xref: /freebsd/sys/powerpc/fpu/fpu_sqrt.c (revision 77a1348b3c1cfe8547be49a121b56299a1e18b69)
1 /*	$NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
43  */
44 
45 /*
46  * Perform an FPU square root (return sqrt(x)).
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include <sys/types.h>
53 #include <sys/systm.h>
54 
55 #include <machine/fpu.h>
56 #include <machine/reg.h>
57 
58 #include <powerpc/fpu/fpu_arith.h>
59 #include <powerpc/fpu/fpu_emu.h>
60 
61 /*
62  * Our task is to calculate the square root of a floating point number x0.
63  * This number x normally has the form:
64  *
65  *		    exp
66  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
67  *
68  * This can be left as it stands, or the mantissa can be doubled and the
69  * exponent decremented:
70  *
71  *			  exp-1
72  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
73  *
74  * If the exponent `exp' is even, the square root of the number is best
75  * handled using the first form, and is by definition equal to:
76  *
77  *				exp/2
78  *	sqrt(x) = sqrt(mant) * 2
79  *
80  * If exp is odd, on the other hand, it is convenient to use the second
81  * form, giving:
82  *
83  *				    (exp-1)/2
84  *	sqrt(x) = sqrt(2 * mant) * 2
85  *
86  * In the first case, we have
87  *
88  *	1 <= mant < 2
89  *
90  * and therefore
91  *
92  *	sqrt(1) <= sqrt(mant) < sqrt(2)
93  *
94  * while in the second case we have
95  *
96  *	2 <= 2*mant < 4
97  *
98  * and therefore
99  *
100  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
101  *
102  * so that in any case, we are sure that
103  *
104  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
105  *
106  * or
107  *
108  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
109  *
110  * This root is therefore a properly formed mantissa for a floating
111  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
112  * as above.  This leaves us with the problem of finding the square root
113  * of a fixed-point number in the range [1..4).
114  *
115  * Though it may not be instantly obvious, the following square root
116  * algorithm works for any integer x of an even number of bits, provided
117  * that no overflows occur:
118  *
119  *	let q = 0
120  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
121  *		x *= 2			-- multiply by radix, for next digit
122  *		if x >= 2q + 2^k then	-- if adding 2^k does not
123  *			x -= 2q + 2^k	-- exceed the correct root,
124  *			q += 2^k	-- add 2^k and adjust x
125  *		fi
126  *	done
127  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
128  *
129  * If NBITS is odd (so that k is initially even), we can just add another
130  * zero bit at the top of x.  Doing so means that q is not going to acquire
131  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
132  * final value in x is not needed, or can be off by a factor of 2, this is
133  * equivalant to moving the `x *= 2' step to the bottom of the loop:
134  *
135  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
136  *
137  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
138  * (Since the algorithm is destructive on x, we will call x's initial
139  * value, for which q is some power of two times its square root, x0.)
140  *
141  * If we insert a loop invariant y = 2q, we can then rewrite this using
142  * C notation as:
143  *
144  *	q = y = 0; x = x0;
145  *	for (k = NBITS; --k >= 0;) {
146  * #if (NBITS is even)
147  *		x *= 2;
148  * #endif
149  *		t = y + (1 << k);
150  *		if (x >= t) {
151  *			x -= t;
152  *			q += 1 << k;
153  *			y += 1 << (k + 1);
154  *		}
155  * #if (NBITS is odd)
156  *		x *= 2;
157  * #endif
158  *	}
159  *
160  * If x0 is fixed point, rather than an integer, we can simply alter the
161  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
162  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
163  *
164  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
165  * integers, which adds some complication.  But note that q is built one
166  * bit at a time, from the top down, and is not used itself in the loop
167  * (we use 2q as held in y instead).  This means we can build our answer
168  * in an integer, one word at a time, which saves a bit of work.  Also,
169  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
170  * `new' bits in y and we can set them with an `or' operation rather than
171  * a full-blown multiword add.
172  *
173  * We are almost done, except for one snag.  We must prove that none of our
174  * intermediate calculations can overflow.  We know that x0 is in [1..4)
175  * and therefore the square root in q will be in [1..2), but what about x,
176  * y, and t?
177  *
178  * We know that y = 2q at the beginning of each loop.  (The relation only
179  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
180  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
181  * Furthermore, we can prove with a bit of work that x never exceeds y by
182  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
183  * an exercise to the reader, mostly because I have become tired of working
184  * on this comment.)
185  *
186  * If our floating point mantissas (which are of the form 1.frac) occupy
187  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
188  * In fact, we want even one more bit (for a carry, to avoid compares), or
189  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
190  * this, so we have some justification in assuming it.
191  */
192 struct fpn *
193 fpu_sqrt(struct fpemu *fe)
194 {
195 	struct fpn *x = &fe->fe_f1;
196 	u_int bit, q, tt;
197 	u_int x0, x1, x2, x3;
198 	u_int y0, y1, y2, y3;
199 	u_int d0, d1, d2, d3;
200 	int e;
201 	FPU_DECL_CARRY;
202 
203 	/*
204 	 * Take care of special cases first.  In order:
205 	 *
206 	 *	sqrt(NaN) = NaN
207 	 *	sqrt(+0) = +0
208 	 *	sqrt(-0) = -0
209 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
210 	 *	sqrt(+Inf) = +Inf
211 	 *
212 	 * Then all that remains are numbers with mantissas in [1..2).
213 	 */
214 	DPRINTF(FPE_REG, ("fpu_sqer:\n"));
215 	DUMPFPN(FPE_REG, x);
216 	DPRINTF(FPE_REG, ("=>\n"));
217 	if (ISNAN(x)) {
218 		fe->fe_cx |= FPSCR_VXSNAN;
219 		DUMPFPN(FPE_REG, x);
220 		return (x);
221 	}
222 	if (ISZERO(x)) {
223 		fe->fe_cx |= FPSCR_ZX;
224 		x->fp_class = FPC_INF;
225 		DUMPFPN(FPE_REG, x);
226 		return (x);
227 	}
228 	if (x->fp_sign) {
229 		fe->fe_cx |= FPSCR_VXSQRT;
230 		return (fpu_newnan(fe));
231 	}
232 	if (ISINF(x)) {
233 		DUMPFPN(FPE_REG, x);
234 		return (x);
235 	}
236 
237 	/*
238 	 * Calculate result exponent.  As noted above, this may involve
239 	 * doubling the mantissa.  We will also need to double x each
240 	 * time around the loop, so we define a macro for this here, and
241 	 * we break out the multiword mantissa.
242 	 */
243 #ifdef FPU_SHL1_BY_ADD
244 #define	DOUBLE_X { \
245 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
246 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
247 }
248 #else
249 #define	DOUBLE_X { \
250 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
251 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
252 }
253 #endif
254 #if (FP_NMANT & 1) != 0
255 # define ODD_DOUBLE	DOUBLE_X
256 # define EVEN_DOUBLE	/* nothing */
257 #else
258 # define ODD_DOUBLE	/* nothing */
259 # define EVEN_DOUBLE	DOUBLE_X
260 #endif
261 	x0 = x->fp_mant[0];
262 	x1 = x->fp_mant[1];
263 	x2 = x->fp_mant[2];
264 	x3 = x->fp_mant[3];
265 	e = x->fp_exp;
266 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
267 		DOUBLE_X;
268 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
269 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
270 
271 	/*
272 	 * Now calculate the mantissa root.  Since x is now in [1..4),
273 	 * we know that the first trip around the loop will definitely
274 	 * set the top bit in q, so we can do that manually and start
275 	 * the loop at the next bit down instead.  We must be sure to
276 	 * double x correctly while doing the `known q=1.0'.
277 	 *
278 	 * We do this one mantissa-word at a time, as noted above, to
279 	 * save work.  To avoid `(1U << 31) << 1', we also do the top bit
280 	 * outside of each per-word loop.
281 	 *
282 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
283 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
284 	 * is always a `new' one, this means that three of the `t?'s are
285 	 * just the corresponding `y?'; we use `#define's here for this.
286 	 * The variable `tt' holds the actual `t?' variable.
287 	 */
288 
289 	/* calculate q0 */
290 #define	t0 tt
291 	bit = FP_1;
292 	EVEN_DOUBLE;
293 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
294 		q = bit;
295 		x0 -= bit;
296 		y0 = bit << 1;
297 	/* } */
298 	ODD_DOUBLE;
299 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
300 		EVEN_DOUBLE;
301 		t0 = y0 | bit;		/* t = y + bit */
302 		if (x0 >= t0) {		/* if x >= t then */
303 			x0 -= t0;	/*	x -= t */
304 			q |= bit;	/*	q += bit */
305 			y0 |= bit << 1;	/*	y += bit << 1 */
306 		}
307 		ODD_DOUBLE;
308 	}
309 	x->fp_mant[0] = q;
310 #undef t0
311 
312 	/* calculate q1.  note (y0&1)==0. */
313 #define t0 y0
314 #define t1 tt
315 	q = 0;
316 	y1 = 0;
317 	bit = 1 << 31;
318 	EVEN_DOUBLE;
319 	t1 = bit;
320 	FPU_SUBS(d1, x1, t1);
321 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
322 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
323 		x0 = d0, x1 = d1;	/*	x -= t */
324 		q = bit;		/*	q += bit */
325 		y0 |= 1;		/*	y += bit << 1 */
326 	}
327 	ODD_DOUBLE;
328 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
329 		EVEN_DOUBLE;		/* as before */
330 		t1 = y1 | bit;
331 		FPU_SUBS(d1, x1, t1);
332 		FPU_SUBC(d0, x0, t0);
333 		if ((int)d0 >= 0) {
334 			x0 = d0, x1 = d1;
335 			q |= bit;
336 			y1 |= bit << 1;
337 		}
338 		ODD_DOUBLE;
339 	}
340 	x->fp_mant[1] = q;
341 #undef t1
342 
343 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
344 #define t1 y1
345 #define t2 tt
346 	q = 0;
347 	y2 = 0;
348 	bit = 1 << 31;
349 	EVEN_DOUBLE;
350 	t2 = bit;
351 	FPU_SUBS(d2, x2, t2);
352 	FPU_SUBCS(d1, x1, t1);
353 	FPU_SUBC(d0, x0, t0);
354 	if ((int)d0 >= 0) {
355 		x0 = d0, x1 = d1, x2 = d2;
356 		q = bit;
357 		y1 |= 1;		/* now t1, y1 are set in concrete */
358 	}
359 	ODD_DOUBLE;
360 	while ((bit >>= 1) != 0) {
361 		EVEN_DOUBLE;
362 		t2 = y2 | bit;
363 		FPU_SUBS(d2, x2, t2);
364 		FPU_SUBCS(d1, x1, t1);
365 		FPU_SUBC(d0, x0, t0);
366 		if ((int)d0 >= 0) {
367 			x0 = d0, x1 = d1, x2 = d2;
368 			q |= bit;
369 			y2 |= bit << 1;
370 		}
371 		ODD_DOUBLE;
372 	}
373 	x->fp_mant[2] = q;
374 #undef t2
375 
376 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
377 #define t2 y2
378 #define t3 tt
379 	q = 0;
380 	y3 = 0;
381 	bit = 1 << 31;
382 	EVEN_DOUBLE;
383 	t3 = bit;
384 	FPU_SUBS(d3, x3, t3);
385 	FPU_SUBCS(d2, x2, t2);
386 	FPU_SUBCS(d1, x1, t1);
387 	FPU_SUBC(d0, x0, t0);
388 	if ((int)d0 >= 0) {
389 		x0 = d0, x1 = d1, x2 = d2; x3 = d3;
390 		q = bit;
391 		y2 |= 1;
392 	}
393 	ODD_DOUBLE;
394 	while ((bit >>= 1) != 0) {
395 		EVEN_DOUBLE;
396 		t3 = y3 | bit;
397 		FPU_SUBS(d3, x3, t3);
398 		FPU_SUBCS(d2, x2, t2);
399 		FPU_SUBCS(d1, x1, t1);
400 		FPU_SUBC(d0, x0, t0);
401 		if ((int)d0 >= 0) {
402 			x0 = d0, x1 = d1, x2 = d2; x3 = d3;
403 			q |= bit;
404 			y3 |= bit << 1;
405 		}
406 		ODD_DOUBLE;
407 	}
408 	x->fp_mant[3] = q;
409 
410 	/*
411 	 * The result, which includes guard and round bits, is exact iff
412 	 * x is now zero; any nonzero bits in x represent sticky bits.
413 	 */
414 	x->fp_sticky = x0 | x1 | x2 | x3;
415 	DUMPFPN(FPE_REG, x);
416 	return (x);
417 }
418