xref: /freebsd/sys/powerpc/ofw/ofw_machdep.c (revision e17f5b1d307b7b8910d67883e57a9604305906d5)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1996 Wolfgang Solfrank.
5  * Copyright (C) 1996 TooLs GmbH.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by TooLs GmbH.
19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_platform.h"
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/systm.h>
43 #include <sys/conf.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/smp.h>
49 #include <sys/stat.h>
50 #include <sys/endian.h>
51 
52 #include <net/ethernet.h>
53 
54 #include <dev/fdt/fdt_common.h>
55 #include <dev/ofw/openfirm.h>
56 #include <dev/ofw/ofw_pci.h>
57 #include <dev/ofw/ofw_bus.h>
58 #include <dev/ofw/ofw_subr.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_phys.h>
64 
65 #include <machine/bus.h>
66 #include <machine/cpu.h>
67 #include <machine/md_var.h>
68 #include <machine/platform.h>
69 #include <machine/ofw_machdep.h>
70 #include <machine/trap.h>
71 
72 #include <contrib/libfdt/libfdt.h>
73 
74 #ifdef POWERNV
75 #include <powerpc/powernv/opal.h>
76 #endif
77 
78 static void	*fdt;
79 int		ofw_real_mode;
80 
81 #ifdef AIM
82 extern register_t ofmsr[5];
83 extern void	*openfirmware_entry;
84 char		save_trap_init[0x2f00];          /* EXC_LAST */
85 char		save_trap_of[0x2f00];            /* EXC_LAST */
86 
87 int		ofwcall(void *);
88 static int	openfirmware(void *args);
89 
90 #pragma clang diagnostic push
91 #pragma clang diagnostic ignored "-Wfortify-source"
92 
93 __inline void
94 ofw_save_trap_vec(char *save_trap_vec)
95 {
96 	if (!ofw_real_mode || !hw_direct_map)
97                 return;
98 
99 	bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
100 }
101 
102 static __inline void
103 ofw_restore_trap_vec(char *restore_trap_vec)
104 {
105 	if (!ofw_real_mode || !hw_direct_map)
106                 return;
107 
108 	bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
109 	    EXC_LAST - EXC_RST);
110 	__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
111 }
112 
113 #pragma clang diagnostic pop
114 
115 /*
116  * Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
117  */
118 register_t	ofw_sprg0_save;
119 
120 static __inline void
121 ofw_sprg_prepare(void)
122 {
123 	if (ofw_real_mode)
124 		return;
125 
126 	/*
127 	 * Assume that interrupt are disabled at this point, or
128 	 * SPRG1-3 could be trashed
129 	 */
130 #ifdef __powerpc64__
131 	__asm __volatile("mtsprg1 %0\n\t"
132 	    		 "mtsprg2 %1\n\t"
133 			 "mtsprg3 %2\n\t"
134 			 :
135 			 : "r"(ofmsr[2]),
136 			 "r"(ofmsr[3]),
137 			 "r"(ofmsr[4]));
138 #else
139 	__asm __volatile("mfsprg0 %0\n\t"
140 			 "mtsprg0 %1\n\t"
141 	    		 "mtsprg1 %2\n\t"
142 	    		 "mtsprg2 %3\n\t"
143 			 "mtsprg3 %4\n\t"
144 			 : "=&r"(ofw_sprg0_save)
145 			 : "r"(ofmsr[1]),
146 			 "r"(ofmsr[2]),
147 			 "r"(ofmsr[3]),
148 			 "r"(ofmsr[4]));
149 #endif
150 }
151 
152 static __inline void
153 ofw_sprg_restore(void)
154 {
155 	if (ofw_real_mode)
156 		return;
157 
158 	/*
159 	 * Note that SPRG1-3 contents are irrelevant. They are scratch
160 	 * registers used in the early portion of trap handling when
161 	 * interrupts are disabled.
162 	 *
163 	 * PCPU data cannot be used until this routine is called !
164 	 */
165 #ifndef __powerpc64__
166 	__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
167 #endif
168 }
169 #endif
170 
171 static int
172 parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
173 {
174 	cell_t address_cells, size_cells;
175 	cell_t OFmem[4 * PHYS_AVAIL_SZ];
176 	int sz, i, j;
177 	phandle_t phandle;
178 
179 	sz = 0;
180 
181 	/*
182 	 * Get #address-cells from root node, defaulting to 1 if it cannot
183 	 * be found.
184 	 */
185 	phandle = OF_finddevice("/");
186 	if (OF_getencprop(phandle, "#address-cells", &address_cells,
187 	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
188 		address_cells = 1;
189 	if (OF_getencprop(phandle, "#size-cells", &size_cells,
190 	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
191 		size_cells = 1;
192 
193 	/*
194 	 * Get memory.
195 	 */
196 	if (node == -1 || (sz = OF_getencprop(node, prop,
197 	    OFmem, sizeof(OFmem))) <= 0)
198 		panic("Physical memory map not found");
199 
200 	i = 0;
201 	j = 0;
202 	while (i < sz/sizeof(cell_t)) {
203 		output[j].mr_start = OFmem[i++];
204 		if (address_cells == 2) {
205 			output[j].mr_start <<= 32;
206 			output[j].mr_start += OFmem[i++];
207 		}
208 
209 		output[j].mr_size = OFmem[i++];
210 		if (size_cells == 2) {
211 			output[j].mr_size <<= 32;
212 			output[j].mr_size += OFmem[i++];
213 		}
214 
215 		if (output[j].mr_start > BUS_SPACE_MAXADDR)
216 			continue;
217 
218 		/*
219 		 * Constrain memory to that which we can access.
220 		 * 32-bit AIM can only reference 32 bits of address currently,
221 		 * but Book-E can access 36 bits.
222 		 */
223 		if (((uint64_t)output[j].mr_start +
224 		    (uint64_t)output[j].mr_size - 1) >
225 		    BUS_SPACE_MAXADDR) {
226 			output[j].mr_size = BUS_SPACE_MAXADDR -
227 			    output[j].mr_start + 1;
228 		}
229 
230 		j++;
231 	}
232 
233 	return (j);
234 }
235 
236 static int
237 parse_numa_ofw_memory(phandle_t node, const char *prop,
238     struct numa_mem_region *output)
239 {
240 	cell_t address_cells, size_cells;
241 	cell_t OFmem[4 * PHYS_AVAIL_SZ];
242 	int sz, i, j;
243 	phandle_t phandle;
244 
245 	sz = 0;
246 
247 	/*
248 	 * Get #address-cells from root node, defaulting to 1 if it cannot
249 	 * be found.
250 	 */
251 	phandle = OF_finddevice("/");
252 	if (OF_getencprop(phandle, "#address-cells", &address_cells,
253 	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
254 		address_cells = 1;
255 	if (OF_getencprop(phandle, "#size-cells", &size_cells,
256 	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
257 		size_cells = 1;
258 
259 	/*
260 	 * Get memory.
261 	 */
262 	if (node == -1 || (sz = OF_getencprop(node, prop,
263 	    OFmem, sizeof(OFmem))) <= 0)
264 		panic("Physical memory map not found");
265 
266 	i = 0;
267 	j = 0;
268 	while (i < sz/sizeof(cell_t)) {
269 		output[j].mr_start = OFmem[i++];
270 		if (address_cells == 2) {
271 			output[j].mr_start <<= 32;
272 			output[j].mr_start += OFmem[i++];
273 		}
274 		output[j].mr_size = OFmem[i++];
275 		if (size_cells == 2) {
276 			output[j].mr_size <<= 32;
277 			output[j].mr_size += OFmem[i++];
278 		}
279 		j++;
280 	}
281 
282 	return (j);
283 }
284 
285 #ifdef FDT
286 static int
287 excise_reserved_regions(struct mem_region *avail, int asz,
288 			struct mem_region *exclude, int esz)
289 {
290 	int i, j, k;
291 
292 	for (i = 0; i < asz; i++) {
293 		for (j = 0; j < esz; j++) {
294 			/*
295 			 * Case 1: Exclusion region encloses complete
296 			 * available entry. Drop it and move on.
297 			 */
298 			if (exclude[j].mr_start <= avail[i].mr_start &&
299 			    exclude[j].mr_start + exclude[j].mr_size >=
300 			    avail[i].mr_start + avail[i].mr_size) {
301 				for (k = i+1; k < asz; k++)
302 					avail[k-1] = avail[k];
303 				asz--;
304 				i--; /* Repeat some entries */
305 				continue;
306 			}
307 
308 			/*
309 			 * Case 2: Exclusion region starts in available entry.
310 			 * Trim it to where the entry begins and append
311 			 * a new available entry with the region after
312 			 * the excluded region, if any.
313 			 */
314 			if (exclude[j].mr_start >= avail[i].mr_start &&
315 			    exclude[j].mr_start < avail[i].mr_start +
316 			    avail[i].mr_size) {
317 				if (exclude[j].mr_start + exclude[j].mr_size <
318 				    avail[i].mr_start + avail[i].mr_size) {
319 					avail[asz].mr_start =
320 					    exclude[j].mr_start + exclude[j].mr_size;
321 					avail[asz].mr_size = avail[i].mr_start +
322 					     avail[i].mr_size -
323 					     avail[asz].mr_start;
324 					asz++;
325 				}
326 
327 				avail[i].mr_size = exclude[j].mr_start -
328 				    avail[i].mr_start;
329 			}
330 
331 			/*
332 			 * Case 3: Exclusion region ends in available entry.
333 			 * Move start point to where the exclusion zone ends.
334 			 * The case of a contained exclusion zone has already
335 			 * been caught in case 2.
336 			 */
337 			if (exclude[j].mr_start + exclude[j].mr_size >=
338 			    avail[i].mr_start && exclude[j].mr_start +
339 			    exclude[j].mr_size < avail[i].mr_start +
340 			    avail[i].mr_size) {
341 				avail[i].mr_size += avail[i].mr_start;
342 				avail[i].mr_start =
343 				    exclude[j].mr_start + exclude[j].mr_size;
344 				avail[i].mr_size -= avail[i].mr_start;
345 			}
346 		}
347 	}
348 
349 	return (asz);
350 }
351 
352 static int
353 excise_initrd_region(struct mem_region *avail, int asz)
354 {
355 	phandle_t chosen;
356 	uint64_t start, end;
357 	ssize_t size;
358 	struct mem_region initrdmap[1];
359 	pcell_t cell[2];
360 
361 	chosen = OF_finddevice("/chosen");
362 
363 	size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
364 	if (size < 0)
365 		return (asz);
366 	else if (size == 4)
367 		start = cell[0];
368 	else if (size == 8)
369 		start = (uint64_t)cell[0] << 32 | cell[1];
370 	else {
371 		/* Invalid value length */
372 		printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
373 		return (asz);
374 	}
375 
376 	size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
377 	if (size < 0)
378 		return (asz);
379 	else if (size == 4)
380 		end = cell[0];
381 	else if (size == 8)
382 		end = (uint64_t)cell[0] << 32 | cell[1];
383 	else {
384 		/* Invalid value length */
385 		printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
386 		return (asz);
387 	}
388 
389 	if (end <= start)
390 		return (asz);
391 
392 	initrdmap[0].mr_start = start;
393 	initrdmap[0].mr_size = end - start;
394 
395 	asz = excise_reserved_regions(avail, asz, initrdmap, 1);
396 
397 	return (asz);
398 }
399 
400 #ifdef POWERNV
401 static int
402 excise_msi_region(struct mem_region *avail, int asz)
403 {
404         uint64_t start, end;
405         struct mem_region initrdmap[1];
406 
407 	/*
408 	 * This range of physical addresses is used to implement optimized
409 	 * 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
410 	 * using it for DMA, as this will cause an immediate PHB fence.
411 	 * While we could theoretically turn off this behavior in the ETU,
412 	 * doing so would break 32-bit MSI, so just reserve the range in
413 	 * the physical map instead.
414 	 * See section 4.4.2.8 of the PHB4 specification.
415 	 */
416 	start	= 0x00000000ffff0000ul;
417 	end	= 0x00000000fffffffful;
418 
419 	initrdmap[0].mr_start = start;
420 	initrdmap[0].mr_size = end - start;
421 
422 	asz = excise_reserved_regions(avail, asz, initrdmap, 1);
423 
424 	return (asz);
425 }
426 #endif
427 
428 static int
429 excise_fdt_reserved(struct mem_region *avail, int asz)
430 {
431 	struct mem_region fdtmap[32];
432 	ssize_t fdtmapsize;
433 	phandle_t chosen;
434 	int j, fdtentries;
435 
436 	chosen = OF_finddevice("/chosen");
437 	fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
438 
439 	for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
440 		fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
441 		fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
442 	}
443 
444 	KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
445 	    ("Exceeded number of FDT reservations"));
446 	/* Add a virtual entry for the FDT itself */
447 	if (fdt != NULL) {
448 		fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
449 		fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
450 		fdtmapsize += sizeof(fdtmap[0]);
451 	}
452 
453 	fdtentries = fdtmapsize/sizeof(fdtmap[0]);
454 	asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);
455 
456 	return (asz);
457 }
458 #endif
459 
460 /*
461  * This is called during powerpc_init, before the system is really initialized.
462  * It shall provide the total and the available regions of RAM.
463  * The available regions need not take the kernel into account.
464  */
465 void
466 ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
467 {
468 	phandle_t phandle;
469 	int count, msz;
470 	char name[31];
471 	struct numa_mem_region *curmemp;
472 
473 	msz = 0;
474 	/*
475 	 * Get memory from all the /memory nodes.
476 	 */
477 	for (phandle = OF_child(OF_peer(0)); phandle != 0;
478 	    phandle = OF_peer(phandle)) {
479 		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
480 			continue;
481 		if (strncmp(name, "memory@", strlen("memory@")) != 0)
482 			continue;
483 
484 		count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
485 		if (count == 0)
486 			continue;
487 		curmemp = &memp[msz];
488 		MPASS(count == 1);
489 		curmemp->mr_domain = platform_node_numa_domain(phandle);
490 		if (bootverbose)
491 			printf("%s %#jx-%#jx domain(%ju)\n",
492 			    name, (uintmax_t)curmemp->mr_start,
493 			    (uintmax_t)curmemp->mr_start + curmemp->mr_size,
494 			    (uintmax_t)curmemp->mr_domain);
495 		msz += count;
496 	}
497 	*memsz = msz;
498 }
499 /*
500  * This is called during powerpc_init, before the system is really initialized.
501  * It shall provide the total and the available regions of RAM.
502  * The available regions need not take the kernel into account.
503  */
504 void
505 ofw_mem_regions(struct mem_region *memp, int *memsz,
506 		struct mem_region *availp, int *availsz)
507 {
508 	phandle_t phandle;
509 	int asz, msz;
510 	int res;
511 	char name[31];
512 
513 	asz = msz = 0;
514 
515 	/*
516 	 * Get memory from all the /memory nodes.
517 	 */
518 	for (phandle = OF_child(OF_peer(0)); phandle != 0;
519 	    phandle = OF_peer(phandle)) {
520 		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
521 			continue;
522 		if (strncmp(name, "memory", sizeof(name)) != 0 &&
523 		    strncmp(name, "memory@", strlen("memory@")) != 0)
524 			continue;
525 
526 		res = parse_ofw_memory(phandle, "reg", &memp[msz]);
527 		msz += res;
528 
529 		/*
530 		 * On POWER9 Systems we might have both linux,usable-memory and
531 		 * reg properties.  'reg' denotes all available memory, but we
532 		 * must use 'linux,usable-memory', a subset, as some memory
533 		 * regions are reserved for NVLink.
534 		 */
535 		if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
536 			res = parse_ofw_memory(phandle, "linux,usable-memory",
537 			    &availp[asz]);
538 		else if (OF_getproplen(phandle, "available") >= 0)
539 			res = parse_ofw_memory(phandle, "available",
540 			    &availp[asz]);
541 		else
542 			res = parse_ofw_memory(phandle, "reg", &availp[asz]);
543 		asz += res;
544 	}
545 
546 #ifdef FDT
547 	phandle = OF_finddevice("/chosen");
548 	if (OF_hasprop(phandle, "fdtmemreserv"))
549 		asz = excise_fdt_reserved(availp, asz);
550 
551 	/* If the kernel is being loaded through kexec, initrd region is listed
552 	 * in /chosen but the region is not marked as reserved, so, we might exclude
553 	 * it here.
554 	 */
555 	if (OF_hasprop(phandle, "linux,initrd-start"))
556 		asz = excise_initrd_region(availp, asz);
557 #endif
558 
559 #ifdef POWERNV
560 	if (opal_check() == 0)
561 		asz = excise_msi_region(availp, asz);
562 #endif
563 
564 	*memsz = msz;
565 	*availsz = asz;
566 }
567 
568 void
569 OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
570 {
571 #ifdef AIM
572 	ofmsr[0] = mfmsr();
573 	#ifdef __powerpc64__
574 	ofmsr[0] &= ~PSL_SF;
575 	#else
576 	__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
577 	#endif
578 	__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
579 	__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
580 	__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
581 	openfirmware_entry = openfirm;
582 
583 	if (ofmsr[0] & PSL_DR)
584 		ofw_real_mode = 0;
585 	else
586 		ofw_real_mode = 1;
587 
588 	ofw_save_trap_vec(save_trap_init);
589 #else
590 	ofw_real_mode = 1;
591 #endif
592 
593 	fdt = fdt_ptr;
594 }
595 
596 boolean_t
597 OF_bootstrap()
598 {
599 	boolean_t status = FALSE;
600 	int err = 0;
601 
602 #ifdef AIM
603 	if (openfirmware_entry != NULL) {
604 		if (ofw_real_mode) {
605 			status = OF_install(OFW_STD_REAL, 0);
606 		} else {
607 			#ifdef __powerpc64__
608 			status = OF_install(OFW_STD_32BIT, 0);
609 			#else
610 			status = OF_install(OFW_STD_DIRECT, 0);
611 			#endif
612 		}
613 
614 		if (status != TRUE)
615 			return status;
616 
617 		err = OF_init(openfirmware);
618 	} else
619 #endif
620 	if (fdt != NULL) {
621 #ifdef FDT
622 #ifdef AIM
623 		bus_space_tag_t fdt_bt;
624 		vm_offset_t tmp_fdt_ptr;
625 		vm_size_t fdt_size;
626 		uintptr_t fdt_va;
627 #endif
628 
629 		status = OF_install(OFW_FDT, 0);
630 		if (status != TRUE)
631 			return status;
632 
633 #ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
634 		/* Get the FDT size for mapping if we can */
635 		tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
636 		if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
637 			pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
638 			return FALSE;
639 		}
640 		fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
641 		pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
642 
643 		/*
644 		 * Map this for real. Use bus_space_map() to take advantage
645 		 * of its auto-remapping function once the kernel is loaded.
646 		 * This is a dirty hack, but what we have.
647 		 */
648 #ifdef _LITTLE_ENDIAN
649 		fdt_bt = &bs_le_tag;
650 #else
651 		fdt_bt = &bs_be_tag;
652 #endif
653 		bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
654 
655 		err = OF_init((void *)fdt_va);
656 #else
657 		err = OF_init(fdt);
658 #endif
659 #endif
660 	}
661 
662 	#ifdef FDT_DTB_STATIC
663 	/*
664 	 * Check for a statically included blob already in the kernel and
665 	 * needing no mapping.
666 	 */
667 	else {
668 		status = OF_install(OFW_FDT, 0);
669 		if (status != TRUE)
670 			return status;
671 		err = OF_init(&fdt_static_dtb);
672 	}
673 	#endif
674 
675 	if (err != 0) {
676 		OF_install(NULL, 0);
677 		status = FALSE;
678 	}
679 
680 	return (status);
681 }
682 
683 #ifdef AIM
684 void
685 ofw_quiesce(void)
686 {
687 	struct {
688 		cell_t name;
689 		cell_t nargs;
690 		cell_t nreturns;
691 	} args;
692 
693 	KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
694 
695 	args.name = (cell_t)(uintptr_t)"quiesce";
696 	args.nargs = 0;
697 	args.nreturns = 0;
698 	openfirmware(&args);
699 }
700 
701 static int
702 openfirmware_core(void *args)
703 {
704 	int		result;
705 	register_t	oldmsr;
706 
707 	if (openfirmware_entry == NULL)
708 		return (-1);
709 
710 	/*
711 	 * Turn off exceptions - we really don't want to end up
712 	 * anywhere unexpected with PCPU set to something strange
713 	 * or the stack pointer wrong.
714 	 */
715 	oldmsr = intr_disable();
716 
717 	ofw_sprg_prepare();
718 
719 	/* Save trap vectors */
720 	ofw_save_trap_vec(save_trap_of);
721 
722 	/* Restore initially saved trap vectors */
723 	ofw_restore_trap_vec(save_trap_init);
724 
725 #ifndef __powerpc64__
726 	/*
727 	 * Clear battable[] translations
728 	 */
729 	if (!(cpu_features & PPC_FEATURE_64))
730 		__asm __volatile("mtdbatu 2, %0\n"
731 				 "mtdbatu 3, %0" : : "r" (0));
732 	isync();
733 #endif
734 
735 	result = ofwcall(args);
736 
737 	/* Restore trap vecotrs */
738 	ofw_restore_trap_vec(save_trap_of);
739 
740 	ofw_sprg_restore();
741 
742 	intr_restore(oldmsr);
743 
744 	return (result);
745 }
746 
747 #ifdef SMP
748 struct ofw_rv_args {
749 	void *args;
750 	int retval;
751 	volatile int in_progress;
752 };
753 
754 static void
755 ofw_rendezvous_dispatch(void *xargs)
756 {
757 	struct ofw_rv_args *rv_args = xargs;
758 
759 	/* NOTE: Interrupts are disabled here */
760 
761 	if (PCPU_GET(cpuid) == 0) {
762 		/*
763 		 * Execute all OF calls on CPU 0
764 		 */
765 		rv_args->retval = openfirmware_core(rv_args->args);
766 		rv_args->in_progress = 0;
767 	} else {
768 		/*
769 		 * Spin with interrupts off on other CPUs while OF has
770 		 * control of the machine.
771 		 */
772 		while (rv_args->in_progress)
773 			cpu_spinwait();
774 	}
775 }
776 #endif
777 
778 static int
779 openfirmware(void *args)
780 {
781 	int result;
782 	#ifdef SMP
783 	struct ofw_rv_args rv_args;
784 	#endif
785 
786 	if (openfirmware_entry == NULL)
787 		return (-1);
788 
789 	#ifdef SMP
790 	if (cold) {
791 		result = openfirmware_core(args);
792 	} else {
793 		rv_args.args = args;
794 		rv_args.in_progress = 1;
795 		smp_rendezvous(smp_no_rendezvous_barrier,
796 		    ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
797 		    &rv_args);
798 		result = rv_args.retval;
799 	}
800 	#else
801 	result = openfirmware_core(args);
802 	#endif
803 
804 	return (result);
805 }
806 
807 void
808 OF_reboot()
809 {
810 	struct {
811 		cell_t name;
812 		cell_t nargs;
813 		cell_t nreturns;
814 		cell_t arg;
815 	} args;
816 
817 	args.name = (cell_t)(uintptr_t)"interpret";
818 	args.nargs = 1;
819 	args.nreturns = 0;
820 	args.arg = (cell_t)(uintptr_t)"reset-all";
821 	openfirmware_core(&args); /* Don't do rendezvous! */
822 
823 	for (;;);	/* just in case */
824 }
825 
826 #endif /* AIM */
827 
828 void
829 OF_getetheraddr(device_t dev, u_char *addr)
830 {
831 	phandle_t	node;
832 
833 	node = ofw_bus_get_node(dev);
834 	OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
835 }
836 
837 /*
838  * Return a bus handle and bus tag that corresponds to the register
839  * numbered regno for the device referenced by the package handle
840  * dev. This function is intended to be used by console drivers in
841  * early boot only. It works by mapping the address of the device's
842  * register in the address space of its parent and recursively walk
843  * the device tree upward this way.
844  */
845 int
846 OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
847     bus_space_handle_t *handle, bus_size_t *sz)
848 {
849 	bus_addr_t addr;
850 	bus_size_t size;
851 	pcell_t pci_hi;
852 	int flags, res;
853 
854 	res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
855 	if (res < 0)
856 		return (res);
857 
858 	if (pci_hi == OFW_PADDR_NOT_PCI) {
859 		*tag = &bs_be_tag;
860 		flags = 0;
861 	} else {
862 		*tag = &bs_le_tag;
863 		flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ?
864 		    BUS_SPACE_MAP_PREFETCHABLE: 0;
865 	}
866 
867 	if (sz != NULL)
868 		*sz = size;
869 
870 	return (bus_space_map(*tag, addr, size, flags, handle));
871 }
872 
873