_t len; 70 uint8_t data[254]; 71 72 STAILQ_ENTRY(smu_cmd) cmd_q; 73 }; 74 75 STAILQ_HEAD(smu_cmdq, smu_cmd); 76 77 struct smu_fan { 78 struct pmac_fan fan; 79 device_t dev; 80 cell_t reg; 81 82 enum { 83 SMU_FAN_RPM, 84 SMU_FAN_PWM 85 } type; 86 int setpoint; 87 int old_style; 88 int rpm; 89 }; 90 91 /* We can read the PWM and the RPM from a PWM controlled fan. 92 * Offer both values via sysctl. 93 */ 94 enum { 95 SMU_PWM_SYSCTL_PWM = 1 << 8, 96 SMU_PWM_SYSCTL_RPM = 2 << 8 97 }; 98 99 struct smu_sensor { 100 struct pmac_therm therm; 101 device_t dev; 102 103 cell_t reg; 104 enum { 105 SMU_CURRENT_SENSOR, 106 SMU_VOLTAGE_SENSOR, 107 SMU_POWER_SENSOR, 108 SMU_TEMP_SENSOR 109 } type; 110 }; 111 112 struct smu_softc { 113 device_t sc_dev; 114 struct mtx sc_mtx; 115 116 struct resource *sc_memr; 117 int sc_memrid; 118 int sc_u3; 119 120 bus_dma_tag_t sc_dmatag; 121 bus_space_tag_t sc_bt; 122 bus_space_handle_t sc_mailbox; 123 124 struct smu_cmd *sc_cmd, *sc_cur_cmd; 125 bus_addr_t sc_cmd_phys; 126 bus_dmamap_t sc_cmd_dmamap; 127 struct smu_cmdq sc_cmdq; 128 129 struct smu_fan *sc_fans; 130 int sc_nfans; 131 int old_style_fans; 132 struct smu_sensor *sc_sensors; 133 int sc_nsensors; 134 135 int sc_doorbellirqid; 136 struct resource *sc_doorbellirq; 137 void *sc_doorbellirqcookie; 138 139 struct proc *sc_fanmgt_proc; 140 time_t sc_lastuserchange; 141 142 /* Calibration data */ 143 uint16_t sc_cpu_diode_scale; 144 int16_t sc_cpu_diode_offset; 145 146 uint16_t sc_cpu_volt_scale; 147 int16_t sc_cpu_volt_offset; 148 uint16_t sc_cpu_curr_scale; 149 int16_t sc_cpu_curr_offset; 150 151 uint16_t sc_slots_pow_scale; 152 int16_t sc_slots_pow_offset; 153 154 struct cdev *sc_leddev; 155 }; 156 157 /* regular bus attachment functions */ 158 159 static int smu_probe(device_t); 160 static int smu_attach(device_t); 161 static const struct ofw_bus_devinfo * 162 smu_get_devinfo(device_t bus, device_t dev); 163 164 /* cpufreq notification hooks */ 165 166 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level); 167 static void smu_cpufreq_post_change(device_t, const struct cf_level *level); 168 169 /* clock interface */ 170 static int smu_gettime(device_t dev, struct timespec *ts); 171 static int smu_settime(device_t dev, struct timespec *ts); 172 173 /* utility functions */ 174 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait); 175 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, 176 size_t len); 177 static void smu_attach_i2c(device_t dev, phandle_t i2croot); 178 static void smu_attach_fans(device_t dev, phandle_t fanroot); 179 static void smu_attach_sensors(device_t dev, phandle_t sensroot); 180 static void smu_set_sleepled(void *xdev, int onoff); 181 static int smu_server_mode(SYSCTL_HANDLER_ARGS); 182 static void smu_doorbell_intr(void *xdev); 183 static void smu_shutdown(void *xdev, int howto); 184 185 /* where to find the doorbell GPIO */ 186 187 static device_t smu_doorbell = NULL; 188 189 static device_method_t smu_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, smu_probe), 192 DEVMETHOD(device_attach, smu_attach), 193 194 /* Clock interface */ 195 DEVMETHOD(clock_gettime, smu_gettime), 196 DEVMETHOD(clock_settime, smu_settime), 197 198 /* ofw_bus interface */ 199 DEVMETHOD(bus_child_pnpinfo, ofw_bus_gen_child_pnpinfo), 200 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo), 201 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), 202 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), 203 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), 204 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), 205 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), 206 207 { 0, 0 }, 208 }; 209 210 static driver_t smu_driver = { 211 "smu", 212 smu_methods, 213 sizeof(struct smu_softc) 214 }; 215 216 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0); 217 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information"); 218 219 #define SMU_MAILBOX 0x8000860c 220 #define SMU_FANMGT_INTERVAL 1000 /* ms */ 221 222 /* Command types */ 223 #define SMU_ADC 0xd8 224 #define SMU_FAN 0x4a 225 #define SMU_RPM_STATUS 0x01 226 #define SMU_RPM_SETPOINT 0x02 227 #define SMU_PWM_STATUS 0x11 228 #define SMU_PWM_SETPOINT 0x12 229 #define SMU_I2C 0x9a 230 #define SMU_I2C_SIMPLE 0x00 231 #define SMU_I2C_NORMAL 0x01 232 #define SMU_I2C_COMBINED 0x02 233 #define SMU_MISC 0xee 234 #define SMU_MISC_GET_DATA 0x02 235 #define SMU_MISC_LED_CTRL 0x04 236 #define SMU_POWER 0xaa 237 #define SMU_POWER_EVENTS 0x8f 238 #define SMU_PWR_GET_POWERUP 0x00 239 #define SMU_PWR_SET_POWERUP 0x01 240 #define SMU_PWR_CLR_POWERUP 0x02 241 #define SMU_RTC 0x8e 242 #define SMU_RTC_GET 0x81 243 #define SMU_RTC_SET 0x80 244 245 /* Power event types */ 246 #define SMU_WAKEUP_KEYPRESS 0x01 247 #define SMU_WAKEUP_AC_INSERT 0x02 248 #define SMU_WAKEUP_AC_CHANGE 0x04 249 #define SMU_WAKEUP_RING 0x10 250 251 /* Data blocks */ 252 #define SMU_CPUTEMP_CAL 0x18 253 #define SMU_CPUVOLT_CAL 0x21 254 #define SMU_SLOTPW_CAL 0x78 255 256 /* Partitions */ 257 #define SMU_PARTITION 0x3e 258 #define SMU_PARTITION_LATEST 0x01 259 #define SMU_PARTITION_BASE 0x02 260 #define SMU_PARTITION_UPDATE 0x03 261 262 static int 263 smu_probe(device_t dev) 264 { 265 const char *name = ofw_bus_get_name(dev); 266 267 if (strcmp(name, "smu") != 0) 268 return (ENXIO); 269 270 device_set_desc(dev, "Apple System Management Unit"); 271 return (0); 272 } 273 274 static void 275 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 276 { 277 struct smu_softc *sc = xsc; 278 279 sc->sc_cmd_phys = segs[0].ds_addr; 280 } 281 282 static int 283 smu_attach(device_t dev) 284 { 285 struct smu_softc *sc; 286 phandle_t node, child; 287 uint8_t data[12]; 288 289 sc = device_get_softc(dev); 290 291 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF); 292 sc->sc_cur_cmd = NULL; 293 sc->sc_doorbellirqid = -1; 294 295 sc->sc_u3 = 0; 296 if (OF_finddevice("/u3") != -1) 297 sc->sc_u3 = 1; 298 299 /* 300 * Map the mailbox area. This should be determined from firmware, 301 * but I have not found a simple way to do that. 302 */ 303 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT, 304 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL, 305 NULL, &(sc->sc_dmatag)); 306 sc->sc_bt = &bs_le_tag; 307 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox); 308 309 /* 310 * Allocate the command buffer. This can be anywhere in the low 4 GB 311 * of memory. 312 */ 313 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | 314 BUS_DMA_ZERO, &sc->sc_cmd_dmamap); 315 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap, 316 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0); 317 STAILQ_INIT(&sc->sc_cmdq); 318 319 /* 320 * Set up handlers to change CPU voltage when CPU frequency is changed. 321 */ 322 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev, 323 EVENTHANDLER_PRI_ANY); 324 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev, 325 EVENTHANDLER_PRI_ANY); 326 327 node = ofw_bus_get_node(dev); 328 329 /* Some SMUs have RPM and PWM controlled fans which do not sit 330 * under the same node. So we have to attach them separately. 331 */ 332 smu_attach_fans(dev, node); 333 334 /* 335 * Now detect and attach the other child devices. 336 */ 337 for (child = OF_child(node); child != 0; child = OF_peer(child)) { 338 char name[32]; 339 memset(name, 0, sizeof(name)); 340 OF_getprop(child, "name", name, sizeof(name)); 341 342 if (strncmp(name, "sensors", 8) == 0) 343 smu_attach_sensors(dev, child); 344 345 if (strncmp(name, "smu-i2c-control", 15) == 0) 346 smu_attach_i2c(dev, child); 347 } 348 349 /* Some SMUs have the I2C children directly under the bus. */ 350 smu_attach_i2c(dev, node); 351 352 /* 353 * Collect calibration constants. 354 */ 355 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data)); 356 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5]; 357 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7]; 358 359 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data)); 360 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5]; 361 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7]; 362 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9]; 363 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11]; 364 365 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data)); 366 sc->sc_slots_pow_scale = (data[4] << 8) + data[5]; 367 sc->sc_slots_pow_offset = (data[6] << 8) + data[7]; 368 369 /* 370 * Set up LED interface 371 */ 372 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled"); 373 374 /* 375 * Reset on power loss behavior 376 */ 377 378 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 379 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 380 "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev, 381 0, smu_server_mode, "I", "Enable reboot after power failure"); 382 383 /* 384 * Set up doorbell interrupt. 385 */ 386 sc->sc_doorbellirqid = 0; 387 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ, 388 &sc->sc_doorbellirqid, RF_ACTIVE); 389 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq, 390 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev, 391 &sc->sc_doorbellirqcookie); 392 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq), 393 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW); 394 395 /* 396 * Connect RTC interface. 397 */ 398 clock_register(dev, 1000); 399 400 /* 401 * Learn about shutdown events 402 */ 403 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev, 404 SHUTDOWN_PRI_LAST); 405 406 return (bus_generic_attach(dev)); 407 } 408 409 static const struct ofw_bus_devinfo * 410 smu_get_devinfo(device_t bus, device_t dev) 411 { 412 413 return (device_get_ivars(dev)); 414 } 415 416 static void 417 smu_send_cmd(device_t dev, struct smu_cmd *cmd) 418 { 419 struct smu_softc *sc; 420 421 sc = device_get_softc(dev); 422 423 mtx_assert(&sc->sc_mtx, MA_OWNED); 424 425 if (sc->sc_u3) 426 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */ 427 428 sc->sc_cur_cmd = cmd; 429 430 /* Copy the command to the mailbox */ 431 sc->sc_cmd->cmd = cmd->cmd; 432 sc->sc_cmd->len = cmd->len; 433 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data)); 434 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE); 435 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys); 436 437 /* Flush the cacheline it is in -- SMU bypasses the cache */ 438 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory"); 439 440 /* Ring SMU doorbell */ 441 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT); 442 } 443 444 static void 445 smu_doorbell_intr(void *xdev) 446 { 447 device_t smu; 448 struct smu_softc *sc; 449 int doorbell_ack; 450 451 smu = xdev; 452 doorbell_ack = macgpio_read(smu_doorbell); 453 sc = device_get_softc(smu); 454 455 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) 456 return; 457 458 mtx_lock(&sc->sc_mtx); 459 460 if (sc->sc_cur_cmd == NULL) /* spurious */ 461 goto done; 462 463 /* Check result. First invalidate the cache again... */ 464 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory"); 465 466 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD); 467 468 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd; 469 sc->sc_cur_cmd->len = sc->sc_cmd->len; 470 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data, 471 sizeof(sc->sc_cmd->data)); 472 wakeup(sc->sc_cur_cmd); 473 sc->sc_cur_cmd = NULL; 474 if (sc->sc_u3) 475 powerpc_pow_enabled = 1; 476 477 done: 478 /* Queue next command if one is pending */ 479 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) { 480 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq); 481 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q); 482 smu_send_cmd(smu, sc->sc_cur_cmd); 483 } 484 485 mtx_unlock(&sc->sc_mtx); 486 } 487 488 static int 489 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait) 490 { 491 struct smu_softc *sc; 492 uint8_t cmd_code; 493 int error; 494 495 sc = device_get_softc(dev); 496 cmd_code = cmd->cmd; 497 498 mtx_lock(&sc->sc_mtx); 499 if (sc->sc_cur_cmd != NULL) { 500 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q); 501 } else 502 smu_send_cmd(dev, cmd); 503 mtx_unlock(&sc->sc_mtx); 504 505 if (!wait) 506 return (0); 507 508 if (sc->sc_doorbellirqid < 0) { 509 /* Poll if the IRQ has not been set up yet */ 510 do { 511 DELAY(50); 512 smu_doorbell_intr(dev); 513 } while (sc->sc_cur_cmd != NULL); 514 } else { 515 /* smu_doorbell_intr will wake us when the command is ACK'ed */ 516 error = tsleep(cmd, 0, "smu", 800 * hz / 1000); 517 if (error != 0) 518 smu_doorbell_intr(dev); /* One last chance */ 519 520 if (error != 0) { 521 mtx_lock(&sc->sc_mtx); 522 if (cmd->cmd == cmd_code) { /* Never processed */ 523 /* Abort this command if we timed out */ 524 if (sc->sc_cur_cmd == cmd) 525 sc->sc_cur_cmd = NULL; 526 else 527 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd, 528 cmd_q); 529 mtx_unlock(&sc->sc_mtx); 530 return (error); 531 } 532 error = 0; 533 mtx_unlock(&sc->sc_mtx); 534 } 535 } 536 537 /* SMU acks the command by inverting the command bits */ 538 if (cmd->cmd == ((~cmd_code) & 0xff)) 539 error = 0; 540 else 541 error = EIO; 542 543 return (error); 544 } 545 546 static int 547 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len) 548 { 549 struct smu_cmd cmd; 550 uint8_t addr[4]; 551 552 cmd.cmd = SMU_PARTITION; 553 cmd.len = 2; 554 cmd.data[0] = SMU_PARTITION_LATEST; 555 cmd.data[1] = id; 556 557 smu_run_cmd(dev, &cmd, 1); 558 559 addr[0] = addr[1] = 0; 560 addr[2] = cmd.data[0]; 561 addr[3] = cmd.data[1]; 562 563 cmd.cmd = SMU_MISC; 564 cmd.len = 7; 565 cmd.data[0] = SMU_MISC_GET_DATA; 566 cmd.data[1] = sizeof(addr); 567 memcpy(&cmd.data[2], addr, sizeof(addr)); 568 cmd.data[6] = len; 569 570 smu_run_cmd(dev, &cmd, 1); 571 memcpy(buf, cmd.data, len); 572 return (0); 573 } 574 575 static void 576 smu_slew_cpu_voltage(device_t dev, int to) 577 { 578 struct smu_cmd cmd; 579 580 cmd.cmd = SMU_POWER; 581 cmd.len = 8; 582 cmd.data[0] = 'V'; 583 cmd.data[1] = 'S'; 584 cmd.data[2] = 'L'; 585 cmd.data[3] = 'E'; 586 cmd.data[4] = 'W'; 587 cmd.data[5] = 0xff; 588 cmd.data[6] = 1; 589 cmd.data[7] = to; 590 591 smu_run_cmd(dev, &cmd, 1); 592 } 593 594 static void 595 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level) 596 { 597 /* 598 * Make sure the CPU voltage is raised before we raise 599 * the clock. 600 */ 601 602 if (level->rel_set[0].freq == 10000 /* max */) 603 smu_slew_cpu_voltage(dev, 0); 604 } 605 606 static void 607 smu_cpufreq_post_change(device_t dev, const struct cf_level *level) 608 { 609 /* We are safe to reduce CPU voltage after a downward transition */ 610 611 if (level->rel_set[0].freq < 10000 /* max */) 612 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */ 613 } 614 615 /* Routines for probing the SMU doorbell GPIO */ 616 static int doorbell_probe(device_t dev); 617 static int doorbell_attach(device_t dev); 618 619 static device_method_t doorbell_methods[] = { 620 /* Device interface */ 621 DEVMETHOD(device_probe, doorbell_probe), 622 DEVMETHOD(device_attach, doorbell_attach), 623 { 0, 0 }, 624 }; 625 626 static driver_t doorbell_driver = { 627 "smudoorbell", 628 doorbell_methods, 629 0 630 }; 631 632 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0, 633 BUS_PASS_SUPPORTDEV); 634 635 static int 636 doorbell_probe(device_t dev) 637 { 638 const char *name = ofw_bus_get_name(dev); 639 640 if (strcmp(name, "smu-doorbell") != 0) 641 return (ENXIO); 642 643 device_set_desc(dev, "SMU Doorbell GPIO"); 644 device_quiet(dev); 645 return (0); 646 } 647 648 static int 649 doorbell_attach(device_t dev) 650 { 651 smu_doorbell = dev; 652 return (0); 653 } 654 655 /* 656 * Sensor and fan management 657 */ 658 659 static int 660 smu_fan_check_old_style(struct smu_fan *fan) 661 { 662 device_t smu = fan->dev; 663 struct smu_softc *sc = device_get_softc(smu); 664 struct smu_cmd cmd; 665 int error; 666 667 if (sc->old_style_fans != -1) 668 return (sc->old_style_fans); 669 670 /* 671 * Apple has two fan control mechanisms. We can't distinguish 672 * them except by seeing if the new one fails. If the new one 673 * fails, use the old one. 674 */ 675 676 cmd.cmd = SMU_FAN; 677 cmd.len = 2; 678 cmd.data[0] = 0x31; 679 cmd.data[1] = fan->reg; 680 681 do { 682 error = smu_run_cmd(smu, &cmd, 1); 683 } while (error == EWOULDBLOCK); 684 685 sc->old_style_fans = (error != 0); 686 687 return (sc->old_style_fans); 688 } 689 690 static int 691 smu_fan_set_rpm(struct smu_fan *fan, int rpm) 692 { 693 device_t smu = fan->dev; 694 struct smu_cmd cmd; 695 int error; 696 697 cmd.cmd = SMU_FAN; 698 error = EIO; 699 700 /* Clamp to allowed range */ 701 rpm = max(fan->fan.min_rpm, rpm); 702 rpm = min(fan->fan.max_rpm, rpm); 703 704 smu_fan_check_old_style(fan); 705 706 if (!fan->old_style) { 707 cmd.len = 4; 708 cmd.data[0] = 0x30; 709 cmd.data[1] = fan->reg; 710 cmd.data[2] = (rpm >> 8) & 0xff; 711 cmd.data[3] = rpm & 0xff; 712 713 error = smu_run_cmd(smu, &cmd, 1); 714 if (error && error != EWOULDBLOCK) 715 fan->old_style = 1; 716 } else { 717 cmd.len = 14; 718 cmd.data[0] = 0x00; /* RPM fan. */ 719 cmd.data[1] = 1 << fan->reg; 720 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff; 721 cmd.data[3 + 2*fan->reg] = rpm & 0xff; 722 error = smu_run_cmd(smu, &cmd, 1); 723 } 724 725 if (error == 0) 726 fan->setpoint = rpm; 727 728 return (error); 729 } 730 731 static int 732 smu_fan_read_rpm(struct smu_fan *fan) 733 { 734 device_t smu = fan->dev; 735 struct smu_cmd cmd; 736 int rpm, error; 737 738 smu_fan_check_old_style(fan); 739 740 if (!fan->old_style) { 741 cmd.cmd = SMU_FAN; 742 cmd.len = 2; 743 cmd.data[0] = 0x31; 744 cmd.data[1] = fan->reg; 745 746 error = smu_run_cmd(smu, &cmd, 1); 747 if (error && error != EWOULDBLOCK) 748 fan->old_style = 1; 749 750 rpm = (cmd.data[0] << 8) | cmd.data[1]; 751 } 752 753 if (fan->old_style) { 754 cmd.cmd = SMU_FAN; 755 cmd.len = 1; 756 cmd.data[0] = SMU_RPM_STATUS; 757 758 error = smu_run_cmd(smu, &cmd, 1); 759 if (error) 760 return (error); 761 762 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 763 } 764 765 return (rpm); 766 } 767 static int 768 smu_fan_set_pwm(struct smu_fan *fan, int pwm) 769 { 770 device_t smu = fan->dev; 771 struct smu_cmd cmd; 772 int error; 773 774 cmd.cmd = SMU_FAN; 775 error = EIO; 776 777 /* Clamp to allowed range */ 778 pwm = max(fan->fan.min_rpm, pwm); 779 pwm = min(fan->fan.max_rpm, pwm); 780 781 /* 782 * Apple has two fan control mechanisms. We can't distinguish 783 * them except by seeing if the new one fails. If the new one 784 * fails, use the old one. 785 */ 786 787 if (!fan->old_style) { 788 cmd.len = 4; 789 cmd.data[0] = 0x30; 790 cmd.data[1] = fan->reg; 791 cmd.data[2] = (pwm >> 8) & 0xff; 792 cmd.data[3] = pwm & 0xff; 793 794 error = smu_run_cmd(smu, &cmd, 1); 795 if (error && error != EWOULDBLOCK) 796 fan->old_style = 1; 797 } 798 799 if (fan->old_style) { 800 cmd.len = 14; 801 cmd.data[0] = 0x10; /* PWM fan. */ 802 cmd.data[1] = 1 << fan->reg; 803 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff; 804 cmd.data[3 + 2*fan->reg] = pwm & 0xff; 805 error = smu_run_cmd(smu, &cmd, 1); 806 } 807 808 if (error == 0) 809 fan->setpoint = pwm; 810 811 return (error); 812 } 813 814 static int 815 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm) 816 { 817 device_t smu = fan->dev; 818 struct smu_cmd cmd; 819 int error; 820 821 if (!fan->old_style) { 822 cmd.cmd = SMU_FAN; 823 cmd.len = 2; 824 cmd.data[0] = 0x31; 825 cmd.data[1] = fan->reg; 826 827 error = smu_run_cmd(smu, &cmd, 1); 828 if (error && error != EWOULDBLOCK) 829 fan->old_style = 1; 830 831 *rpm = (cmd.data[0] << 8) | cmd.data[1]; 832 } 833 834 if (fan->old_style) { 835 cmd.cmd = SMU_FAN; 836 cmd.len = 1; 837 cmd.data[0] = SMU_PWM_STATUS; 838 839 error = smu_run_cmd(smu, &cmd, 1); 840 if (error) 841 return (error); 842 843 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 844 } 845 if (fan->old_style) { 846 cmd.cmd = SMU_FAN; 847 cmd.len = 14; 848 cmd.data[0] = SMU_PWM_SETPOINT; 849 cmd.data[1] = 1 << fan->reg; 850 851 error = smu_run_cmd(smu, &cmd, 1); 852 if (error) 853 return (error); 854 855 *pwm = cmd.data[fan->reg*2+2]; 856 } 857 return (0); 858 } 859 860 static int 861 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS) 862 { 863 device_t smu; 864 struct smu_softc *sc; 865 struct smu_fan *fan; 866 int pwm = 0, rpm, error = 0; 867 868 smu = arg1; 869 sc = device_get_softc(smu); 870 fan = &sc->sc_fans[arg2 & 0xff]; 871 872 if (fan->type == SMU_FAN_RPM) { 873 rpm = smu_fan_read_rpm(fan); 874 if (rpm < 0) 875 return (rpm); 876 877 error = sysctl_handle_int(oidp, &rpm, 0, req); 878 } else { 879 error = smu_fan_read_pwm(fan, &pwm, &rpm); 880 if (error < 0) 881 return (EIO); 882 883 switch (arg2 & 0xff00) { 884 case SMU_PWM_SYSCTL_PWM: 885 error = sysctl_handle_int(oidp, &pwm, 0, req); 886 break; 887 case SMU_PWM_SYSCTL_RPM: 888 error = sysctl_handle_int(oidp, &rpm, 0, req); 889 break; 890 default: 891 /* This should never happen */ 892 return (EINVAL); 893 } 894 } 895 /* We can only read the RPM from a PWM controlled fan, so return. */ 896 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM) 897 return (0); 898 899 if (error || !req->newptr) 900 return (error); 901 902 sc->sc_lastuserchange = time_uptime; 903 904 if (fan->type == SMU_FAN_RPM) 905 return (smu_fan_set_rpm(fan, rpm)); 906 else 907 return (smu_fan_set_pwm(fan, pwm)); 908 } 909 910 static void 911 smu_fill_fan_prop(device_t dev, phandle_t child, int id) 912 { 913 struct smu_fan *fan; 914 struct smu_softc *sc; 915 char type[32]; 916 917 sc = device_get_softc(dev); 918 fan = &sc->sc_fans[id]; 919 920 OF_getprop(child, "device_type", type, sizeof(type)); 921 /* We have either RPM or PWM controlled fans. */ 922 if (strcmp(type, "fan-rpm-control") == 0) 923 fan->type = SMU_FAN_RPM; 924 else 925 fan->type = SMU_FAN_PWM; 926 927 fan->dev = dev; 928 fan->old_style = 0; 929 OF_getprop(child, "reg", &fan->reg, 930 sizeof(cell_t)); 931 OF_getprop(child, "min-value", &fan->fan.min_rpm, 932 sizeof(int)); 933 OF_getprop(child, "max-value", &fan->fan.max_rpm, 934 sizeof(int)); 935 OF_getprop(child, "zone", &fan->fan.zone, 936 sizeof(int)); 937 938 if (OF_getprop(child, "unmanaged-value", 939 &fan->fan.default_rpm, 940 sizeof(int)) != sizeof(int)) 941 fan->fan.default_rpm = fan->fan.max_rpm; 942 943 OF_getprop(child, "location", fan->fan.name, 944 sizeof(fan->fan.name)); 945 946 if (fan->type == SMU_FAN_RPM) 947 fan->setpoint = smu_fan_read_rpm(fan); 948 else 949 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm); 950 } 951 952 /* On the first call count the number of fans. In the second call, 953 * after allocating the fan struct, fill the properties of the fans. 954 */ 955 static int 956 smu_count_fans(device_t dev) 957 { 958 struct smu_softc *sc; 959 phandle_t child, node, root; 960 int nfans = 0; 961 962 node = ofw_bus_get_node(dev); 963 sc = device_get_softc(dev); 964 965 /* First find the fanroots and count the number of fans. */ 966 for (root = OF_child(node); root != 0; root = OF_peer(root)) { 967 char name[32]; 968 memset(name, 0, sizeof(name)); 969 OF_getprop(root, "name", name, sizeof(name)); 970 if (strncmp(name, "rpm-fans", 9) == 0 || 971 strncmp(name, "pwm-fans", 9) == 0 || 972 strncmp(name, "fans", 5) == 0) 973 for (child = OF_child(root); child != 0; 974 child = OF_peer(child)) { 975 nfans++; 976 /* When allocated, fill the fan properties. */ 977 if (sc->sc_fans != NULL) { 978 smu_fill_fan_prop(dev, child, 979 nfans - 1); 980 } 981 } 982 } 983 if (nfans == 0) { 984 device_printf(dev, "WARNING: No fans detected!\n"); 985 return (0); 986 } 987 return (nfans); 988 } 989 990 static void 991 smu_attach_fans(device_t dev, phandle_t fanroot) 992 { 993 struct smu_fan *fan; 994 struct smu_softc *sc; 995 struct sysctl_oid *oid, *fanroot_oid; 996 struct sysctl_ctx_list *ctx; 997 char sysctl_name[32]; 998 int i, j; 999 1000 sc = device_get_softc(dev); 1001 1002 /* Get the number of fans. */ 1003 sc->sc_nfans = smu_count_fans(dev); 1004 if (sc->sc_nfans == 0) 1005 return; 1006 1007 /* Now we're able to allocate memory for the fans struct. */ 1008 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU, 1009 M_WAITOK | M_ZERO); 1010 1011 /* Now fill in the properties. */ 1012 smu_count_fans(dev); 1013 1014 /* Register fans with pmac_thermal */ 1015 for (i = 0; i < sc->sc_nfans; i++) 1016 pmac_thermal_fan_register(&sc->sc_fans[i].fan); 1017 1018 ctx = device_get_sysctl_ctx(dev); 1019 fanroot_oid = SYSCTL_ADD_NODE(ctx, 1020 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans", 1021 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information"); 1022 1023 /* Add sysctls */ 1024 for (i = 0; i < sc->sc_nfans; i++) { 1025 fan = &sc->sc_fans[i]; 1026 for (j = 0; j < strlen(fan->fan.name); j++) { 1027 sysctl_name[j] = tolower(fan->fan.name[j]); 1028 if (isspace(sysctl_name[j])) 1029 sysctl_name[j] = '_'; 1030 } 1031 sysctl_name[j] = 0; 1032 if (fan->type == SMU_FAN_RPM) { 1033 oid = SYSCTL_ADD_NODE(ctx, 1034 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, 1035 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 1036 "Fan Information"); 1037 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1038 "minrpm", CTLFLAG_RD, 1039 &fan->fan.min_rpm, 0, 1040 "Minimum allowed RPM"); 1041 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1042 "maxrpm", CTLFLAG_RD, 1043 &fan->fan.max_rpm, 0, 1044 "Maximum allowed RPM"); 1045 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1046 "rpm",CTLTYPE_INT | CTLFLAG_RW | 1047 CTLFLAG_MPSAFE, dev, i, 1048 smu_fanrpm_sysctl, "I", "Fan RPM"); 1049 1050 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm; 1051 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm; 1052 1053 } else { 1054 oid = SYSCTL_ADD_NODE(ctx, 1055 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, 1056 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 1057 "Fan Information"); 1058 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1059 "minpwm", CTLFLAG_RD, 1060 &fan->fan.min_rpm, 0, 1061 "Minimum allowed PWM in %"); 1062 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1063 "maxpwm", CTLFLAG_RD, 1064 &fan->fan.max_rpm, 0, 1065 "Maximum allowed PWM in %"); 1066 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1067 "pwm",CTLTYPE_INT | CTLFLAG_RW | 1068 CTLFLAG_MPSAFE, dev, 1069 SMU_PWM_SYSCTL_PWM | i, 1070 smu_fanrpm_sysctl, "I", "Fan PWM in %"); 1071 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1072 "rpm",CTLTYPE_INT | CTLFLAG_RD | 1073 CTLFLAG_MPSAFE, dev, 1074 SMU_PWM_SYSCTL_RPM | i, 1075 smu_fanrpm_sysctl, "I", "Fan RPM"); 1076 fan->fan.read = NULL; 1077 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm; 1078 } 1079 if (bootverbose) 1080 device_printf(dev, "Fan: %s type: %d\n", 1081 fan->fan.name, fan->type); 1082 } 1083 } 1084 1085 static int 1086 smu_sensor_read(struct smu_sensor *sens) 1087 { 1088 device_t smu = sens->dev; 1089 struct smu_cmd cmd; 1090 struct smu_softc *sc; 1091 int64_t value; 1092 int error; 1093 1094 cmd.cmd = SMU_ADC; 1095 cmd.len = 1; 1096 cmd.data[0] = sens->reg; 1097 error = 0; 1098 1099 error = smu_run_cmd(smu, &cmd, 1); 1100 if (error != 0) 1101 return (-1); 1102 1103 sc = device_get_softc(smu); 1104 value = (cmd.data[0] << 8) | cmd.data[1]; 1105 1106 switch (sens->type) { 1107 case SMU_TEMP_SENSOR: 1108 value *= sc->sc_cpu_diode_scale; 1109 value >>= 3; 1110 value += ((int64_t)sc->sc_cpu_diode_offset) << 9; 1111 value <<= 1; 1112 1113 /* Convert from 16.16 fixed point degC into integer 0.1 K. */ 1114 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731; 1115 break; 1116 case SMU_VOLTAGE_SENSOR: 1117 value *= sc->sc_cpu_volt_scale; 1118 value += sc->sc_cpu_volt_offset; 1119 value <<= 4; 1120 1121 /* Convert from 16.16 fixed point V into mV. */ 1122 value *= 15625; 1123 value /= 1024; 1124 value /= 1000; 1125 break; 1126 case SMU_CURRENT_SENSOR: 1127 value *= sc->sc_cpu_curr_scale; 1128 value += sc->sc_cpu_curr_offset; 1129 value <<= 4; 1130 1131 /* Convert from 16.16 fixed point A into mA. */ 1132 value *= 15625; 1133 value /= 1024; 1134 value /= 1000; 1135 break; 1136 case SMU_POWER_SENSOR: 1137 value *= sc->sc_slots_pow_scale; 1138 value += sc->sc_slots_pow_offset; 1139 value <<= 4; 1140 1141 /* Convert from 16.16 fixed point W into mW. */ 1142 value *= 15625; 1143 value /= 1024; 1144 value /= 1000; 1145 break; 1146 } 1147 1148 return (value); 1149 } 1150 1151 static int 1152 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS) 1153 { 1154 device_t smu; 1155 struct smu_softc *sc; 1156 struct smu_sensor *sens; 1157 int value, error; 1158 1159 smu = arg1; 1160 sc = device_get_softc(smu); 1161 sens = &sc->sc_sensors[arg2]; 1162 1163 value = smu_sensor_read(sens); 1164 if (value < 0) 1165 return (EBUSY); 1166 1167 error = sysctl_handle_int(oidp, &value, 0, req); 1168 1169 return (error); 1170 } 1171 1172 static void 1173 smu_attach_sensors(device_t dev, phandle_t sensroot) 1174 { 1175 struct smu_sensor *sens; 1176 struct smu_softc *sc; 1177 struct sysctl_oid *sensroot_oid; 1178 struct sysctl_ctx_list *ctx; 1179 phandle_t child; 1180 char type[32]; 1181 int i; 1182 1183 sc = device_get_softc(dev); 1184 sc->sc_nsensors = 0; 1185 1186 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) 1187 sc->sc_nsensors++; 1188 1189 if (sc->sc_nsensors == 0) { 1190 device_printf(dev, "WARNING: No sensors detected!\n"); 1191 return; 1192 } 1193 1194 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor), 1195 M_SMU, M_WAITOK | M_ZERO); 1196 1197 sens = sc->sc_sensors; 1198 sc->sc_nsensors = 0; 1199 1200 ctx = device_get_sysctl_ctx(dev); 1201 sensroot_oid = SYSCTL_ADD_NODE(ctx, 1202 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors", 1203 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information"); 1204 1205 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) { 1206 char sysctl_name[40], sysctl_desc[40]; 1207 const char *units; 1208 1209 sens->dev = dev; 1210 OF_getprop(child, "device_type", type, sizeof(type)); 1211 1212 if (strcmp(type, "current-sensor") == 0) { 1213 sens->type = SMU_CURRENT_SENSOR; 1214 units = "mA"; 1215 } else if (strcmp(type, "temp-sensor") == 0) { 1216 sens->type = SMU_TEMP_SENSOR; 1217 units = "C"; 1218 } else if (strcmp(type, "voltage-sensor") == 0) { 1219 sens->type = SMU_VOLTAGE_SENSOR; 1220 units = "mV"; 1221 } else if (strcmp(type, "power-sensor") == 0) { 1222 sens->type = SMU_POWER_SENSOR; 1223 units = "mW"; 1224 } else { 1225 continue; 1226 } 1227 1228 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t)); 1229 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int)); 1230 OF_getprop(child, "location", sens->therm.name, 1231 sizeof(sens->therm.name)); 1232 1233 for (i = 0; i < strlen(sens->therm.name); i++) { 1234 sysctl_name[i] = tolower(sens->therm.name[i]); 1235 if (isspace(sysctl_name[i])) 1236 sysctl_name[i] = '_'; 1237 } 1238 sysctl_name[i] = 0; 1239 1240 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units); 1241 1242 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO, 1243 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 1244 dev, sc->sc_nsensors, smu_sensor_sysctl, 1245 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc); 1246 1247 if (sens->type == SMU_TEMP_SENSOR) { 1248 /* Make up some numbers */ 1249 sens->therm.target_temp = 500 + 2731; /* 50 C */ 1250 sens->therm.max_temp = 900 + 2731; /* 90 C */ 1251 1252 sens->therm.read = 1253 (int (*)(struct pmac_therm *))smu_sensor_read; 1254 pmac_thermal_sensor_register(&sens->therm); 1255 } 1256 1257 sens++; 1258 sc->sc_nsensors++; 1259 } 1260 } 1261 1262 static void 1263 smu_set_sleepled(void *xdev, int onoff) 1264 { 1265 static struct smu_cmd cmd; 1266 device_t smu = xdev; 1267 1268 cmd.cmd = SMU_MISC; 1269 cmd.len = 3; 1270 cmd.data[0] = SMU_MISC_LED_CTRL; 1271 cmd.data[1] = 0; 1272 cmd.data[2] = onoff; 1273 1274 smu_run_cmd(smu, &cmd, 0); 1275 } 1276 1277 static int 1278 smu_server_mode(SYSCTL_HANDLER_ARGS) 1279 { 1280 struct smu_cmd cmd; 1281 u_int server_mode; 1282 device_t smu = arg1; 1283 int error; 1284 1285 cmd.cmd = SMU_POWER_EVENTS; 1286 cmd.len = 1; 1287 cmd.data[0] = SMU_PWR_GET_POWERUP; 1288 1289 error = smu_run_cmd(smu, &cmd, 1); 1290 1291 if (error) 1292 return (error); 1293 1294 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0; 1295 1296 error = sysctl_handle_int(oidp, &server_mode, 0, req); 1297 1298 if (error || !req->newptr) 1299 return (error); 1300 1301 if (server_mode == 1) 1302 cmd.data[0] = SMU_PWR_SET_POWERUP; 1303 else if (server_mode == 0) 1304 cmd.data[0] = SMU_PWR_CLR_POWERUP; 1305 else 1306 return (EINVAL); 1307 1308 cmd.len = 3; 1309 cmd.data[1] = 0; 1310 cmd.data[2] = SMU_WAKEUP_AC_INSERT; 1311 1312 return (smu_run_cmd(smu, &cmd, 1)); 1313 } 1314 1315 static void 1316 smu_shutdown(void *xdev, int howto) 1317 { 1318 device_t smu = xdev; 1319 struct smu_cmd cmd; 1320 1321 cmd.cmd = SMU_POWER; 1322 if (howto & RB_HALT) 1323 strcpy(cmd.data, "SHUTDOWN"); 1324 else 1325 strcpy(cmd.data, "RESTART"); 1326 1327 cmd.len = strlen(cmd.data); 1328 1329 smu_run_cmd(smu, &cmd, 1); 1330 1331 for (;;); 1332 } 1333 1334 static int 1335 smu_gettime(device_t dev, struct timespec *ts) 1336 { 1337 struct smu_cmd cmd; 1338 struct clocktime ct; 1339 1340 cmd.cmd = SMU_RTC; 1341 cmd.len = 1; 1342 cmd.data[0] = SMU_RTC_GET; 1343 1344 if (smu_run_cmd(dev, &cmd, 1) != 0) 1345 return (ENXIO); 1346 1347 ct.nsec = 0; 1348 ct.sec = bcd2bin(cmd.data[0]); 1349 ct.min = bcd2bin(cmd.data[1]); 1350 ct.hour = bcd2bin(cmd.data[2]); 1351 ct.dow = bcd2bin(cmd.data[3]); 1352 ct.day = bcd2bin(cmd.data[4]); 1353 ct.mon = bcd2bin(cmd.data[5]); 1354 ct.year = bcd2bin(cmd.data[6]) + 2000; 1355 1356 return (clock_ct_to_ts(&ct, ts)); 1357 } 1358 1359 static int 1360 smu_settime(device_t dev, struct timespec *ts) 1361 { 1362 static struct smu_cmd cmd; 1363 struct clocktime ct; 1364 1365 cmd.cmd = SMU_RTC; 1366 cmd.len = 8; 1367 cmd.data[0] = SMU_RTC_SET; 1368 1369 clock_ts_to_ct(ts, &ct); 1370 1371 cmd.data[1] = bin2bcd(ct.sec); 1372 cmd.data[2] = bin2bcd(ct.min); 1373 cmd.data[3] = bin2bcd(ct.hour); 1374 cmd.data[4] = bin2bcd(ct.dow); 1375 cmd.data[5] = bin2bcd(ct.day); 1376 cmd.data[6] = bin2bcd(ct.mon); 1377 cmd.data[7] = bin2bcd(ct.year - 2000); 1378 1379 return (smu_run_cmd(dev, &cmd, 0)); 1380 } 1381 1382 /* SMU I2C Interface */ 1383 1384 static int smuiic_probe(device_t dev); 1385 static int smuiic_attach(device_t dev); 1386 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs); 1387 static phandle_t smuiic_get_node(device_t bus, device_t dev); 1388 1389 static device_method_t smuiic_methods[] = { 1390 /* device interface */ 1391 DEVMETHOD(device_probe, smuiic_probe), 1392 DEVMETHOD(device_attach, smuiic_attach), 1393 1394 /* iicbus interface */ 1395 DEVMETHOD(iicbus_callback, iicbus_null_callback), 1396 DEVMETHOD(iicbus_transfer, smuiic_transfer), 1397 1398 /* ofw_bus interface */ 1399 DEVMETHOD(ofw_bus_get_node, smuiic_get_node), 1400 { 0, 0 } 1401 }; 1402 1403 struct smuiic_softc { 1404 struct mtx sc_mtx; 1405 volatile int sc_iic_inuse; 1406 int sc_busno; 1407 }; 1408 1409 static driver_t smuiic_driver = { 1410 "iichb", 1411 smuiic_methods, 1412 sizeof(struct smuiic_softc) 1413 }; 1414 1415 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0); 1416 1417 static void 1418 smu_attach_i2c(device_t smu, phandle_t i2croot) 1419 { 1420 phandle_t child; 1421 device_t cdev; 1422 struct ofw_bus_devinfo *dinfo; 1423 char name[32]; 1424 1425 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) { 1426 if (OF_getprop(child, "name", name, sizeof(name)) <= 0) 1427 continue; 1428 1429 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0) 1430 continue; 1431 1432 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU, 1433 M_WAITOK | M_ZERO); 1434 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) { 1435 free(dinfo, M_SMU); 1436 continue; 1437 } 1438 1439 cdev = device_add_child(smu, NULL, -1); 1440 if (cdev == NULL) { 1441 device_printf(smu, "<%s>: device_add_child failed\n", 1442 dinfo->obd_name); 1443 ofw_bus_gen_destroy_devinfo(dinfo); 1444 free(dinfo, M_SMU); 1445 continue; 1446 } 1447 device_set_ivars(cdev, dinfo); 1448 } 1449 } 1450 1451 static int 1452 smuiic_probe(device_t dev) 1453 { 1454 const char *name; 1455 1456 name = ofw_bus_get_name(dev); 1457 if (name == NULL) 1458 return (ENXIO); 1459 1460 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) { 1461 device_set_desc(dev, "SMU I2C controller"); 1462 return (0); 1463 } 1464 1465 return (ENXIO); 1466 } 1467 1468 static int 1469 smuiic_attach(device_t dev) 1470 { 1471 struct smuiic_softc *sc = device_get_softc(dev); 1472 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF); 1473 sc->sc_iic_inuse = 0; 1474 1475 /* Get our bus number */ 1476 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno, 1477 sizeof(sc->sc_busno)); 1478 1479 /* Add the IIC bus layer */ 1480 device_add_child(dev, "iicbus", -1); 1481 1482 return (bus_generic_attach(dev)); 1483 } 1484 1485 static int 1486 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) 1487 { 1488 struct smuiic_softc *sc = device_get_softc(dev); 1489 struct smu_cmd cmd; 1490 int i, j, error; 1491 1492 mtx_lock(&sc->sc_mtx); 1493 while (sc->sc_iic_inuse) 1494 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100); 1495 1496 sc->sc_iic_inuse = 1; 1497 error = 0; 1498 1499 for (i = 0; i < nmsgs; i++) { 1500 cmd.cmd = SMU_I2C; 1501 cmd.data[0] = sc->sc_busno; 1502 if (msgs[i].flags & IIC_M_NOSTOP) 1503 cmd.data[1] = SMU_I2C_COMBINED; 1504 else 1505 cmd.data[1] = SMU_I2C_SIMPLE; 1506 1507 cmd.data[2] = msgs[i].slave; 1508 if (msgs[i].flags & IIC_M_RD) 1509 cmd.data[2] |= 1; 1510 1511 if (msgs[i].flags & IIC_M_NOSTOP) { 1512 KASSERT(msgs[i].len < 4, 1513 ("oversize I2C combined message")); 1514 1515 cmd.data[3] = min(msgs[i].len, 3); 1516 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3)); 1517 i++; /* Advance to next part of message */ 1518 } else { 1519 cmd.data[3] = 0; 1520 memset(&cmd.data[4], 0, 3); 1521 } 1522 1523 cmd.data[7] = msgs[i].slave; 1524 if (msgs[i].flags & IIC_M_RD) 1525 cmd.data[7] |= 1; 1526 1527 cmd.data[8] = msgs[i].len; 1528 if (msgs[i].flags & IIC_M_RD) { 1529 memset(&cmd.data[9], 0xff, msgs[i].len); 1530 cmd.len = 9; 1531 } else { 1532 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len); 1533 cmd.len = 9 + msgs[i].len; 1534 } 1535 1536 mtx_unlock(&sc->sc_mtx); 1537 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1538 mtx_lock(&sc->sc_mtx); 1539 1540 for (j = 0; j < 10; j++) { 1541 cmd.cmd = SMU_I2C; 1542 cmd.len = 1; 1543 cmd.data[0] = 0; 1544 memset(&cmd.data[1], 0xff, msgs[i].len); 1545 1546 mtx_unlock(&sc->sc_mtx); 1547 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1548 mtx_lock(&sc->sc_mtx); 1549 1550 if (!(cmd.data[0] & 0x80)) 1551 break; 1552 1553 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10); 1554 } 1555 1556 if (cmd.data[0] & 0x80) { 1557 error = EIO; 1558 msgs[i].len = 0; 1559 goto exit; 1560 } 1561 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len); 1562 msgs[i].len = cmd.len - 1; 1563 } 1564 1565 exit: 1566 sc->sc_iic_inuse = 0; 1567 mtx_unlock(&sc->sc_mtx); 1568 wakeup(sc); 1569 return (error); 1570 } 1571 1572 static phandle_t 1573 smuiic_get_node(device_t bus, device_t dev) 1574 { 1575 1576 return (ofw_bus_get_node(bus)); 1577 } 1578