xref: /freebsd/sys/powerpc/powermac/smu.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (c) 2009 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/systm.h>
34 #include <sys/module.h>
35 #include <sys/conf.h>
36 #include <sys/cpu.h>
37 #include <sys/clock.h>
38 #include <sys/ctype.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/reboot.h>
42 #include <sys/rman.h>
43 #include <sys/sysctl.h>
44 #include <sys/unistd.h>
45 
46 #include <machine/bus.h>
47 #include <machine/intr_machdep.h>
48 #include <machine/md_var.h>
49 
50 #include <dev/iicbus/iicbus.h>
51 #include <dev/iicbus/iiconf.h>
52 #include <dev/led/led.h>
53 #include <dev/ofw/openfirm.h>
54 #include <dev/ofw/ofw_bus.h>
55 #include <dev/ofw/ofw_bus_subr.h>
56 #include <powerpc/powermac/macgpiovar.h>
57 #include <powerpc/powermac/powermac_thermal.h>
58 
59 #include "clock_if.h"
60 #include "iicbus_if.h"
61 
62 struct smu_cmd {
63 	volatile uint8_t cmd;
64 	uint8_t		len;
65 	uint8_t		data[254];
66 
67 	STAILQ_ENTRY(smu_cmd) cmd_q;
68 };
69 
70 STAILQ_HEAD(smu_cmdq, smu_cmd);
71 
72 struct smu_fan {
73 	struct pmac_fan fan;
74 	device_t dev;
75 	cell_t	reg;
76 
77 	enum {
78 		SMU_FAN_RPM,
79 		SMU_FAN_PWM
80 	} type;
81 	int	setpoint;
82 	int	old_style;
83 	int     rpm;
84 };
85 
86 /* We can read the PWM and the RPM from a PWM controlled fan.
87  * Offer both values via sysctl.
88  */
89 enum {
90 	SMU_PWM_SYSCTL_PWM   = 1 << 8,
91 	SMU_PWM_SYSCTL_RPM   = 2 << 8
92 };
93 
94 struct smu_sensor {
95 	struct pmac_therm therm;
96 	device_t dev;
97 
98 	cell_t	reg;
99 	enum {
100 		SMU_CURRENT_SENSOR,
101 		SMU_VOLTAGE_SENSOR,
102 		SMU_POWER_SENSOR,
103 		SMU_TEMP_SENSOR
104 	} type;
105 };
106 
107 struct smu_softc {
108 	device_t	sc_dev;
109 	struct mtx	sc_mtx;
110 
111 	struct resource	*sc_memr;
112 	int		sc_memrid;
113 	int		sc_u3;
114 
115 	bus_dma_tag_t	sc_dmatag;
116 	bus_space_tag_t	sc_bt;
117 	bus_space_handle_t sc_mailbox;
118 
119 	struct smu_cmd	*sc_cmd, *sc_cur_cmd;
120 	bus_addr_t	sc_cmd_phys;
121 	bus_dmamap_t	sc_cmd_dmamap;
122 	struct smu_cmdq	sc_cmdq;
123 
124 	struct smu_fan	*sc_fans;
125 	int		sc_nfans;
126 	int		old_style_fans;
127 	struct smu_sensor *sc_sensors;
128 	int		sc_nsensors;
129 
130 	int		sc_doorbellirqid;
131 	struct resource	*sc_doorbellirq;
132 	void		*sc_doorbellirqcookie;
133 
134 	struct proc	*sc_fanmgt_proc;
135 	time_t		sc_lastuserchange;
136 
137 	/* Calibration data */
138 	uint16_t	sc_cpu_diode_scale;
139 	int16_t		sc_cpu_diode_offset;
140 
141 	uint16_t	sc_cpu_volt_scale;
142 	int16_t		sc_cpu_volt_offset;
143 	uint16_t	sc_cpu_curr_scale;
144 	int16_t		sc_cpu_curr_offset;
145 
146 	uint16_t	sc_slots_pow_scale;
147 	int16_t		sc_slots_pow_offset;
148 
149 	struct cdev 	*sc_leddev;
150 };
151 
152 /* regular bus attachment functions */
153 
154 static int	smu_probe(device_t);
155 static int	smu_attach(device_t);
156 static const struct ofw_bus_devinfo *
157     smu_get_devinfo(device_t bus, device_t dev);
158 
159 /* cpufreq notification hooks */
160 
161 static void	smu_cpufreq_pre_change(device_t, const struct cf_level *level);
162 static void	smu_cpufreq_post_change(device_t, const struct cf_level *level);
163 
164 /* clock interface */
165 static int	smu_gettime(device_t dev, struct timespec *ts);
166 static int	smu_settime(device_t dev, struct timespec *ts);
167 
168 /* utility functions */
169 static int	smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
170 static int	smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
171 		    size_t len);
172 static void	smu_attach_i2c(device_t dev, phandle_t i2croot);
173 static void	smu_attach_fans(device_t dev, phandle_t fanroot);
174 static void	smu_attach_sensors(device_t dev, phandle_t sensroot);
175 static void	smu_set_sleepled(void *xdev, int onoff);
176 static int	smu_server_mode(SYSCTL_HANDLER_ARGS);
177 static void	smu_doorbell_intr(void *xdev);
178 static void	smu_shutdown(void *xdev, int howto);
179 
180 /* where to find the doorbell GPIO */
181 
182 static device_t	smu_doorbell = NULL;
183 
184 static device_method_t  smu_methods[] = {
185 	/* Device interface */
186 	DEVMETHOD(device_probe,		smu_probe),
187 	DEVMETHOD(device_attach,	smu_attach),
188 
189 	/* Clock interface */
190 	DEVMETHOD(clock_gettime,	smu_gettime),
191 	DEVMETHOD(clock_settime,	smu_settime),
192 
193 	/* ofw_bus interface */
194 	DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str),
195 	DEVMETHOD(ofw_bus_get_devinfo,	smu_get_devinfo),
196 	DEVMETHOD(ofw_bus_get_compat,	ofw_bus_gen_get_compat),
197 	DEVMETHOD(ofw_bus_get_model,	ofw_bus_gen_get_model),
198 	DEVMETHOD(ofw_bus_get_name,	ofw_bus_gen_get_name),
199 	DEVMETHOD(ofw_bus_get_node,	ofw_bus_gen_get_node),
200 	DEVMETHOD(ofw_bus_get_type,	ofw_bus_gen_get_type),
201 
202 	{ 0, 0 },
203 };
204 
205 static driver_t smu_driver = {
206 	"smu",
207 	smu_methods,
208 	sizeof(struct smu_softc)
209 };
210 
211 static devclass_t smu_devclass;
212 
213 DRIVER_MODULE(smu, ofwbus, smu_driver, smu_devclass, 0, 0);
214 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
215 
216 #define SMU_MAILBOX		0x8000860c
217 #define SMU_FANMGT_INTERVAL	1000 /* ms */
218 
219 /* Command types */
220 #define SMU_ADC			0xd8
221 #define SMU_FAN			0x4a
222 #define SMU_RPM_STATUS		0x01
223 #define SMU_RPM_SETPOINT	0x02
224 #define SMU_PWM_STATUS		0x11
225 #define SMU_PWM_SETPOINT	0x12
226 #define SMU_I2C			0x9a
227 #define  SMU_I2C_SIMPLE		0x00
228 #define  SMU_I2C_NORMAL		0x01
229 #define  SMU_I2C_COMBINED	0x02
230 #define SMU_MISC		0xee
231 #define  SMU_MISC_GET_DATA	0x02
232 #define  SMU_MISC_LED_CTRL	0x04
233 #define SMU_POWER		0xaa
234 #define SMU_POWER_EVENTS	0x8f
235 #define  SMU_PWR_GET_POWERUP	0x00
236 #define  SMU_PWR_SET_POWERUP	0x01
237 #define  SMU_PWR_CLR_POWERUP	0x02
238 #define SMU_RTC			0x8e
239 #define  SMU_RTC_GET		0x81
240 #define  SMU_RTC_SET		0x80
241 
242 /* Power event types */
243 #define SMU_WAKEUP_KEYPRESS	0x01
244 #define SMU_WAKEUP_AC_INSERT	0x02
245 #define SMU_WAKEUP_AC_CHANGE	0x04
246 #define SMU_WAKEUP_RING		0x10
247 
248 /* Data blocks */
249 #define SMU_CPUTEMP_CAL		0x18
250 #define SMU_CPUVOLT_CAL		0x21
251 #define SMU_SLOTPW_CAL		0x78
252 
253 /* Partitions */
254 #define SMU_PARTITION		0x3e
255 #define SMU_PARTITION_LATEST	0x01
256 #define SMU_PARTITION_BASE	0x02
257 #define SMU_PARTITION_UPDATE	0x03
258 
259 static int
260 smu_probe(device_t dev)
261 {
262 	const char *name = ofw_bus_get_name(dev);
263 
264 	if (strcmp(name, "smu") != 0)
265 		return (ENXIO);
266 
267 	device_set_desc(dev, "Apple System Management Unit");
268 	return (0);
269 }
270 
271 static void
272 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
273 {
274 	struct smu_softc *sc = xsc;
275 
276 	sc->sc_cmd_phys = segs[0].ds_addr;
277 }
278 
279 static int
280 smu_attach(device_t dev)
281 {
282 	struct smu_softc *sc;
283 	phandle_t	node, child;
284 	uint8_t		data[12];
285 
286 	sc = device_get_softc(dev);
287 
288 	mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
289 	sc->sc_cur_cmd = NULL;
290 	sc->sc_doorbellirqid = -1;
291 
292 	sc->sc_u3 = 0;
293 	if (OF_finddevice("/u3") != -1)
294 		sc->sc_u3 = 1;
295 
296 	/*
297 	 * Map the mailbox area. This should be determined from firmware,
298 	 * but I have not found a simple way to do that.
299 	 */
300 	bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
301 	    BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
302 	    NULL, &(sc->sc_dmatag));
303 	sc->sc_bt = &bs_le_tag;
304 	bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
305 
306 	/*
307 	 * Allocate the command buffer. This can be anywhere in the low 4 GB
308 	 * of memory.
309 	 */
310 	bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
311 	    BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
312 	bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
313 	    sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
314 	STAILQ_INIT(&sc->sc_cmdq);
315 
316 	/*
317 	 * Set up handlers to change CPU voltage when CPU frequency is changed.
318 	 */
319 	EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
320 	    EVENTHANDLER_PRI_ANY);
321 	EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
322 	    EVENTHANDLER_PRI_ANY);
323 
324 	node = ofw_bus_get_node(dev);
325 
326 	/* Some SMUs have RPM and PWM controlled fans which do not sit
327 	 * under the same node. So we have to attach them separately.
328 	 */
329 	smu_attach_fans(dev, node);
330 
331 	/*
332 	 * Now detect and attach the other child devices.
333 	 */
334 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
335 		char name[32];
336 		memset(name, 0, sizeof(name));
337 		OF_getprop(child, "name", name, sizeof(name));
338 
339 		if (strncmp(name, "sensors", 8) == 0)
340 			smu_attach_sensors(dev, child);
341 
342 		if (strncmp(name, "smu-i2c-control", 15) == 0)
343 			smu_attach_i2c(dev, child);
344 	}
345 
346 	/* Some SMUs have the I2C children directly under the bus. */
347 	smu_attach_i2c(dev, node);
348 
349 	/*
350 	 * Collect calibration constants.
351 	 */
352 	smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
353 	sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
354 	sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
355 
356 	smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
357 	sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
358 	sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
359 	sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
360 	sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
361 
362 	smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
363 	sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
364 	sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
365 
366 	/*
367 	 * Set up LED interface
368 	 */
369 	sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
370 
371 	/*
372 	 * Reset on power loss behavior
373 	 */
374 
375 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
376             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
377 	    "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0,
378 	    smu_server_mode, "I", "Enable reboot after power failure");
379 
380 	/*
381 	 * Set up doorbell interrupt.
382 	 */
383 	sc->sc_doorbellirqid = 0;
384 	sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
385 	    &sc->sc_doorbellirqid, RF_ACTIVE);
386 	bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
387 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
388 	    &sc->sc_doorbellirqcookie);
389 	powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
390 	    INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
391 
392 	/*
393 	 * Connect RTC interface.
394 	 */
395 	clock_register(dev, 1000);
396 
397 	/*
398 	 * Learn about shutdown events
399 	 */
400 	EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
401 	    SHUTDOWN_PRI_LAST);
402 
403 	return (bus_generic_attach(dev));
404 }
405 
406 static const struct ofw_bus_devinfo *
407 smu_get_devinfo(device_t bus, device_t dev)
408 {
409 
410 	return (device_get_ivars(dev));
411 }
412 
413 static void
414 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
415 {
416 	struct smu_softc *sc;
417 
418 	sc = device_get_softc(dev);
419 
420 	mtx_assert(&sc->sc_mtx, MA_OWNED);
421 
422 	if (sc->sc_u3)
423 		powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
424 
425 	sc->sc_cur_cmd = cmd;
426 
427 	/* Copy the command to the mailbox */
428 	sc->sc_cmd->cmd = cmd->cmd;
429 	sc->sc_cmd->len = cmd->len;
430 	memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
431 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
432 	bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
433 
434 	/* Flush the cacheline it is in -- SMU bypasses the cache */
435 	__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
436 
437 	/* Ring SMU doorbell */
438 	macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
439 }
440 
441 static void
442 smu_doorbell_intr(void *xdev)
443 {
444 	device_t smu;
445 	struct smu_softc *sc;
446 	int doorbell_ack;
447 
448 	smu = xdev;
449 	doorbell_ack = macgpio_read(smu_doorbell);
450 	sc = device_get_softc(smu);
451 
452 	if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
453 		return;
454 
455 	mtx_lock(&sc->sc_mtx);
456 
457 	if (sc->sc_cur_cmd == NULL)	/* spurious */
458 		goto done;
459 
460 	/* Check result. First invalidate the cache again... */
461 	__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
462 
463 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
464 
465 	sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
466 	sc->sc_cur_cmd->len = sc->sc_cmd->len;
467 	memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
468 	    sizeof(sc->sc_cmd->data));
469 	wakeup(sc->sc_cur_cmd);
470 	sc->sc_cur_cmd = NULL;
471 	if (sc->sc_u3)
472 		powerpc_pow_enabled = 1;
473 
474     done:
475 	/* Queue next command if one is pending */
476 	if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
477 		sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
478 		STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
479 		smu_send_cmd(smu, sc->sc_cur_cmd);
480 	}
481 
482 	mtx_unlock(&sc->sc_mtx);
483 }
484 
485 static int
486 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
487 {
488 	struct smu_softc *sc;
489 	uint8_t cmd_code;
490 	int error;
491 
492 	sc = device_get_softc(dev);
493 	cmd_code = cmd->cmd;
494 
495 	mtx_lock(&sc->sc_mtx);
496 	if (sc->sc_cur_cmd != NULL) {
497 		STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
498 	} else
499 		smu_send_cmd(dev, cmd);
500 	mtx_unlock(&sc->sc_mtx);
501 
502 	if (!wait)
503 		return (0);
504 
505 	if (sc->sc_doorbellirqid < 0) {
506 		/* Poll if the IRQ has not been set up yet */
507 		do {
508 			DELAY(50);
509 			smu_doorbell_intr(dev);
510 		} while (sc->sc_cur_cmd != NULL);
511 	} else {
512 		/* smu_doorbell_intr will wake us when the command is ACK'ed */
513 		error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
514 		if (error != 0)
515 			smu_doorbell_intr(dev);	/* One last chance */
516 
517 		if (error != 0) {
518 		    mtx_lock(&sc->sc_mtx);
519 		    if (cmd->cmd == cmd_code) {	/* Never processed */
520 			/* Abort this command if we timed out */
521 			if (sc->sc_cur_cmd == cmd)
522 				sc->sc_cur_cmd = NULL;
523 			else
524 				STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
525 				    cmd_q);
526 			mtx_unlock(&sc->sc_mtx);
527 			return (error);
528 		    }
529 		    error = 0;
530 		    mtx_unlock(&sc->sc_mtx);
531 		}
532 	}
533 
534 	/* SMU acks the command by inverting the command bits */
535 	if (cmd->cmd == ((~cmd_code) & 0xff))
536 		error = 0;
537 	else
538 		error = EIO;
539 
540 	return (error);
541 }
542 
543 static int
544 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
545 {
546 	struct smu_cmd cmd;
547 	uint8_t addr[4];
548 
549 	cmd.cmd = SMU_PARTITION;
550 	cmd.len = 2;
551 	cmd.data[0] = SMU_PARTITION_LATEST;
552 	cmd.data[1] = id;
553 
554 	smu_run_cmd(dev, &cmd, 1);
555 
556 	addr[0] = addr[1] = 0;
557 	addr[2] = cmd.data[0];
558 	addr[3] = cmd.data[1];
559 
560 	cmd.cmd = SMU_MISC;
561 	cmd.len = 7;
562 	cmd.data[0] = SMU_MISC_GET_DATA;
563 	cmd.data[1] = sizeof(addr);
564 	memcpy(&cmd.data[2], addr, sizeof(addr));
565 	cmd.data[6] = len;
566 
567 	smu_run_cmd(dev, &cmd, 1);
568 	memcpy(buf, cmd.data, len);
569 	return (0);
570 }
571 
572 static void
573 smu_slew_cpu_voltage(device_t dev, int to)
574 {
575 	struct smu_cmd cmd;
576 
577 	cmd.cmd = SMU_POWER;
578 	cmd.len = 8;
579 	cmd.data[0] = 'V';
580 	cmd.data[1] = 'S';
581 	cmd.data[2] = 'L';
582 	cmd.data[3] = 'E';
583 	cmd.data[4] = 'W';
584 	cmd.data[5] = 0xff;
585 	cmd.data[6] = 1;
586 	cmd.data[7] = to;
587 
588 	smu_run_cmd(dev, &cmd, 1);
589 }
590 
591 static void
592 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
593 {
594 	/*
595 	 * Make sure the CPU voltage is raised before we raise
596 	 * the clock.
597 	 */
598 
599 	if (level->rel_set[0].freq == 10000 /* max */)
600 		smu_slew_cpu_voltage(dev, 0);
601 }
602 
603 static void
604 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
605 {
606 	/* We are safe to reduce CPU voltage after a downward transition */
607 
608 	if (level->rel_set[0].freq < 10000 /* max */)
609 		smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
610 }
611 
612 /* Routines for probing the SMU doorbell GPIO */
613 static int doorbell_probe(device_t dev);
614 static int doorbell_attach(device_t dev);
615 
616 static device_method_t  doorbell_methods[] = {
617 	/* Device interface */
618 	DEVMETHOD(device_probe,		doorbell_probe),
619 	DEVMETHOD(device_attach,	doorbell_attach),
620 	{ 0, 0 },
621 };
622 
623 static driver_t doorbell_driver = {
624 	"smudoorbell",
625 	doorbell_methods,
626 	0
627 };
628 
629 static devclass_t doorbell_devclass;
630 
631 DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 0, 0);
632 
633 static int
634 doorbell_probe(device_t dev)
635 {
636 	const char *name = ofw_bus_get_name(dev);
637 
638 	if (strcmp(name, "smu-doorbell") != 0)
639 		return (ENXIO);
640 
641 	device_set_desc(dev, "SMU Doorbell GPIO");
642 	device_quiet(dev);
643 	return (0);
644 }
645 
646 static int
647 doorbell_attach(device_t dev)
648 {
649 	smu_doorbell = dev;
650 	return (0);
651 }
652 
653 /*
654  * Sensor and fan management
655  */
656 
657 static int
658 smu_fan_check_old_style(struct smu_fan *fan)
659 {
660 	device_t smu = fan->dev;
661 	struct smu_softc *sc = device_get_softc(smu);
662 	struct smu_cmd cmd;
663 	int error;
664 
665 	if (sc->old_style_fans != -1)
666 		return (sc->old_style_fans);
667 
668 	/*
669 	 * Apple has two fan control mechanisms. We can't distinguish
670 	 * them except by seeing if the new one fails. If the new one
671 	 * fails, use the old one.
672 	 */
673 
674 	cmd.cmd = SMU_FAN;
675 	cmd.len = 2;
676 	cmd.data[0] = 0x31;
677 	cmd.data[1] = fan->reg;
678 
679 	do {
680 		error = smu_run_cmd(smu, &cmd, 1);
681 	} while (error == EWOULDBLOCK);
682 
683 	sc->old_style_fans = (error != 0);
684 
685 	return (sc->old_style_fans);
686 }
687 
688 static int
689 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
690 {
691 	device_t smu = fan->dev;
692 	struct smu_cmd cmd;
693 	int error;
694 
695 	cmd.cmd = SMU_FAN;
696 	error = EIO;
697 
698 	/* Clamp to allowed range */
699 	rpm = max(fan->fan.min_rpm, rpm);
700 	rpm = min(fan->fan.max_rpm, rpm);
701 
702 	smu_fan_check_old_style(fan);
703 
704 	if (!fan->old_style) {
705 		cmd.len = 4;
706 		cmd.data[0] = 0x30;
707 		cmd.data[1] = fan->reg;
708 		cmd.data[2] = (rpm >> 8) & 0xff;
709 		cmd.data[3] = rpm & 0xff;
710 
711 		error = smu_run_cmd(smu, &cmd, 1);
712 		if (error && error != EWOULDBLOCK)
713 			fan->old_style = 1;
714 	} else {
715 		cmd.len = 14;
716 		cmd.data[0] = 0x00; /* RPM fan. */
717 		cmd.data[1] = 1 << fan->reg;
718 		cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
719 		cmd.data[3 + 2*fan->reg] = rpm & 0xff;
720 		error = smu_run_cmd(smu, &cmd, 1);
721 	}
722 
723 	if (error == 0)
724 		fan->setpoint = rpm;
725 
726 	return (error);
727 }
728 
729 static int
730 smu_fan_read_rpm(struct smu_fan *fan)
731 {
732 	device_t smu = fan->dev;
733 	struct smu_cmd cmd;
734 	int rpm, error;
735 
736 	smu_fan_check_old_style(fan);
737 
738 	if (!fan->old_style) {
739 		cmd.cmd = SMU_FAN;
740 		cmd.len = 2;
741 		cmd.data[0] = 0x31;
742 		cmd.data[1] = fan->reg;
743 
744 		error = smu_run_cmd(smu, &cmd, 1);
745 		if (error && error != EWOULDBLOCK)
746 			fan->old_style = 1;
747 
748 		rpm = (cmd.data[0] << 8) | cmd.data[1];
749 	}
750 
751 	if (fan->old_style) {
752 		cmd.cmd = SMU_FAN;
753 		cmd.len = 1;
754 		cmd.data[0] = SMU_RPM_STATUS;
755 
756 		error = smu_run_cmd(smu, &cmd, 1);
757 		if (error)
758 			return (error);
759 
760 		rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
761 	}
762 
763 	return (rpm);
764 }
765 static int
766 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
767 {
768 	device_t smu = fan->dev;
769 	struct smu_cmd cmd;
770 	int error;
771 
772 	cmd.cmd = SMU_FAN;
773 	error = EIO;
774 
775 	/* Clamp to allowed range */
776 	pwm = max(fan->fan.min_rpm, pwm);
777 	pwm = min(fan->fan.max_rpm, pwm);
778 
779 	/*
780 	 * Apple has two fan control mechanisms. We can't distinguish
781 	 * them except by seeing if the new one fails. If the new one
782 	 * fails, use the old one.
783 	 */
784 
785 	if (!fan->old_style) {
786 		cmd.len = 4;
787 		cmd.data[0] = 0x30;
788 		cmd.data[1] = fan->reg;
789 		cmd.data[2] = (pwm >> 8) & 0xff;
790 		cmd.data[3] = pwm & 0xff;
791 
792 		error = smu_run_cmd(smu, &cmd, 1);
793 		if (error && error != EWOULDBLOCK)
794 			fan->old_style = 1;
795 	}
796 
797 	if (fan->old_style) {
798 		cmd.len = 14;
799 		cmd.data[0] = 0x10; /* PWM fan. */
800 		cmd.data[1] = 1 << fan->reg;
801 		cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
802 		cmd.data[3 + 2*fan->reg] = pwm & 0xff;
803 		error = smu_run_cmd(smu, &cmd, 1);
804 	}
805 
806 	if (error == 0)
807 		fan->setpoint = pwm;
808 
809 	return (error);
810 }
811 
812 static int
813 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
814 {
815 	device_t smu = fan->dev;
816 	struct smu_cmd cmd;
817 	int error;
818 
819 	if (!fan->old_style) {
820 		cmd.cmd = SMU_FAN;
821 		cmd.len = 2;
822 		cmd.data[0] = 0x31;
823 		cmd.data[1] = fan->reg;
824 
825 		error = smu_run_cmd(smu, &cmd, 1);
826 		if (error && error != EWOULDBLOCK)
827 			fan->old_style = 1;
828 
829 		*rpm = (cmd.data[0] << 8) | cmd.data[1];
830 	}
831 
832 	if (fan->old_style) {
833 		cmd.cmd = SMU_FAN;
834 		cmd.len = 1;
835 		cmd.data[0] = SMU_PWM_STATUS;
836 
837 		error = smu_run_cmd(smu, &cmd, 1);
838 		if (error)
839 			return (error);
840 
841 		*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
842 	}
843 	if (fan->old_style) {
844 		cmd.cmd = SMU_FAN;
845 		cmd.len = 14;
846 		cmd.data[0] = SMU_PWM_SETPOINT;
847 		cmd.data[1] = 1 << fan->reg;
848 
849 		error = smu_run_cmd(smu, &cmd, 1);
850 		if (error)
851 			return (error);
852 
853 		*pwm = cmd.data[fan->reg*2+2];
854 	}
855 	return (0);
856 }
857 
858 static int
859 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
860 {
861 	device_t smu;
862 	struct smu_softc *sc;
863 	struct smu_fan *fan;
864 	int pwm = 0, rpm, error = 0;
865 
866 	smu = arg1;
867 	sc = device_get_softc(smu);
868 	fan = &sc->sc_fans[arg2 & 0xff];
869 
870 	if (fan->type == SMU_FAN_RPM) {
871 		rpm = smu_fan_read_rpm(fan);
872 		if (rpm < 0)
873 			return (rpm);
874 
875 		error = sysctl_handle_int(oidp, &rpm, 0, req);
876 	} else {
877 		error = smu_fan_read_pwm(fan, &pwm, &rpm);
878 		if (error < 0)
879 			return (EIO);
880 
881 		switch (arg2 & 0xff00) {
882 		case SMU_PWM_SYSCTL_PWM:
883 			error = sysctl_handle_int(oidp, &pwm, 0, req);
884 			break;
885 		case SMU_PWM_SYSCTL_RPM:
886 			error = sysctl_handle_int(oidp, &rpm, 0, req);
887 			break;
888 		default:
889 			/* This should never happen */
890 			return (EINVAL);
891 		};
892 	}
893 	/* We can only read the RPM from a PWM controlled fan, so return. */
894 	if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
895 		return (0);
896 
897 	if (error || !req->newptr)
898 		return (error);
899 
900 	sc->sc_lastuserchange = time_uptime;
901 
902 	if (fan->type == SMU_FAN_RPM)
903 		return (smu_fan_set_rpm(fan, rpm));
904 	else
905 		return (smu_fan_set_pwm(fan, pwm));
906 }
907 
908 static void
909 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
910 {
911 	struct smu_fan *fan;
912 	struct smu_softc *sc;
913 	char type[32];
914 
915 	sc = device_get_softc(dev);
916 	fan = &sc->sc_fans[id];
917 
918 	OF_getprop(child, "device_type", type, sizeof(type));
919 	/* We have either RPM or PWM controlled fans. */
920 	if (strcmp(type, "fan-rpm-control") == 0)
921 		fan->type = SMU_FAN_RPM;
922 	else
923 		fan->type = SMU_FAN_PWM;
924 
925 	fan->dev = dev;
926 	fan->old_style = 0;
927 	OF_getprop(child, "reg", &fan->reg,
928 		   sizeof(cell_t));
929 	OF_getprop(child, "min-value", &fan->fan.min_rpm,
930 		   sizeof(int));
931 	OF_getprop(child, "max-value", &fan->fan.max_rpm,
932 		   sizeof(int));
933 	OF_getprop(child, "zone", &fan->fan.zone,
934 		   sizeof(int));
935 
936 	if (OF_getprop(child, "unmanaged-value",
937 		       &fan->fan.default_rpm,
938 		       sizeof(int)) != sizeof(int))
939 		fan->fan.default_rpm = fan->fan.max_rpm;
940 
941 	OF_getprop(child, "location", fan->fan.name,
942 		   sizeof(fan->fan.name));
943 
944 	if (fan->type == SMU_FAN_RPM)
945 		fan->setpoint = smu_fan_read_rpm(fan);
946 	else
947 		smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
948 }
949 
950 /* On the first call count the number of fans. In the second call,
951  * after allocating the fan struct, fill the properties of the fans.
952  */
953 static int
954 smu_count_fans(device_t dev)
955 {
956 	struct smu_softc *sc;
957 	phandle_t child, node, root;
958 	int nfans = 0;
959 
960 	node = ofw_bus_get_node(dev);
961 	sc = device_get_softc(dev);
962 
963 	/* First find the fanroots and count the number of fans. */
964 	for (root = OF_child(node); root != 0; root = OF_peer(root)) {
965 		char name[32];
966 		memset(name, 0, sizeof(name));
967 		OF_getprop(root, "name", name, sizeof(name));
968 		if (strncmp(name, "rpm-fans", 9) == 0 ||
969 		    strncmp(name, "pwm-fans", 9) == 0 ||
970 		    strncmp(name, "fans", 5) == 0)
971 			for (child = OF_child(root); child != 0;
972 			     child = OF_peer(child)) {
973 				nfans++;
974 				/* When allocated, fill the fan properties. */
975 				if (sc->sc_fans != NULL) {
976 					smu_fill_fan_prop(dev, child,
977 							  nfans - 1);
978 				}
979 			}
980 	}
981 	if (nfans == 0) {
982 		device_printf(dev, "WARNING: No fans detected!\n");
983 		return (0);
984 	}
985 	return (nfans);
986 }
987 
988 static void
989 smu_attach_fans(device_t dev, phandle_t fanroot)
990 {
991 	struct smu_fan *fan;
992 	struct smu_softc *sc;
993 	struct sysctl_oid *oid, *fanroot_oid;
994 	struct sysctl_ctx_list *ctx;
995 	char sysctl_name[32];
996 	int i, j;
997 
998 	sc = device_get_softc(dev);
999 
1000 	/* Get the number of fans. */
1001 	sc->sc_nfans = smu_count_fans(dev);
1002 	if (sc->sc_nfans == 0)
1003 		return;
1004 
1005 	/* Now we're able to allocate memory for the fans struct. */
1006 	sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1007 	    M_WAITOK | M_ZERO);
1008 
1009 	/* Now fill in the properties. */
1010 	smu_count_fans(dev);
1011 
1012 	/* Register fans with pmac_thermal */
1013 	for (i = 0; i < sc->sc_nfans; i++)
1014 		pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1015 
1016 	ctx = device_get_sysctl_ctx(dev);
1017 	fanroot_oid = SYSCTL_ADD_NODE(ctx,
1018 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1019 	    CTLFLAG_RD, 0, "SMU Fan Information");
1020 
1021 	/* Add sysctls */
1022 	for (i = 0; i < sc->sc_nfans; i++) {
1023 		fan = &sc->sc_fans[i];
1024 		for (j = 0; j < strlen(fan->fan.name); j++) {
1025 			sysctl_name[j] = tolower(fan->fan.name[j]);
1026 			if (isspace(sysctl_name[j]))
1027 				sysctl_name[j] = '_';
1028 		}
1029 		sysctl_name[j] = 0;
1030 		if (fan->type == SMU_FAN_RPM) {
1031 			oid = SYSCTL_ADD_NODE(ctx,
1032 					      SYSCTL_CHILDREN(fanroot_oid),
1033 					      OID_AUTO, sysctl_name,
1034 					      CTLFLAG_RD, 0, "Fan Information");
1035 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1036 				       "minrpm", CTLTYPE_INT | CTLFLAG_RD,
1037 				       &fan->fan.min_rpm, sizeof(int),
1038 				       "Minimum allowed RPM");
1039 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1040 				       "maxrpm", CTLTYPE_INT | CTLFLAG_RD,
1041 				       &fan->fan.max_rpm, sizeof(int),
1042 				       "Maximum allowed RPM");
1043 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1044 					"rpm",CTLTYPE_INT | CTLFLAG_RW |
1045 					CTLFLAG_MPSAFE, dev, i,
1046 					smu_fanrpm_sysctl, "I", "Fan RPM");
1047 
1048 			fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1049 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1050 
1051 		} else {
1052 			oid = SYSCTL_ADD_NODE(ctx,
1053 					      SYSCTL_CHILDREN(fanroot_oid),
1054 					      OID_AUTO, sysctl_name,
1055 					      CTLFLAG_RD, 0, "Fan Information");
1056 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1057 				       "minpwm", CTLTYPE_INT | CTLFLAG_RD,
1058 				       &fan->fan.min_rpm, sizeof(int),
1059 				       "Minimum allowed PWM in %");
1060 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1061 				       "maxpwm", CTLTYPE_INT | CTLFLAG_RD,
1062 				       &fan->fan.max_rpm, sizeof(int),
1063 				       "Maximum allowed PWM in %");
1064 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1065 					"pwm",CTLTYPE_INT | CTLFLAG_RW |
1066 					CTLFLAG_MPSAFE, dev,
1067 					SMU_PWM_SYSCTL_PWM | i,
1068 					smu_fanrpm_sysctl, "I", "Fan PWM in %");
1069 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1070 					"rpm",CTLTYPE_INT | CTLFLAG_RD |
1071 					CTLFLAG_MPSAFE, dev,
1072 					SMU_PWM_SYSCTL_RPM | i,
1073 					smu_fanrpm_sysctl, "I", "Fan RPM");
1074 			fan->fan.read = NULL;
1075 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1076 
1077 		}
1078 		if (bootverbose)
1079 			device_printf(dev, "Fan: %s type: %d\n",
1080 				      fan->fan.name, fan->type);
1081 	}
1082 }
1083 
1084 static int
1085 smu_sensor_read(struct smu_sensor *sens)
1086 {
1087 	device_t smu = sens->dev;
1088 	struct smu_cmd cmd;
1089 	struct smu_softc *sc;
1090 	int64_t value;
1091 	int error;
1092 
1093 	cmd.cmd = SMU_ADC;
1094 	cmd.len = 1;
1095 	cmd.data[0] = sens->reg;
1096 	error = 0;
1097 
1098 	error = smu_run_cmd(smu, &cmd, 1);
1099 	if (error != 0)
1100 		return (-1);
1101 
1102 	sc = device_get_softc(smu);
1103 	value = (cmd.data[0] << 8) | cmd.data[1];
1104 
1105 	switch (sens->type) {
1106 	case SMU_TEMP_SENSOR:
1107 		value *= sc->sc_cpu_diode_scale;
1108 		value >>= 3;
1109 		value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1110 		value <<= 1;
1111 
1112 		/* Convert from 16.16 fixed point degC into integer 0.1 K. */
1113 		value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2732;
1114 		break;
1115 	case SMU_VOLTAGE_SENSOR:
1116 		value *= sc->sc_cpu_volt_scale;
1117 		value += sc->sc_cpu_volt_offset;
1118 		value <<= 4;
1119 
1120 		/* Convert from 16.16 fixed point V into mV. */
1121 		value *= 15625;
1122 		value /= 1024;
1123 		value /= 1000;
1124 		break;
1125 	case SMU_CURRENT_SENSOR:
1126 		value *= sc->sc_cpu_curr_scale;
1127 		value += sc->sc_cpu_curr_offset;
1128 		value <<= 4;
1129 
1130 		/* Convert from 16.16 fixed point A into mA. */
1131 		value *= 15625;
1132 		value /= 1024;
1133 		value /= 1000;
1134 		break;
1135 	case SMU_POWER_SENSOR:
1136 		value *= sc->sc_slots_pow_scale;
1137 		value += sc->sc_slots_pow_offset;
1138 		value <<= 4;
1139 
1140 		/* Convert from 16.16 fixed point W into mW. */
1141 		value *= 15625;
1142 		value /= 1024;
1143 		value /= 1000;
1144 		break;
1145 	}
1146 
1147 	return (value);
1148 }
1149 
1150 static int
1151 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1152 {
1153 	device_t smu;
1154 	struct smu_softc *sc;
1155 	struct smu_sensor *sens;
1156 	int value, error;
1157 
1158 	smu = arg1;
1159 	sc = device_get_softc(smu);
1160 	sens = &sc->sc_sensors[arg2];
1161 
1162 	value = smu_sensor_read(sens);
1163 	if (value < 0)
1164 		return (EBUSY);
1165 
1166 	error = sysctl_handle_int(oidp, &value, 0, req);
1167 
1168 	return (error);
1169 }
1170 
1171 static void
1172 smu_attach_sensors(device_t dev, phandle_t sensroot)
1173 {
1174 	struct smu_sensor *sens;
1175 	struct smu_softc *sc;
1176 	struct sysctl_oid *sensroot_oid;
1177 	struct sysctl_ctx_list *ctx;
1178 	phandle_t child;
1179 	char type[32];
1180 	int i;
1181 
1182 	sc = device_get_softc(dev);
1183 	sc->sc_nsensors = 0;
1184 
1185 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1186 		sc->sc_nsensors++;
1187 
1188 	if (sc->sc_nsensors == 0) {
1189 		device_printf(dev, "WARNING: No sensors detected!\n");
1190 		return;
1191 	}
1192 
1193 	sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1194 	    M_SMU, M_WAITOK | M_ZERO);
1195 
1196 	sens = sc->sc_sensors;
1197 	sc->sc_nsensors = 0;
1198 
1199 	ctx = device_get_sysctl_ctx(dev);
1200 	sensroot_oid = SYSCTL_ADD_NODE(ctx,
1201 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1202 	    CTLFLAG_RD, 0, "SMU Sensor Information");
1203 
1204 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1205 		char sysctl_name[40], sysctl_desc[40];
1206 		const char *units;
1207 
1208 		sens->dev = dev;
1209 		OF_getprop(child, "device_type", type, sizeof(type));
1210 
1211 		if (strcmp(type, "current-sensor") == 0) {
1212 			sens->type = SMU_CURRENT_SENSOR;
1213 			units = "mA";
1214 		} else if (strcmp(type, "temp-sensor") == 0) {
1215 			sens->type = SMU_TEMP_SENSOR;
1216 			units = "C";
1217 		} else if (strcmp(type, "voltage-sensor") == 0) {
1218 			sens->type = SMU_VOLTAGE_SENSOR;
1219 			units = "mV";
1220 		} else if (strcmp(type, "power-sensor") == 0) {
1221 			sens->type = SMU_POWER_SENSOR;
1222 			units = "mW";
1223 		} else {
1224 			continue;
1225 		}
1226 
1227 		OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1228 		OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1229 		OF_getprop(child, "location", sens->therm.name,
1230 		    sizeof(sens->therm.name));
1231 
1232 		for (i = 0; i < strlen(sens->therm.name); i++) {
1233 			sysctl_name[i] = tolower(sens->therm.name[i]);
1234 			if (isspace(sysctl_name[i]))
1235 				sysctl_name[i] = '_';
1236 		}
1237 		sysctl_name[i] = 0;
1238 
1239 		sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1240 
1241 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1242 		    sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1243 		    dev, sc->sc_nsensors, smu_sensor_sysctl,
1244 		    (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1245 
1246 		if (sens->type == SMU_TEMP_SENSOR) {
1247 			/* Make up some numbers */
1248 			sens->therm.target_temp = 500 + 2732; /* 50 C */
1249 			sens->therm.max_temp = 900 + 2732; /* 90 C */
1250 
1251 			sens->therm.read =
1252 			    (int (*)(struct pmac_therm *))smu_sensor_read;
1253 			pmac_thermal_sensor_register(&sens->therm);
1254 		}
1255 
1256 		sens++;
1257 		sc->sc_nsensors++;
1258 	}
1259 }
1260 
1261 static void
1262 smu_set_sleepled(void *xdev, int onoff)
1263 {
1264 	static struct smu_cmd cmd;
1265 	device_t smu = xdev;
1266 
1267 	cmd.cmd = SMU_MISC;
1268 	cmd.len = 3;
1269 	cmd.data[0] = SMU_MISC_LED_CTRL;
1270 	cmd.data[1] = 0;
1271 	cmd.data[2] = onoff;
1272 
1273 	smu_run_cmd(smu, &cmd, 0);
1274 }
1275 
1276 static int
1277 smu_server_mode(SYSCTL_HANDLER_ARGS)
1278 {
1279 	struct smu_cmd cmd;
1280 	u_int server_mode;
1281 	device_t smu = arg1;
1282 	int error;
1283 
1284 	cmd.cmd = SMU_POWER_EVENTS;
1285 	cmd.len = 1;
1286 	cmd.data[0] = SMU_PWR_GET_POWERUP;
1287 
1288 	error = smu_run_cmd(smu, &cmd, 1);
1289 
1290 	if (error)
1291 		return (error);
1292 
1293 	server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1294 
1295 	error = sysctl_handle_int(oidp, &server_mode, 0, req);
1296 
1297 	if (error || !req->newptr)
1298 		return (error);
1299 
1300 	if (server_mode == 1)
1301 		cmd.data[0] = SMU_PWR_SET_POWERUP;
1302 	else if (server_mode == 0)
1303 		cmd.data[0] = SMU_PWR_CLR_POWERUP;
1304 	else
1305 		return (EINVAL);
1306 
1307 	cmd.len = 3;
1308 	cmd.data[1] = 0;
1309 	cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1310 
1311 	return (smu_run_cmd(smu, &cmd, 1));
1312 }
1313 
1314 static void
1315 smu_shutdown(void *xdev, int howto)
1316 {
1317 	device_t smu = xdev;
1318 	struct smu_cmd cmd;
1319 
1320 	cmd.cmd = SMU_POWER;
1321 	if (howto & RB_HALT)
1322 		strcpy(cmd.data, "SHUTDOWN");
1323 	else
1324 		strcpy(cmd.data, "RESTART");
1325 
1326 	cmd.len = strlen(cmd.data);
1327 
1328 	smu_run_cmd(smu, &cmd, 1);
1329 
1330 	for (;;);
1331 }
1332 
1333 static int
1334 smu_gettime(device_t dev, struct timespec *ts)
1335 {
1336 	struct smu_cmd cmd;
1337 	struct clocktime ct;
1338 
1339 	cmd.cmd = SMU_RTC;
1340 	cmd.len = 1;
1341 	cmd.data[0] = SMU_RTC_GET;
1342 
1343 	if (smu_run_cmd(dev, &cmd, 1) != 0)
1344 		return (ENXIO);
1345 
1346 	ct.nsec	= 0;
1347 	ct.sec	= bcd2bin(cmd.data[0]);
1348 	ct.min	= bcd2bin(cmd.data[1]);
1349 	ct.hour	= bcd2bin(cmd.data[2]);
1350 	ct.dow	= bcd2bin(cmd.data[3]);
1351 	ct.day	= bcd2bin(cmd.data[4]);
1352 	ct.mon	= bcd2bin(cmd.data[5]);
1353 	ct.year	= bcd2bin(cmd.data[6]) + 2000;
1354 
1355 	return (clock_ct_to_ts(&ct, ts));
1356 }
1357 
1358 static int
1359 smu_settime(device_t dev, struct timespec *ts)
1360 {
1361 	static struct smu_cmd cmd;
1362 	struct clocktime ct;
1363 
1364 	cmd.cmd = SMU_RTC;
1365 	cmd.len = 8;
1366 	cmd.data[0] = SMU_RTC_SET;
1367 
1368 	clock_ts_to_ct(ts, &ct);
1369 
1370 	cmd.data[1] = bin2bcd(ct.sec);
1371 	cmd.data[2] = bin2bcd(ct.min);
1372 	cmd.data[3] = bin2bcd(ct.hour);
1373 	cmd.data[4] = bin2bcd(ct.dow);
1374 	cmd.data[5] = bin2bcd(ct.day);
1375 	cmd.data[6] = bin2bcd(ct.mon);
1376 	cmd.data[7] = bin2bcd(ct.year - 2000);
1377 
1378 	return (smu_run_cmd(dev, &cmd, 0));
1379 }
1380 
1381 /* SMU I2C Interface */
1382 
1383 static int smuiic_probe(device_t dev);
1384 static int smuiic_attach(device_t dev);
1385 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1386 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1387 
1388 static device_method_t smuiic_methods[] = {
1389 	/* device interface */
1390 	DEVMETHOD(device_probe,         smuiic_probe),
1391 	DEVMETHOD(device_attach,        smuiic_attach),
1392 
1393 	/* iicbus interface */
1394 	DEVMETHOD(iicbus_callback,      iicbus_null_callback),
1395 	DEVMETHOD(iicbus_transfer,      smuiic_transfer),
1396 
1397 	/* ofw_bus interface */
1398 	DEVMETHOD(ofw_bus_get_node,     smuiic_get_node),
1399 
1400 	{ 0, 0 }
1401 };
1402 
1403 struct smuiic_softc {
1404 	struct mtx	sc_mtx;
1405 	volatile int	sc_iic_inuse;
1406 	int		sc_busno;
1407 };
1408 
1409 static driver_t smuiic_driver = {
1410 	"iichb",
1411 	smuiic_methods,
1412 	sizeof(struct smuiic_softc)
1413 };
1414 static devclass_t smuiic_devclass;
1415 
1416 DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0);
1417 
1418 static void
1419 smu_attach_i2c(device_t smu, phandle_t i2croot)
1420 {
1421 	phandle_t child;
1422 	device_t cdev;
1423 	struct ofw_bus_devinfo *dinfo;
1424 	char name[32];
1425 
1426 	for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1427 		if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1428 			continue;
1429 
1430 		if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1431 			continue;
1432 
1433 		dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1434 		    M_WAITOK | M_ZERO);
1435 		if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1436 			free(dinfo, M_SMU);
1437 			continue;
1438 		}
1439 
1440 		cdev = device_add_child(smu, NULL, -1);
1441 		if (cdev == NULL) {
1442 			device_printf(smu, "<%s>: device_add_child failed\n",
1443 			    dinfo->obd_name);
1444 			ofw_bus_gen_destroy_devinfo(dinfo);
1445 			free(dinfo, M_SMU);
1446 			continue;
1447 		}
1448 		device_set_ivars(cdev, dinfo);
1449 	}
1450 }
1451 
1452 static int
1453 smuiic_probe(device_t dev)
1454 {
1455 	const char *name;
1456 
1457 	name = ofw_bus_get_name(dev);
1458 	if (name == NULL)
1459 		return (ENXIO);
1460 
1461 	if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1462 		device_set_desc(dev, "SMU I2C controller");
1463 		return (0);
1464 	}
1465 
1466 	return (ENXIO);
1467 }
1468 
1469 static int
1470 smuiic_attach(device_t dev)
1471 {
1472 	struct smuiic_softc *sc = device_get_softc(dev);
1473 	mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1474 	sc->sc_iic_inuse = 0;
1475 
1476 	/* Get our bus number */
1477 	OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1478 	    sizeof(sc->sc_busno));
1479 
1480 	/* Add the IIC bus layer */
1481 	device_add_child(dev, "iicbus", -1);
1482 
1483 	return (bus_generic_attach(dev));
1484 }
1485 
1486 static int
1487 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1488 {
1489 	struct smuiic_softc *sc = device_get_softc(dev);
1490 	struct smu_cmd cmd;
1491 	int i, j, error;
1492 
1493 	mtx_lock(&sc->sc_mtx);
1494 	while (sc->sc_iic_inuse)
1495 		mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1496 
1497 	sc->sc_iic_inuse = 1;
1498 	error = 0;
1499 
1500 	for (i = 0; i < nmsgs; i++) {
1501 		cmd.cmd = SMU_I2C;
1502 		cmd.data[0] = sc->sc_busno;
1503 		if (msgs[i].flags & IIC_M_NOSTOP)
1504 			cmd.data[1] = SMU_I2C_COMBINED;
1505 		else
1506 			cmd.data[1] = SMU_I2C_SIMPLE;
1507 
1508 		cmd.data[2] = msgs[i].slave;
1509 		if (msgs[i].flags & IIC_M_RD)
1510 			cmd.data[2] |= 1;
1511 
1512 		if (msgs[i].flags & IIC_M_NOSTOP) {
1513 			KASSERT(msgs[i].len < 4,
1514 			    ("oversize I2C combined message"));
1515 
1516 			cmd.data[3] = min(msgs[i].len, 3);
1517 			memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1518 			i++; /* Advance to next part of message */
1519 		} else {
1520 			cmd.data[3] = 0;
1521 			memset(&cmd.data[4], 0, 3);
1522 		}
1523 
1524 		cmd.data[7] = msgs[i].slave;
1525 		if (msgs[i].flags & IIC_M_RD)
1526 			cmd.data[7] |= 1;
1527 
1528 		cmd.data[8] = msgs[i].len;
1529 		if (msgs[i].flags & IIC_M_RD) {
1530 			memset(&cmd.data[9], 0xff, msgs[i].len);
1531 			cmd.len = 9;
1532 		} else {
1533 			memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1534 			cmd.len = 9 + msgs[i].len;
1535 		}
1536 
1537 		mtx_unlock(&sc->sc_mtx);
1538 		smu_run_cmd(device_get_parent(dev), &cmd, 1);
1539 		mtx_lock(&sc->sc_mtx);
1540 
1541 		for (j = 0; j < 10; j++) {
1542 			cmd.cmd = SMU_I2C;
1543 			cmd.len = 1;
1544 			cmd.data[0] = 0;
1545 			memset(&cmd.data[1], 0xff, msgs[i].len);
1546 
1547 			mtx_unlock(&sc->sc_mtx);
1548 			smu_run_cmd(device_get_parent(dev), &cmd, 1);
1549 			mtx_lock(&sc->sc_mtx);
1550 
1551 			if (!(cmd.data[0] & 0x80))
1552 				break;
1553 
1554 			mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1555 		}
1556 
1557 		if (cmd.data[0] & 0x80) {
1558 			error = EIO;
1559 			msgs[i].len = 0;
1560 			goto exit;
1561 		}
1562 		memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1563 		msgs[i].len = cmd.len - 1;
1564 	}
1565 
1566     exit:
1567 	sc->sc_iic_inuse = 0;
1568 	mtx_unlock(&sc->sc_mtx);
1569 	wakeup(sc);
1570 	return (error);
1571 }
1572 
1573 static phandle_t
1574 smuiic_get_node(device_t bus, device_t dev)
1575 {
1576 
1577 	return (ofw_bus_get_node(bus));
1578 }
1579 
1580