xref: /freebsd/sys/powerpc/ofw/ofw_machdep.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1996 Wolfgang Solfrank.
5  * Copyright (C) 1996 TooLs GmbH.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by TooLs GmbH.
19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
34  */
35 
36 #include <sys/cdefs.h>
37 #include "opt_platform.h"
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/disk.h>
43 #include <sys/fcntl.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/smp.h>
47 #include <sys/stat.h>
48 #include <sys/endian.h>
49 
50 #include <net/ethernet.h>
51 
52 #include <dev/fdt/fdt_common.h>
53 #include <dev/ofw/openfirm.h>
54 #include <dev/ofw/ofw_pci.h>
55 #include <dev/ofw/ofw_bus.h>
56 #include <dev/ofw/ofw_subr.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_phys.h>
62 
63 #include <machine/bus.h>
64 #include <machine/cpu.h>
65 #include <machine/md_var.h>
66 #include <machine/platform.h>
67 #include <machine/ofw_machdep.h>
68 #include <machine/trap.h>
69 
70 #include <contrib/libfdt/libfdt.h>
71 
72 #ifdef POWERNV
73 #include <powerpc/powernv/opal.h>
74 #endif
75 
76 static void	*fdt;
77 int		ofw_real_mode;
78 
79 #ifdef AIM
80 extern register_t ofmsr[5];
81 extern void	*openfirmware_entry;
82 char		save_trap_init[0x2f00];          /* EXC_LAST */
83 char		save_trap_of[0x2f00];            /* EXC_LAST */
84 
85 int		ofwcall(void *);
86 static int	openfirmware(void *args);
87 
88 #pragma clang diagnostic push
89 #pragma clang diagnostic ignored "-Wfortify-source"
90 
91 __inline void
92 ofw_save_trap_vec(char *save_trap_vec)
93 {
94 	if (!ofw_real_mode || !hw_direct_map)
95                 return;
96 
97 	bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
98 }
99 
100 static __inline void
101 ofw_restore_trap_vec(char *restore_trap_vec)
102 {
103 	if (!ofw_real_mode || !hw_direct_map)
104                 return;
105 
106 	bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
107 	    EXC_LAST - EXC_RST);
108 	__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
109 }
110 
111 #pragma clang diagnostic pop
112 
113 /*
114  * Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
115  */
116 register_t	ofw_sprg0_save;
117 
118 static __inline void
119 ofw_sprg_prepare(void)
120 {
121 	if (ofw_real_mode)
122 		return;
123 
124 	/*
125 	 * Assume that interrupt are disabled at this point, or
126 	 * SPRG1-3 could be trashed
127 	 */
128 #ifdef __powerpc64__
129 	__asm __volatile("mtsprg1 %0\n\t"
130 	    		 "mtsprg2 %1\n\t"
131 			 "mtsprg3 %2\n\t"
132 			 :
133 			 : "r"(ofmsr[2]),
134 			 "r"(ofmsr[3]),
135 			 "r"(ofmsr[4]));
136 #else
137 	__asm __volatile("mfsprg0 %0\n\t"
138 			 "mtsprg0 %1\n\t"
139 	    		 "mtsprg1 %2\n\t"
140 	    		 "mtsprg2 %3\n\t"
141 			 "mtsprg3 %4\n\t"
142 			 : "=&r"(ofw_sprg0_save)
143 			 : "r"(ofmsr[1]),
144 			 "r"(ofmsr[2]),
145 			 "r"(ofmsr[3]),
146 			 "r"(ofmsr[4]));
147 #endif
148 }
149 
150 static __inline void
151 ofw_sprg_restore(void)
152 {
153 	if (ofw_real_mode)
154 		return;
155 
156 	/*
157 	 * Note that SPRG1-3 contents are irrelevant. They are scratch
158 	 * registers used in the early portion of trap handling when
159 	 * interrupts are disabled.
160 	 *
161 	 * PCPU data cannot be used until this routine is called !
162 	 */
163 #ifndef __powerpc64__
164 	__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
165 #endif
166 }
167 #endif
168 
169 static int
170 parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
171 {
172 	cell_t address_cells, size_cells;
173 	cell_t OFmem[4 * PHYS_AVAIL_SZ];
174 	int sz, i, j;
175 	phandle_t phandle;
176 
177 	sz = 0;
178 
179 	/*
180 	 * Get #address-cells from root node, defaulting to 1 if it cannot
181 	 * be found.
182 	 */
183 	phandle = OF_finddevice("/");
184 	if (OF_getencprop(phandle, "#address-cells", &address_cells,
185 	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
186 		address_cells = 1;
187 	if (OF_getencprop(phandle, "#size-cells", &size_cells,
188 	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
189 		size_cells = 1;
190 
191 	/*
192 	 * Get memory.
193 	 */
194 	if (node == -1 || (sz = OF_getencprop(node, prop,
195 	    OFmem, sizeof(OFmem))) <= 0)
196 		panic("Physical memory map not found");
197 
198 	i = 0;
199 	j = 0;
200 	while (i < sz/sizeof(cell_t)) {
201 		output[j].mr_start = OFmem[i++];
202 		if (address_cells == 2) {
203 			output[j].mr_start <<= 32;
204 			output[j].mr_start += OFmem[i++];
205 		}
206 
207 		output[j].mr_size = OFmem[i++];
208 		if (size_cells == 2) {
209 			output[j].mr_size <<= 32;
210 			output[j].mr_size += OFmem[i++];
211 		}
212 
213 		if (output[j].mr_start > BUS_SPACE_MAXADDR)
214 			continue;
215 
216 		/*
217 		 * Constrain memory to that which we can access.
218 		 * 32-bit AIM can only reference 32 bits of address currently,
219 		 * but Book-E can access 36 bits.
220 		 */
221 		if (((uint64_t)output[j].mr_start +
222 		    (uint64_t)output[j].mr_size - 1) >
223 		    BUS_SPACE_MAXADDR) {
224 			output[j].mr_size = BUS_SPACE_MAXADDR -
225 			    output[j].mr_start + 1;
226 		}
227 
228 		j++;
229 	}
230 
231 	return (j);
232 }
233 
234 static int
235 parse_numa_ofw_memory(phandle_t node, const char *prop,
236     struct numa_mem_region *output)
237 {
238 	cell_t address_cells, size_cells;
239 	cell_t OFmem[4 * PHYS_AVAIL_SZ];
240 	int sz, i, j;
241 	phandle_t phandle;
242 
243 	sz = 0;
244 
245 	/*
246 	 * Get #address-cells from root node, defaulting to 1 if it cannot
247 	 * be found.
248 	 */
249 	phandle = OF_finddevice("/");
250 	if (OF_getencprop(phandle, "#address-cells", &address_cells,
251 	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
252 		address_cells = 1;
253 	if (OF_getencprop(phandle, "#size-cells", &size_cells,
254 	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
255 		size_cells = 1;
256 
257 	/*
258 	 * Get memory.
259 	 */
260 	if (node == -1 || (sz = OF_getencprop(node, prop,
261 	    OFmem, sizeof(OFmem))) <= 0)
262 		panic("Physical memory map not found");
263 
264 	i = 0;
265 	j = 0;
266 	while (i < sz/sizeof(cell_t)) {
267 		output[j].mr_start = OFmem[i++];
268 		if (address_cells == 2) {
269 			output[j].mr_start <<= 32;
270 			output[j].mr_start += OFmem[i++];
271 		}
272 		output[j].mr_size = OFmem[i++];
273 		if (size_cells == 2) {
274 			output[j].mr_size <<= 32;
275 			output[j].mr_size += OFmem[i++];
276 		}
277 		j++;
278 	}
279 
280 	return (j);
281 }
282 
283 #ifdef FDT
284 static int
285 excise_reserved_regions(struct mem_region *avail, int asz,
286 			struct mem_region *exclude, int esz)
287 {
288 	int i, j, k;
289 
290 	for (i = 0; i < asz; i++) {
291 		for (j = 0; j < esz; j++) {
292 			/*
293 			 * Case 1: Exclusion region encloses complete
294 			 * available entry. Drop it and move on.
295 			 */
296 			if (exclude[j].mr_start <= avail[i].mr_start &&
297 			    exclude[j].mr_start + exclude[j].mr_size >=
298 			    avail[i].mr_start + avail[i].mr_size) {
299 				for (k = i+1; k < asz; k++)
300 					avail[k-1] = avail[k];
301 				asz--;
302 				i--; /* Repeat some entries */
303 				continue;
304 			}
305 
306 			/*
307 			 * Case 2: Exclusion region starts in available entry.
308 			 * Trim it to where the entry begins and append
309 			 * a new available entry with the region after
310 			 * the excluded region, if any.
311 			 */
312 			if (exclude[j].mr_start >= avail[i].mr_start &&
313 			    exclude[j].mr_start < avail[i].mr_start +
314 			    avail[i].mr_size) {
315 				if (exclude[j].mr_start + exclude[j].mr_size <
316 				    avail[i].mr_start + avail[i].mr_size) {
317 					avail[asz].mr_start =
318 					    exclude[j].mr_start + exclude[j].mr_size;
319 					avail[asz].mr_size = avail[i].mr_start +
320 					     avail[i].mr_size -
321 					     avail[asz].mr_start;
322 					asz++;
323 				}
324 
325 				avail[i].mr_size = exclude[j].mr_start -
326 				    avail[i].mr_start;
327 			}
328 
329 			/*
330 			 * Case 3: Exclusion region ends in available entry.
331 			 * Move start point to where the exclusion zone ends.
332 			 * The case of a contained exclusion zone has already
333 			 * been caught in case 2.
334 			 */
335 			if (exclude[j].mr_start + exclude[j].mr_size >=
336 			    avail[i].mr_start && exclude[j].mr_start +
337 			    exclude[j].mr_size < avail[i].mr_start +
338 			    avail[i].mr_size) {
339 				avail[i].mr_size += avail[i].mr_start;
340 				avail[i].mr_start =
341 				    exclude[j].mr_start + exclude[j].mr_size;
342 				avail[i].mr_size -= avail[i].mr_start;
343 			}
344 		}
345 	}
346 
347 	return (asz);
348 }
349 
350 static int
351 excise_initrd_region(struct mem_region *avail, int asz)
352 {
353 	phandle_t chosen;
354 	uint64_t start, end;
355 	ssize_t size;
356 	struct mem_region initrdmap[1];
357 	pcell_t cell[2];
358 
359 	chosen = OF_finddevice("/chosen");
360 
361 	size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
362 	if (size < 0)
363 		return (asz);
364 	else if (size == 4)
365 		start = cell[0];
366 	else if (size == 8)
367 		start = (uint64_t)cell[0] << 32 | cell[1];
368 	else {
369 		/* Invalid value length */
370 		printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
371 		return (asz);
372 	}
373 
374 	size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
375 	if (size < 0)
376 		return (asz);
377 	else if (size == 4)
378 		end = cell[0];
379 	else if (size == 8)
380 		end = (uint64_t)cell[0] << 32 | cell[1];
381 	else {
382 		/* Invalid value length */
383 		printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
384 		return (asz);
385 	}
386 
387 	if (end <= start)
388 		return (asz);
389 
390 	initrdmap[0].mr_start = start;
391 	initrdmap[0].mr_size = end - start;
392 
393 	asz = excise_reserved_regions(avail, asz, initrdmap, 1);
394 
395 	return (asz);
396 }
397 
398 #ifdef POWERNV
399 static int
400 excise_msi_region(struct mem_region *avail, int asz)
401 {
402         uint64_t start, end;
403         struct mem_region initrdmap[1];
404 
405 	/*
406 	 * This range of physical addresses is used to implement optimized
407 	 * 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
408 	 * using it for DMA, as this will cause an immediate PHB fence.
409 	 * While we could theoretically turn off this behavior in the ETU,
410 	 * doing so would break 32-bit MSI, so just reserve the range in
411 	 * the physical map instead.
412 	 * See section 4.4.2.8 of the PHB4 specification.
413 	 */
414 	start	= 0x00000000ffff0000ul;
415 	end	= 0x00000000fffffffful;
416 
417 	initrdmap[0].mr_start = start;
418 	initrdmap[0].mr_size = end - start;
419 
420 	asz = excise_reserved_regions(avail, asz, initrdmap, 1);
421 
422 	return (asz);
423 }
424 #endif
425 
426 static int
427 excise_fdt_reserved(struct mem_region *avail, int asz)
428 {
429 	struct mem_region fdtmap[64];
430 	ssize_t fdtmapsize;
431 	phandle_t chosen;
432 	int j, fdtentries;
433 
434 	chosen = OF_finddevice("/chosen");
435 	fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
436 
437 	for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
438 		fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
439 		fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
440 	}
441 
442 	KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
443 	    ("Exceeded number of FDT reservations"));
444 	/* Add a virtual entry for the FDT itself */
445 	if (fdt != NULL) {
446 		fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
447 		fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
448 		fdtmapsize += sizeof(fdtmap[0]);
449 	}
450 
451 	fdtentries = fdtmapsize/sizeof(fdtmap[0]);
452 	asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);
453 
454 	return (asz);
455 }
456 #endif
457 
458 /*
459  * This is called during powerpc_init, before the system is really initialized.
460  * It shall provide the total and the available regions of RAM.
461  * The available regions need not take the kernel into account.
462  */
463 void
464 ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
465 {
466 	phandle_t phandle;
467 	int count, msz;
468 	char name[31];
469 	struct numa_mem_region *curmemp;
470 
471 	msz = 0;
472 	/*
473 	 * Get memory from all the /memory nodes.
474 	 */
475 	for (phandle = OF_child(OF_peer(0)); phandle != 0;
476 	    phandle = OF_peer(phandle)) {
477 		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
478 			continue;
479 		if (strncmp(name, "memory@", strlen("memory@")) != 0)
480 			continue;
481 
482 		count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
483 		if (count == 0)
484 			continue;
485 		curmemp = &memp[msz];
486 		MPASS(count == 1);
487 		curmemp->mr_domain = platform_node_numa_domain(phandle);
488 		if (bootverbose)
489 			printf("%s %#jx-%#jx domain(%ju)\n",
490 			    name, (uintmax_t)curmemp->mr_start,
491 			    (uintmax_t)curmemp->mr_start + curmemp->mr_size,
492 			    (uintmax_t)curmemp->mr_domain);
493 		msz += count;
494 	}
495 	*memsz = msz;
496 }
497 /*
498  * This is called during powerpc_init, before the system is really initialized.
499  * It shall provide the total and the available regions of RAM.
500  * The available regions need not take the kernel into account.
501  */
502 void
503 ofw_mem_regions(struct mem_region *memp, int *memsz,
504 		struct mem_region *availp, int *availsz)
505 {
506 	phandle_t phandle;
507 	int asz, msz;
508 	int res;
509 	char name[31];
510 
511 	asz = msz = 0;
512 
513 	/*
514 	 * Get memory from all the /memory nodes.
515 	 */
516 	for (phandle = OF_child(OF_peer(0)); phandle != 0;
517 	    phandle = OF_peer(phandle)) {
518 		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
519 			continue;
520 		if (strncmp(name, "memory", sizeof(name)) != 0 &&
521 		    strncmp(name, "memory@", strlen("memory@")) != 0)
522 			continue;
523 
524 		res = parse_ofw_memory(phandle, "reg", &memp[msz]);
525 		msz += res;
526 
527 		/*
528 		 * On POWER9 Systems we might have both linux,usable-memory and
529 		 * reg properties.  'reg' denotes all available memory, but we
530 		 * must use 'linux,usable-memory', a subset, as some memory
531 		 * regions are reserved for NVLink.
532 		 */
533 		if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
534 			res = parse_ofw_memory(phandle, "linux,usable-memory",
535 			    &availp[asz]);
536 		else if (OF_getproplen(phandle, "available") >= 0)
537 			res = parse_ofw_memory(phandle, "available",
538 			    &availp[asz]);
539 		else
540 			res = parse_ofw_memory(phandle, "reg", &availp[asz]);
541 		asz += res;
542 	}
543 
544 #ifdef FDT
545 	phandle = OF_finddevice("/chosen");
546 	if (OF_hasprop(phandle, "fdtmemreserv"))
547 		asz = excise_fdt_reserved(availp, asz);
548 
549 	/* If the kernel is being loaded through kexec, initrd region is listed
550 	 * in /chosen but the region is not marked as reserved, so, we might exclude
551 	 * it here.
552 	 */
553 	if (OF_hasprop(phandle, "linux,initrd-start"))
554 		asz = excise_initrd_region(availp, asz);
555 #endif
556 
557 #ifdef POWERNV
558 	if (opal_check() == 0)
559 		asz = excise_msi_region(availp, asz);
560 #endif
561 
562 	*memsz = msz;
563 	*availsz = asz;
564 }
565 
566 void
567 OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
568 {
569 #ifdef AIM
570 	ofmsr[0] = mfmsr();
571 	#ifdef __powerpc64__
572 	ofmsr[0] &= ~PSL_SF;
573 	#ifdef __LITTLE_ENDIAN__
574 	/* Assume OFW is BE. */
575 	ofmsr[0] &= ~PSL_LE;
576 	#endif
577 	#else
578 	__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
579 	#endif
580 	__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
581 	__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
582 	__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
583 	openfirmware_entry = openfirm;
584 
585 	if (ofmsr[0] & PSL_DR)
586 		ofw_real_mode = 0;
587 	else
588 		ofw_real_mode = 1;
589 
590 	ofw_save_trap_vec(save_trap_init);
591 #else
592 	ofw_real_mode = 1;
593 #endif
594 
595 	fdt = fdt_ptr;
596 }
597 
598 bool
599 OF_bootstrap(void)
600 {
601 	bool status = false;
602 	int err = 0;
603 
604 #ifdef AIM
605 	if (openfirmware_entry != NULL) {
606 		if (ofw_real_mode) {
607 			status = OF_install(OFW_STD_REAL, 0);
608 		} else {
609 			#ifdef __powerpc64__
610 			status = OF_install(OFW_STD_32BIT, 0);
611 			#else
612 			status = OF_install(OFW_STD_DIRECT, 0);
613 			#endif
614 		}
615 
616 		if (!status)
617 			return (status);
618 
619 		err = OF_init(openfirmware);
620 	} else
621 #endif
622 	if (fdt != NULL) {
623 #ifdef FDT
624 #ifdef AIM
625 		bus_space_tag_t fdt_bt;
626 		vm_offset_t tmp_fdt_ptr;
627 		vm_size_t fdt_size;
628 		uintptr_t fdt_va;
629 #endif
630 
631 		status = OF_install(OFW_FDT, 0);
632 		if (!status)
633 			return (status);
634 
635 #ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
636 		/* Get the FDT size for mapping if we can */
637 		tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
638 		if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
639 			pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
640 			return FALSE;
641 		}
642 		fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
643 		pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
644 
645 		/*
646 		 * Map this for real. Use bus_space_map() to take advantage
647 		 * of its auto-remapping function once the kernel is loaded.
648 		 * This is a dirty hack, but what we have.
649 		 */
650 #ifdef __LITTLE_ENDIAN__
651 		fdt_bt = &bs_le_tag;
652 #else
653 		fdt_bt = &bs_be_tag;
654 #endif
655 		bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
656 
657 		err = OF_init((void *)fdt_va);
658 #else
659 		err = OF_init(fdt);
660 #endif
661 #endif
662 	}
663 
664 	#ifdef FDT_DTB_STATIC
665 	/*
666 	 * Check for a statically included blob already in the kernel and
667 	 * needing no mapping.
668 	 */
669 	else {
670 		status = OF_install(OFW_FDT, 0);
671 		if (!status)
672 			return (status);
673 		err = OF_init(&fdt_static_dtb);
674 	}
675 	#endif
676 
677 	if (err != 0) {
678 		OF_install(NULL, 0);
679 		status = false;
680 	}
681 
682 	return (status);
683 }
684 
685 #ifdef AIM
686 void
687 ofw_quiesce(void)
688 {
689 	struct {
690 		cell_t name;
691 		cell_t nargs;
692 		cell_t nreturns;
693 	} args;
694 
695 	KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
696 
697 	args.name = (cell_t)(uintptr_t)"quiesce";
698 	args.nargs = 0;
699 	args.nreturns = 0;
700 	openfirmware(&args);
701 }
702 
703 static int
704 openfirmware_core(void *args)
705 {
706 	int		result;
707 	register_t	oldmsr;
708 
709 	if (openfirmware_entry == NULL)
710 		return (-1);
711 
712 	/*
713 	 * Turn off exceptions - we really don't want to end up
714 	 * anywhere unexpected with PCPU set to something strange
715 	 * or the stack pointer wrong.
716 	 */
717 	oldmsr = intr_disable();
718 
719 	ofw_sprg_prepare();
720 
721 	/* Save trap vectors */
722 	ofw_save_trap_vec(save_trap_of);
723 
724 	/* Restore initially saved trap vectors */
725 	ofw_restore_trap_vec(save_trap_init);
726 
727 #ifndef __powerpc64__
728 	/*
729 	 * Clear battable[] translations
730 	 */
731 	if (!(cpu_features & PPC_FEATURE_64))
732 		__asm __volatile("mtdbatu 2, %0\n"
733 				 "mtdbatu 3, %0" : : "r" (0));
734 	isync();
735 #endif
736 
737 	result = ofwcall(args);
738 
739 	/* Restore trap vecotrs */
740 	ofw_restore_trap_vec(save_trap_of);
741 
742 	ofw_sprg_restore();
743 
744 	intr_restore(oldmsr);
745 
746 	return (result);
747 }
748 
749 #ifdef SMP
750 struct ofw_rv_args {
751 	void *args;
752 	int retval;
753 	volatile int in_progress;
754 };
755 
756 static void
757 ofw_rendezvous_dispatch(void *xargs)
758 {
759 	struct ofw_rv_args *rv_args = xargs;
760 
761 	/* NOTE: Interrupts are disabled here */
762 
763 	if (PCPU_GET(cpuid) == 0) {
764 		/*
765 		 * Execute all OF calls on CPU 0
766 		 */
767 		rv_args->retval = openfirmware_core(rv_args->args);
768 		rv_args->in_progress = 0;
769 	} else {
770 		/*
771 		 * Spin with interrupts off on other CPUs while OF has
772 		 * control of the machine.
773 		 */
774 		while (rv_args->in_progress)
775 			cpu_spinwait();
776 	}
777 }
778 #endif
779 
780 static int
781 openfirmware(void *args)
782 {
783 	int result;
784 	#ifdef SMP
785 	struct ofw_rv_args rv_args;
786 	#endif
787 
788 	if (openfirmware_entry == NULL)
789 		return (-1);
790 
791 	#ifdef SMP
792 	if (cold) {
793 		result = openfirmware_core(args);
794 	} else {
795 		rv_args.args = args;
796 		rv_args.in_progress = 1;
797 		smp_rendezvous(smp_no_rendezvous_barrier,
798 		    ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
799 		    &rv_args);
800 		result = rv_args.retval;
801 	}
802 	#else
803 	result = openfirmware_core(args);
804 	#endif
805 
806 	return (result);
807 }
808 
809 void
810 OF_reboot(void)
811 {
812 	struct {
813 		cell_t name;
814 		cell_t nargs;
815 		cell_t nreturns;
816 		cell_t arg;
817 	} args;
818 
819 	args.name = (cell_t)(uintptr_t)"interpret";
820 	args.nargs = 1;
821 	args.nreturns = 0;
822 	args.arg = (cell_t)(uintptr_t)"reset-all";
823 	openfirmware_core(&args); /* Don't do rendezvous! */
824 
825 	for (;;);	/* just in case */
826 }
827 
828 #endif /* AIM */
829 
830 void
831 OF_getetheraddr(device_t dev, u_char *addr)
832 {
833 	phandle_t	node;
834 
835 	node = ofw_bus_get_node(dev);
836 	OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
837 }
838 
839 /*
840  * Return a bus handle and bus tag that corresponds to the register
841  * numbered regno for the device referenced by the package handle
842  * dev. This function is intended to be used by console drivers in
843  * early boot only. It works by mapping the address of the device's
844  * register in the address space of its parent and recursively walk
845  * the device tree upward this way.
846  */
847 int
848 OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
849     bus_space_handle_t *handle, bus_size_t *sz)
850 {
851 	bus_addr_t addr;
852 	bus_size_t size;
853 	pcell_t pci_hi;
854 	int flags, res;
855 
856 	res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
857 	if (res < 0)
858 		return (res);
859 
860 	if (pci_hi == OFW_PADDR_NOT_PCI) {
861 		*tag = &bs_be_tag;
862 		flags = 0;
863 	} else {
864 		*tag = &bs_le_tag;
865 		flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ?
866 		    BUS_SPACE_MAP_PREFETCHABLE: 0;
867 	}
868 
869 	if (sz != NULL)
870 		*sz = size;
871 
872 	return (bus_space_map(*tag, addr, size, flags, handle));
873 }
874