xref: /freebsd/sys/powerpc/mpc85xx/fsl_espi.c (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 /*-
2  * Copyright (c) 2017 Justin Hibbits <jhibbits@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/bus.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/malloc.h>
34 #include <sys/module.h>
35 #include <sys/mutex.h>
36 
37 #include <machine/bus.h>
38 
39 #include <dev/spibus/spi.h>
40 #include <dev/spibus/spibusvar.h>
41 
42 #include <dev/ofw/ofw_bus.h>
43 #include <dev/ofw/ofw_bus_subr.h>
44 
45 #include <powerpc/mpc85xx/mpc85xx.h>
46 
47 #include "spibus_if.h"
48 
49 /* TODO:
50  *
51  * Optimize FIFO reads and writes to do word-at-a-time instead of byte-at-a-time
52  */
53 #define	ESPI_SPMODE	0x0
54 #define	  ESPI_SPMODE_EN	  0x80000000
55 #define	  ESPI_SPMODE_LOOP	  0x40000000
56 #define	  ESPI_SPMODE_HO_ADJ_M	  0x00070000
57 #define	  ESPI_SPMODE_TXTHR_M	  0x00003f00
58 #define	  ESPI_SPMODE_TXTHR_S	  8
59 #define	  ESPI_SPMODE_RXTHR_M	  0x0000001f
60 #define	  ESPI_SPMODE_RXTHR_S	  0
61 #define	ESPI_SPIE	0x4
62 #define	  ESPI_SPIE_RXCNT_M	  0x3f000000
63 #define	  ESPI_SPIE_RXCNT_S	  24
64 #define	  ESPI_SPIE_TXCNT_M	  0x003f0000
65 #define	  ESPI_SPIE_TXCNT_S	  16
66 #define	  ESPI_SPIE_TXE		  0x00008000
67 #define	  ESPI_SPIE_DON		  0x00004000
68 #define	  ESPI_SPIE_RXT		  0x00002000
69 #define	  ESPI_SPIE_RXF		  0x00001000
70 #define	  ESPI_SPIE_TXT		  0x00000800
71 #define	  ESPI_SPIE_RNE		  0x00000200
72 #define	  ESPI_SPIE_TNF		  0x00000100
73 #define	ESPI_SPIM	0x8
74 #define	ESPI_SPCOM	0xc
75 #define	  ESPI_SPCOM_CS_M	  0xc0000000
76 #define	  ESPI_SPCOM_CS_S	  30
77 #define	  ESPI_SPCOM_RXDELAY	  0x20000000
78 #define	  ESPI_SPCOM_DO		  0x10000000
79 #define	  ESPI_SPCOM_TO		  0x08000000
80 #define	  ESPI_SPCOM_HLD	  0x04000000
81 #define	  ESPI_SPCOM_RXSKIP_M	  0x00ff0000
82 #define	  ESPI_SPCOM_TRANLEN_M	  0x0000ffff
83 #define	ESPI_SPITF	0x10
84 #define	ESPI_SPIRF	0x14
85 #define	ESPI_SPMODE0	0x20
86 #define	ESPI_SPMODE1	0x24
87 #define	ESPI_SPMODE2	0x28
88 #define	ESPI_SPMODE3	0x2c
89 #define	  ESPI_CSMODE_CI	  0x80000000
90 #define	  ESPI_CSMODE_CP	  0x40000000
91 #define	  ESPI_CSMODE_REV	  0x20000000
92 #define	  ESPI_CSMODE_DIV16	  0x10000000
93 #define	  ESPI_CSMODE_PM_M	  0x0f000000
94 #define	  ESPI_CSMODE_PM_S	  24
95 #define	  ESPI_CSMODE_ODD	  0x00800000
96 #define	  ESPI_CSMODE_POL	  0x00100000
97 #define	  ESPI_CSMODE_LEN_M	  0x000f0000
98 #define	    ESPI_CSMODE_LEN(x)	    (x << 16)
99 #define	  ESPI_CSMODE_CSBEF_M	  0x0000f000
100 #define	  ESPI_CSMODE_CSAFT_M	  0x00000f00
101 #define	  ESPI_CSMODE_CSCG_M	  0x000000f8
102 #define	    ESPI_CSMODE_CSCG(x)	    (x << 3)
103 #define	ESPI_CSMODE(n)		(ESPI_SPMODE0 + n * 4)
104 
105 #define	FSL_ESPI_WRITE(sc,off,val)	bus_write_4(sc->sc_mem_res, off, val)
106 #define	FSL_ESPI_READ(sc,off)		bus_read_4(sc->sc_mem_res, off)
107 #define	FSL_ESPI_WRITE_FIFO(sc,off,val)	bus_write_1(sc->sc_mem_res, off, val)
108 #define	FSL_ESPI_READ_FIFO(sc,off)	bus_read_1(sc->sc_mem_res, off)
109 
110 #define FSL_ESPI_LOCK(_sc)			\
111     mtx_lock(&(_sc)->sc_mtx)
112 #define FSL_ESPI_UNLOCK(_sc)			\
113     mtx_unlock(&(_sc)->sc_mtx)
114 
115 struct fsl_espi_softc
116 {
117 	device_t		sc_dev;
118 	struct resource		*sc_mem_res;
119 	struct resource		*sc_irq_res;
120 	struct mtx		sc_mtx;
121 	int			sc_num_cs;
122 	struct spi_command	*sc_cmd;
123 	uint32_t		sc_len;
124 	uint32_t		sc_read;
125 	uint32_t		sc_flags;
126 #define	  FSL_ESPI_BUSY		  0x00000001
127 	uint32_t		sc_written;
128 	void *			sc_intrhand;
129 };
130 
131 static void fsl_espi_intr(void *);
132 
133 static int
134 fsl_espi_probe(device_t dev)
135 {
136 
137 	if (!ofw_bus_status_okay(dev))
138 		return (ENXIO);
139 
140 	if (!ofw_bus_is_compatible(dev, "fsl,mpc8536-espi"))
141 		return (ENXIO);
142 
143 	device_set_desc(dev, "Freescale eSPI controller");
144 
145 	return (BUS_PROBE_DEFAULT);
146 }
147 
148 static int
149 fsl_espi_attach(device_t dev)
150 {
151 	struct fsl_espi_softc *sc;
152 	int rid;
153 	phandle_t node;
154 
155 	sc = device_get_softc(dev);
156 	sc->sc_dev = dev;
157 	node = ofw_bus_get_node(dev);
158 
159 	rid = 0;
160 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
161 	    RF_ACTIVE);
162 	if (!sc->sc_mem_res) {
163 		device_printf(dev, "cannot allocate memory resource\n");
164 		return (ENXIO);
165 	}
166 
167 	rid = 0;
168 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
169 	    RF_ACTIVE);
170 	if (!sc->sc_irq_res) {
171 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
172 		device_printf(dev, "cannot allocate interrupt\n");
173 		return (ENXIO);
174 	}
175 
176 	/* Hook up our interrupt handler. */
177 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
178 	    NULL, fsl_espi_intr, sc, &sc->sc_intrhand)) {
179 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
180 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
181 		device_printf(dev, "cannot setup the interrupt handler\n");
182 		return (ENXIO);
183 	}
184 	if (OF_getencprop(node, "fsl,espi-num-chipselects",
185 	    &sc->sc_num_cs, sizeof(sc->sc_num_cs)) < 0 )
186 		sc->sc_num_cs = 4;
187 
188 	mtx_init(&sc->sc_mtx, "fsl_espi", NULL, MTX_DEF);
189 
190 	/* Enable the SPI controller.  */
191 	FSL_ESPI_WRITE(sc, ESPI_SPMODE, ESPI_SPMODE_EN |
192 	    (16 << ESPI_SPMODE_TXTHR_S) | (15 << ESPI_SPMODE_RXTHR_S));
193 
194 	/* Disable all interrupts until we start transfers  */
195 	FSL_ESPI_WRITE(sc, ESPI_SPIM, 0);
196 
197 	device_add_child(dev, "spibus", -1);
198 
199 	return (bus_generic_attach(dev));
200 }
201 
202 static int
203 fsl_espi_detach(device_t dev)
204 {
205 	struct fsl_espi_softc *sc;
206 
207 	bus_generic_detach(dev);
208 
209 	sc = device_get_softc(dev);
210 	FSL_ESPI_WRITE(sc, ESPI_SPMODE, 0);
211 
212 	sc = device_get_softc(dev);
213 	mtx_destroy(&sc->sc_mtx);
214 	if (sc->sc_intrhand)
215 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
216 	if (sc->sc_irq_res)
217 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
218 	if (sc->sc_mem_res)
219 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
220 
221 	return (0);
222 }
223 
224 static void
225 fsl_espi_fill_fifo(struct fsl_espi_softc *sc)
226 {
227 	struct spi_command *cmd;
228 	uint32_t spier, written;
229 	uint8_t *data;
230 
231 	cmd = sc->sc_cmd;
232 	spier = FSL_ESPI_READ(sc, ESPI_SPIE);
233 	while (sc->sc_written < sc->sc_len &&
234 	    (spier & ESPI_SPIE_TNF)) {
235 		data = (uint8_t *)cmd->tx_cmd;
236 		written = sc->sc_written++;
237 		if (written >= cmd->tx_cmd_sz) {
238 			data = (uint8_t *)cmd->tx_data;
239 			written -= cmd->tx_cmd_sz;
240 		}
241 		FSL_ESPI_WRITE_FIFO(sc, ESPI_SPITF, data[written]);
242 		spier = FSL_ESPI_READ(sc, ESPI_SPIE);
243 	}
244 }
245 
246 static void
247 fsl_espi_drain_fifo(struct fsl_espi_softc *sc)
248 {
249 	struct spi_command *cmd;
250 	uint32_t spier, read;
251 	uint8_t *data;
252 	uint8_t r;
253 
254 	cmd = sc->sc_cmd;
255 	spier = FSL_ESPI_READ(sc, ESPI_SPIE);
256 	while (sc->sc_read < sc->sc_len && (spier & ESPI_SPIE_RNE)) {
257 		data = (uint8_t *)cmd->rx_cmd;
258 		read = sc->sc_read++;
259 		if (read >= cmd->rx_cmd_sz) {
260 			data = (uint8_t *)cmd->rx_data;
261 			read -= cmd->rx_cmd_sz;
262 		}
263 		r = FSL_ESPI_READ_FIFO(sc, ESPI_SPIRF);
264 		data[read] = r;
265 		spier = FSL_ESPI_READ(sc, ESPI_SPIE);
266 	}
267 }
268 
269 static void
270 fsl_espi_intr(void *arg)
271 {
272 	struct fsl_espi_softc *sc;
273 	uint32_t spie;
274 
275 	sc = (struct fsl_espi_softc *)arg;
276 	FSL_ESPI_LOCK(sc);
277 
278 	/* Filter stray interrupts. */
279 	if ((sc->sc_flags & FSL_ESPI_BUSY) == 0) {
280 		FSL_ESPI_UNLOCK(sc);
281 		return;
282 	}
283 	spie = FSL_ESPI_READ(sc, ESPI_SPIE);
284 	FSL_ESPI_WRITE(sc, ESPI_SPIE, spie);
285 
286 	/* TX - Fill up the FIFO. */
287 	fsl_espi_fill_fifo(sc);
288 
289 	/* RX - Drain the FIFO. */
290 	fsl_espi_drain_fifo(sc);
291 
292 	/* Check for end of transfer. */
293 	if (spie & ESPI_SPIE_DON)
294 		wakeup(sc->sc_dev);
295 
296 	FSL_ESPI_UNLOCK(sc);
297 }
298 
299 static int
300 fsl_espi_transfer(device_t dev, device_t child, struct spi_command *cmd)
301 {
302 	struct fsl_espi_softc *sc;
303 	u_long plat_clk;
304 	uint32_t csmode, spi_clk, spi_mode;
305 	int cs, err, pm;
306 
307 	sc = device_get_softc(dev);
308 
309 	KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
310 	    ("TX/RX command sizes should be equal"));
311 	KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
312 	    ("TX/RX data sizes should be equal"));
313 
314 	/* Restrict transmit length to command max length */
315 	if (cmd->tx_cmd_sz + cmd->tx_data_sz > ESPI_SPCOM_TRANLEN_M + 1) {
316 		return (EINVAL);
317 	}
318 
319 	/* Get the proper chip select for this child. */
320 	spibus_get_cs(child, &cs);
321 	if (cs < 0 || cs > sc->sc_num_cs) {
322 		device_printf(dev,
323 		    "Invalid chip select %d requested by %s\n", cs,
324 		    device_get_nameunit(child));
325 		return (EINVAL);
326 	}
327 	spibus_get_clock(child, &spi_clk);
328 	spibus_get_mode(child, &spi_mode);
329 
330 	FSL_ESPI_LOCK(sc);
331 
332 	/* If the controller is in use wait until it is available. */
333 	while (sc->sc_flags & FSL_ESPI_BUSY)
334 		mtx_sleep(dev, &sc->sc_mtx, 0, "fsl_espi", 0);
335 
336 	/* Now we have control over SPI controller. */
337 	sc->sc_flags = FSL_ESPI_BUSY;
338 
339 	/* Save a pointer to the SPI command. */
340 	sc->sc_cmd = cmd;
341 	sc->sc_read = 0;
342 	sc->sc_written = 0;
343 	sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
344 
345 	plat_clk = mpc85xx_get_system_clock();
346 	spi_clk = max(spi_clk, plat_clk / (16 * 16));
347 	if (plat_clk == 0) {
348 		device_printf(dev,
349 		    "unable to get platform clock, giving up.\n");
350 		return (EINVAL);
351 	}
352 	csmode = 0;
353 	if (plat_clk > spi_clk * 16 * 2) {
354 		csmode |= ESPI_CSMODE_DIV16;
355 		plat_clk /= 16;
356 	}
357 	pm = howmany(plat_clk, spi_clk * 2) - 1;
358 	if (pm < 0)
359 		pm = 1;
360 	if (pm > 15)
361 		pm = 15;
362 
363 	csmode |= (pm << ESPI_CSMODE_PM_S);
364 	csmode |= ESPI_CSMODE_REV;
365 	if (spi_mode == SPIBUS_MODE_CPOL || spi_mode == SPIBUS_MODE_CPOL_CPHA)
366 		csmode |= ESPI_CSMODE_CI;
367 	if (spi_mode == SPIBUS_MODE_CPHA || spi_mode == SPIBUS_MODE_CPOL_CPHA)
368 		csmode |= ESPI_CSMODE_CP;
369 	if (!(cs & SPIBUS_CS_HIGH))
370 		csmode |= ESPI_CSMODE_POL;
371 	csmode |= ESPI_CSMODE_LEN(7);/* Only deal with 8-bit characters. */
372 	csmode |= ESPI_CSMODE_CSCG(1); /* XXX: Make this configurable? */
373 	/* Configure transaction */
374 	FSL_ESPI_WRITE(sc, ESPI_SPCOM, (cs << ESPI_SPCOM_CS_S) | (sc->sc_len - 1));
375 	FSL_ESPI_WRITE(sc, ESPI_CSMODE(cs), csmode);
376 	/* Enable interrupts we need. */
377 	FSL_ESPI_WRITE(sc, ESPI_SPIM,
378 	    ESPI_SPIE_TXE | ESPI_SPIE_DON | ESPI_SPIE_RXF);
379 
380 	/* Wait for the transaction to complete. */
381 	err = mtx_sleep(dev, &sc->sc_mtx, 0, "fsl_espi", hz * 2);
382 	FSL_ESPI_WRITE(sc, ESPI_SPIM, 0);
383 
384 	/* Release the controller and wakeup the next thread waiting for it. */
385 	sc->sc_flags = 0;
386 	wakeup_one(dev);
387 	FSL_ESPI_UNLOCK(sc);
388 
389 	/*
390 	 * Check for transfer timeout.  The SPI controller doesn't
391 	 * return errors.
392 	 */
393 	if (err == EWOULDBLOCK) {
394 		device_printf(sc->sc_dev, "SPI error\n");
395 		err = EIO;
396 	}
397 
398 	return (err);
399 }
400 
401 static phandle_t
402 fsl_espi_get_node(device_t bus, device_t dev)
403 {
404 
405 	/* We only have one child, the SPI bus, which needs our own node. */
406 	return (ofw_bus_get_node(bus));
407 }
408 
409 static device_method_t fsl_espi_methods[] = {
410 	/* Device interface */
411 	DEVMETHOD(device_probe,		fsl_espi_probe),
412 	DEVMETHOD(device_attach,	fsl_espi_attach),
413 	DEVMETHOD(device_detach,	fsl_espi_detach),
414 
415 	/* SPI interface */
416 	DEVMETHOD(spibus_transfer,	fsl_espi_transfer),
417 
418 	/* ofw_bus interface */
419 	DEVMETHOD(ofw_bus_get_node,	fsl_espi_get_node),
420 
421 	DEVMETHOD_END
422 };
423 
424 static driver_t fsl_espi_driver = {
425 	"spi",
426 	fsl_espi_methods,
427 	sizeof(struct fsl_espi_softc),
428 };
429 
430 DRIVER_MODULE(fsl_espi, simplebus, fsl_espi_driver, 0, 0);
431