17e76048aSMarcel Moolenaar /* $NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ 27e76048aSMarcel Moolenaar 3*51369649SPedro F. Giffuni /*- 4*51369649SPedro F. Giffuni * SPDX-License-Identifier: BSD-3-Clause 5*51369649SPedro F. Giffuni * 67e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993 77e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved. 87e76048aSMarcel Moolenaar * 97e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group 107e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 117e76048aSMarcel Moolenaar * contributed to Berkeley. 127e76048aSMarcel Moolenaar * 137e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software 147e76048aSMarcel Moolenaar * must display the following acknowledgement: 157e76048aSMarcel Moolenaar * This product includes software developed by the University of 167e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory. 177e76048aSMarcel Moolenaar * 187e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without 197e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions 207e76048aSMarcel Moolenaar * are met: 217e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright 227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer. 237e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright 247e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the 257e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution. 267e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors 277e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software 287e76048aSMarcel Moolenaar * without specific prior written permission. 297e76048aSMarcel Moolenaar * 307e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 317e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 327e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 337e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 347e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 357e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 367e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 377e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 387e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 397e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 407e76048aSMarcel Moolenaar * SUCH DAMAGE. 417e76048aSMarcel Moolenaar * 427e76048aSMarcel Moolenaar * @(#)fpu_sqrt.c 8.1 (Berkeley) 6/11/93 437e76048aSMarcel Moolenaar */ 447e76048aSMarcel Moolenaar 457e76048aSMarcel Moolenaar /* 467e76048aSMarcel Moolenaar * Perform an FPU square root (return sqrt(x)). 477e76048aSMarcel Moolenaar */ 487e76048aSMarcel Moolenaar 497e76048aSMarcel Moolenaar #include <sys/cdefs.h> 507e76048aSMarcel Moolenaar __FBSDID("$FreeBSD$"); 517e76048aSMarcel Moolenaar 527e76048aSMarcel Moolenaar #include <sys/types.h> 532aa95aceSPeter Grehan #include <sys/systm.h> 547e76048aSMarcel Moolenaar 557e76048aSMarcel Moolenaar #include <machine/fpu.h> 567e76048aSMarcel Moolenaar #include <machine/reg.h> 577e76048aSMarcel Moolenaar 587e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h> 597e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h> 607e76048aSMarcel Moolenaar 617e76048aSMarcel Moolenaar /* 627e76048aSMarcel Moolenaar * Our task is to calculate the square root of a floating point number x0. 637e76048aSMarcel Moolenaar * This number x normally has the form: 647e76048aSMarcel Moolenaar * 657e76048aSMarcel Moolenaar * exp 667e76048aSMarcel Moolenaar * x = mant * 2 (where 1 <= mant < 2 and exp is an integer) 677e76048aSMarcel Moolenaar * 687e76048aSMarcel Moolenaar * This can be left as it stands, or the mantissa can be doubled and the 697e76048aSMarcel Moolenaar * exponent decremented: 707e76048aSMarcel Moolenaar * 717e76048aSMarcel Moolenaar * exp-1 727e76048aSMarcel Moolenaar * x = (2 * mant) * 2 (where 2 <= 2 * mant < 4) 737e76048aSMarcel Moolenaar * 747e76048aSMarcel Moolenaar * If the exponent `exp' is even, the square root of the number is best 757e76048aSMarcel Moolenaar * handled using the first form, and is by definition equal to: 767e76048aSMarcel Moolenaar * 777e76048aSMarcel Moolenaar * exp/2 787e76048aSMarcel Moolenaar * sqrt(x) = sqrt(mant) * 2 797e76048aSMarcel Moolenaar * 807e76048aSMarcel Moolenaar * If exp is odd, on the other hand, it is convenient to use the second 817e76048aSMarcel Moolenaar * form, giving: 827e76048aSMarcel Moolenaar * 837e76048aSMarcel Moolenaar * (exp-1)/2 847e76048aSMarcel Moolenaar * sqrt(x) = sqrt(2 * mant) * 2 857e76048aSMarcel Moolenaar * 867e76048aSMarcel Moolenaar * In the first case, we have 877e76048aSMarcel Moolenaar * 887e76048aSMarcel Moolenaar * 1 <= mant < 2 897e76048aSMarcel Moolenaar * 907e76048aSMarcel Moolenaar * and therefore 917e76048aSMarcel Moolenaar * 927e76048aSMarcel Moolenaar * sqrt(1) <= sqrt(mant) < sqrt(2) 937e76048aSMarcel Moolenaar * 947e76048aSMarcel Moolenaar * while in the second case we have 957e76048aSMarcel Moolenaar * 967e76048aSMarcel Moolenaar * 2 <= 2*mant < 4 977e76048aSMarcel Moolenaar * 987e76048aSMarcel Moolenaar * and therefore 997e76048aSMarcel Moolenaar * 1007e76048aSMarcel Moolenaar * sqrt(2) <= sqrt(2*mant) < sqrt(4) 1017e76048aSMarcel Moolenaar * 1027e76048aSMarcel Moolenaar * so that in any case, we are sure that 1037e76048aSMarcel Moolenaar * 1047e76048aSMarcel Moolenaar * sqrt(1) <= sqrt(n * mant) < sqrt(4), n = 1 or 2 1057e76048aSMarcel Moolenaar * 1067e76048aSMarcel Moolenaar * or 1077e76048aSMarcel Moolenaar * 1087e76048aSMarcel Moolenaar * 1 <= sqrt(n * mant) < 2, n = 1 or 2. 1097e76048aSMarcel Moolenaar * 1107e76048aSMarcel Moolenaar * This root is therefore a properly formed mantissa for a floating 1117e76048aSMarcel Moolenaar * point number. The exponent of sqrt(x) is either exp/2 or (exp-1)/2 1127e76048aSMarcel Moolenaar * as above. This leaves us with the problem of finding the square root 1137e76048aSMarcel Moolenaar * of a fixed-point number in the range [1..4). 1147e76048aSMarcel Moolenaar * 1157e76048aSMarcel Moolenaar * Though it may not be instantly obvious, the following square root 1167e76048aSMarcel Moolenaar * algorithm works for any integer x of an even number of bits, provided 1177e76048aSMarcel Moolenaar * that no overflows occur: 1187e76048aSMarcel Moolenaar * 1197e76048aSMarcel Moolenaar * let q = 0 1207e76048aSMarcel Moolenaar * for k = NBITS-1 to 0 step -1 do -- for each digit in the answer... 1217e76048aSMarcel Moolenaar * x *= 2 -- multiply by radix, for next digit 1227e76048aSMarcel Moolenaar * if x >= 2q + 2^k then -- if adding 2^k does not 1237e76048aSMarcel Moolenaar * x -= 2q + 2^k -- exceed the correct root, 1247e76048aSMarcel Moolenaar * q += 2^k -- add 2^k and adjust x 1257e76048aSMarcel Moolenaar * fi 1267e76048aSMarcel Moolenaar * done 1277e76048aSMarcel Moolenaar * sqrt = q / 2^(NBITS/2) -- (and any remainder is in x) 1287e76048aSMarcel Moolenaar * 1297e76048aSMarcel Moolenaar * If NBITS is odd (so that k is initially even), we can just add another 1307e76048aSMarcel Moolenaar * zero bit at the top of x. Doing so means that q is not going to acquire 1317e76048aSMarcel Moolenaar * a 1 bit in the first trip around the loop (since x0 < 2^NBITS). If the 1327e76048aSMarcel Moolenaar * final value in x is not needed, or can be off by a factor of 2, this is 1337e76048aSMarcel Moolenaar * equivalant to moving the `x *= 2' step to the bottom of the loop: 1347e76048aSMarcel Moolenaar * 1357e76048aSMarcel Moolenaar * for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done 1367e76048aSMarcel Moolenaar * 1377e76048aSMarcel Moolenaar * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2). 1387e76048aSMarcel Moolenaar * (Since the algorithm is destructive on x, we will call x's initial 1397e76048aSMarcel Moolenaar * value, for which q is some power of two times its square root, x0.) 1407e76048aSMarcel Moolenaar * 1417e76048aSMarcel Moolenaar * If we insert a loop invariant y = 2q, we can then rewrite this using 1427e76048aSMarcel Moolenaar * C notation as: 1437e76048aSMarcel Moolenaar * 1447e76048aSMarcel Moolenaar * q = y = 0; x = x0; 1457e76048aSMarcel Moolenaar * for (k = NBITS; --k >= 0;) { 1467e76048aSMarcel Moolenaar * #if (NBITS is even) 1477e76048aSMarcel Moolenaar * x *= 2; 1487e76048aSMarcel Moolenaar * #endif 1497e76048aSMarcel Moolenaar * t = y + (1 << k); 1507e76048aSMarcel Moolenaar * if (x >= t) { 1517e76048aSMarcel Moolenaar * x -= t; 1527e76048aSMarcel Moolenaar * q += 1 << k; 1537e76048aSMarcel Moolenaar * y += 1 << (k + 1); 1547e76048aSMarcel Moolenaar * } 1557e76048aSMarcel Moolenaar * #if (NBITS is odd) 1567e76048aSMarcel Moolenaar * x *= 2; 1577e76048aSMarcel Moolenaar * #endif 1587e76048aSMarcel Moolenaar * } 1597e76048aSMarcel Moolenaar * 1607e76048aSMarcel Moolenaar * If x0 is fixed point, rather than an integer, we can simply alter the 1617e76048aSMarcel Moolenaar * scale factor between q and sqrt(x0). As it happens, we can easily arrange 1627e76048aSMarcel Moolenaar * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q. 1637e76048aSMarcel Moolenaar * 1647e76048aSMarcel Moolenaar * In our case, however, x0 (and therefore x, y, q, and t) are multiword 1657e76048aSMarcel Moolenaar * integers, which adds some complication. But note that q is built one 1667e76048aSMarcel Moolenaar * bit at a time, from the top down, and is not used itself in the loop 1677e76048aSMarcel Moolenaar * (we use 2q as held in y instead). This means we can build our answer 1687e76048aSMarcel Moolenaar * in an integer, one word at a time, which saves a bit of work. Also, 1697e76048aSMarcel Moolenaar * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are 1707e76048aSMarcel Moolenaar * `new' bits in y and we can set them with an `or' operation rather than 1717e76048aSMarcel Moolenaar * a full-blown multiword add. 1727e76048aSMarcel Moolenaar * 1737e76048aSMarcel Moolenaar * We are almost done, except for one snag. We must prove that none of our 1747e76048aSMarcel Moolenaar * intermediate calculations can overflow. We know that x0 is in [1..4) 1757e76048aSMarcel Moolenaar * and therefore the square root in q will be in [1..2), but what about x, 1767e76048aSMarcel Moolenaar * y, and t? 1777e76048aSMarcel Moolenaar * 1787e76048aSMarcel Moolenaar * We know that y = 2q at the beginning of each loop. (The relation only 1797e76048aSMarcel Moolenaar * fails temporarily while y and q are being updated.) Since q < 2, y < 4. 1807e76048aSMarcel Moolenaar * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and. 1817e76048aSMarcel Moolenaar * Furthermore, we can prove with a bit of work that x never exceeds y by 1827e76048aSMarcel Moolenaar * more than 2, so that even after doubling, 0 <= x < 8. (This is left as 1837e76048aSMarcel Moolenaar * an exercise to the reader, mostly because I have become tired of working 1847e76048aSMarcel Moolenaar * on this comment.) 1857e76048aSMarcel Moolenaar * 1867e76048aSMarcel Moolenaar * If our floating point mantissas (which are of the form 1.frac) occupy 1877e76048aSMarcel Moolenaar * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra. 1887e76048aSMarcel Moolenaar * In fact, we want even one more bit (for a carry, to avoid compares), or 1897e76048aSMarcel Moolenaar * three extra. There is a comment in fpu_emu.h reminding maintainers of 1907e76048aSMarcel Moolenaar * this, so we have some justification in assuming it. 1917e76048aSMarcel Moolenaar */ 1927e76048aSMarcel Moolenaar struct fpn * 1937e76048aSMarcel Moolenaar fpu_sqrt(struct fpemu *fe) 1947e76048aSMarcel Moolenaar { 1957e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1; 1967e76048aSMarcel Moolenaar u_int bit, q, tt; 1977e76048aSMarcel Moolenaar u_int x0, x1, x2, x3; 1987e76048aSMarcel Moolenaar u_int y0, y1, y2, y3; 1997e76048aSMarcel Moolenaar u_int d0, d1, d2, d3; 2007e76048aSMarcel Moolenaar int e; 2017e76048aSMarcel Moolenaar FPU_DECL_CARRY; 2027e76048aSMarcel Moolenaar 2037e76048aSMarcel Moolenaar /* 2047e76048aSMarcel Moolenaar * Take care of special cases first. In order: 2057e76048aSMarcel Moolenaar * 2067e76048aSMarcel Moolenaar * sqrt(NaN) = NaN 2077e76048aSMarcel Moolenaar * sqrt(+0) = +0 2087e76048aSMarcel Moolenaar * sqrt(-0) = -0 2097e76048aSMarcel Moolenaar * sqrt(x < 0) = NaN (including sqrt(-Inf)) 2107e76048aSMarcel Moolenaar * sqrt(+Inf) = +Inf 2117e76048aSMarcel Moolenaar * 2127e76048aSMarcel Moolenaar * Then all that remains are numbers with mantissas in [1..2). 2137e76048aSMarcel Moolenaar */ 2147e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_sqer:\n")); 2157e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2167e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n")); 2177e76048aSMarcel Moolenaar if (ISNAN(x)) { 2187e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN; 2197e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2207e76048aSMarcel Moolenaar return (x); 2217e76048aSMarcel Moolenaar } 2227e76048aSMarcel Moolenaar if (ISZERO(x)) { 2237e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_ZX; 2247e76048aSMarcel Moolenaar x->fp_class = FPC_INF; 2257e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2267e76048aSMarcel Moolenaar return (x); 2277e76048aSMarcel Moolenaar } 2287e76048aSMarcel Moolenaar if (x->fp_sign) { 2297e76048aSMarcel Moolenaar return (fpu_newnan(fe)); 2307e76048aSMarcel Moolenaar } 2317e76048aSMarcel Moolenaar if (ISINF(x)) { 2327e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSQRT; 2337e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, 0); 2347e76048aSMarcel Moolenaar return (0); 2357e76048aSMarcel Moolenaar } 2367e76048aSMarcel Moolenaar 2377e76048aSMarcel Moolenaar /* 2387e76048aSMarcel Moolenaar * Calculate result exponent. As noted above, this may involve 2397e76048aSMarcel Moolenaar * doubling the mantissa. We will also need to double x each 2407e76048aSMarcel Moolenaar * time around the loop, so we define a macro for this here, and 2417e76048aSMarcel Moolenaar * we break out the multiword mantissa. 2427e76048aSMarcel Moolenaar */ 2437e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD 2447e76048aSMarcel Moolenaar #define DOUBLE_X { \ 2457e76048aSMarcel Moolenaar FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \ 2467e76048aSMarcel Moolenaar FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \ 2477e76048aSMarcel Moolenaar } 2487e76048aSMarcel Moolenaar #else 2497e76048aSMarcel Moolenaar #define DOUBLE_X { \ 2507e76048aSMarcel Moolenaar x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \ 2517e76048aSMarcel Moolenaar x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \ 2527e76048aSMarcel Moolenaar } 2537e76048aSMarcel Moolenaar #endif 2547e76048aSMarcel Moolenaar #if (FP_NMANT & 1) != 0 2557e76048aSMarcel Moolenaar # define ODD_DOUBLE DOUBLE_X 2567e76048aSMarcel Moolenaar # define EVEN_DOUBLE /* nothing */ 2577e76048aSMarcel Moolenaar #else 2587e76048aSMarcel Moolenaar # define ODD_DOUBLE /* nothing */ 2597e76048aSMarcel Moolenaar # define EVEN_DOUBLE DOUBLE_X 2607e76048aSMarcel Moolenaar #endif 2617e76048aSMarcel Moolenaar x0 = x->fp_mant[0]; 2627e76048aSMarcel Moolenaar x1 = x->fp_mant[1]; 2637e76048aSMarcel Moolenaar x2 = x->fp_mant[2]; 2647e76048aSMarcel Moolenaar x3 = x->fp_mant[3]; 2657e76048aSMarcel Moolenaar e = x->fp_exp; 2667e76048aSMarcel Moolenaar if (e & 1) /* exponent is odd; use sqrt(2mant) */ 2677e76048aSMarcel Moolenaar DOUBLE_X; 2687e76048aSMarcel Moolenaar /* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */ 2697e76048aSMarcel Moolenaar x->fp_exp = e >> 1; /* calculates (e&1 ? (e-1)/2 : e/2 */ 2707e76048aSMarcel Moolenaar 2717e76048aSMarcel Moolenaar /* 2727e76048aSMarcel Moolenaar * Now calculate the mantissa root. Since x is now in [1..4), 2737e76048aSMarcel Moolenaar * we know that the first trip around the loop will definitely 2747e76048aSMarcel Moolenaar * set the top bit in q, so we can do that manually and start 2757e76048aSMarcel Moolenaar * the loop at the next bit down instead. We must be sure to 2767e76048aSMarcel Moolenaar * double x correctly while doing the `known q=1.0'. 2777e76048aSMarcel Moolenaar * 2787e76048aSMarcel Moolenaar * We do this one mantissa-word at a time, as noted above, to 2797a22215cSEitan Adler * save work. To avoid `(1U << 31) << 1', we also do the top bit 2807e76048aSMarcel Moolenaar * outside of each per-word loop. 2817e76048aSMarcel Moolenaar * 2827e76048aSMarcel Moolenaar * The calculation `t = y + bit' breaks down into `t0 = y0, ..., 2837e76048aSMarcel Moolenaar * t3 = y3, t? |= bit' for the appropriate word. Since the bit 2847e76048aSMarcel Moolenaar * is always a `new' one, this means that three of the `t?'s are 2857e76048aSMarcel Moolenaar * just the corresponding `y?'; we use `#define's here for this. 2867e76048aSMarcel Moolenaar * The variable `tt' holds the actual `t?' variable. 2877e76048aSMarcel Moolenaar */ 2887e76048aSMarcel Moolenaar 2897e76048aSMarcel Moolenaar /* calculate q0 */ 2907e76048aSMarcel Moolenaar #define t0 tt 2917e76048aSMarcel Moolenaar bit = FP_1; 2927e76048aSMarcel Moolenaar EVEN_DOUBLE; 2937e76048aSMarcel Moolenaar /* if (x >= (t0 = y0 | bit)) { */ /* always true */ 2947e76048aSMarcel Moolenaar q = bit; 2957e76048aSMarcel Moolenaar x0 -= bit; 2967e76048aSMarcel Moolenaar y0 = bit << 1; 2977e76048aSMarcel Moolenaar /* } */ 2987e76048aSMarcel Moolenaar ODD_DOUBLE; 2997e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { /* for remaining bits in q0 */ 3007e76048aSMarcel Moolenaar EVEN_DOUBLE; 3017e76048aSMarcel Moolenaar t0 = y0 | bit; /* t = y + bit */ 3027e76048aSMarcel Moolenaar if (x0 >= t0) { /* if x >= t then */ 3037e76048aSMarcel Moolenaar x0 -= t0; /* x -= t */ 3047e76048aSMarcel Moolenaar q |= bit; /* q += bit */ 3057e76048aSMarcel Moolenaar y0 |= bit << 1; /* y += bit << 1 */ 3067e76048aSMarcel Moolenaar } 3077e76048aSMarcel Moolenaar ODD_DOUBLE; 3087e76048aSMarcel Moolenaar } 3097e76048aSMarcel Moolenaar x->fp_mant[0] = q; 3107e76048aSMarcel Moolenaar #undef t0 3117e76048aSMarcel Moolenaar 3127e76048aSMarcel Moolenaar /* calculate q1. note (y0&1)==0. */ 3137e76048aSMarcel Moolenaar #define t0 y0 3147e76048aSMarcel Moolenaar #define t1 tt 3157e76048aSMarcel Moolenaar q = 0; 3167e76048aSMarcel Moolenaar y1 = 0; 3177e76048aSMarcel Moolenaar bit = 1 << 31; 3187e76048aSMarcel Moolenaar EVEN_DOUBLE; 3197e76048aSMarcel Moolenaar t1 = bit; 3207e76048aSMarcel Moolenaar FPU_SUBS(d1, x1, t1); 3217e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); /* d = x - t */ 3227e76048aSMarcel Moolenaar if ((int)d0 >= 0) { /* if d >= 0 (i.e., x >= t) then */ 3237e76048aSMarcel Moolenaar x0 = d0, x1 = d1; /* x -= t */ 3247e76048aSMarcel Moolenaar q = bit; /* q += bit */ 3257e76048aSMarcel Moolenaar y0 |= 1; /* y += bit << 1 */ 3267e76048aSMarcel Moolenaar } 3277e76048aSMarcel Moolenaar ODD_DOUBLE; 3287e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { /* for remaining bits in q1 */ 3297e76048aSMarcel Moolenaar EVEN_DOUBLE; /* as before */ 3307e76048aSMarcel Moolenaar t1 = y1 | bit; 3317e76048aSMarcel Moolenaar FPU_SUBS(d1, x1, t1); 3327e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); 3337e76048aSMarcel Moolenaar if ((int)d0 >= 0) { 3347e76048aSMarcel Moolenaar x0 = d0, x1 = d1; 3357e76048aSMarcel Moolenaar q |= bit; 3367e76048aSMarcel Moolenaar y1 |= bit << 1; 3377e76048aSMarcel Moolenaar } 3387e76048aSMarcel Moolenaar ODD_DOUBLE; 3397e76048aSMarcel Moolenaar } 3407e76048aSMarcel Moolenaar x->fp_mant[1] = q; 3417e76048aSMarcel Moolenaar #undef t1 3427e76048aSMarcel Moolenaar 3437e76048aSMarcel Moolenaar /* calculate q2. note (y1&1)==0; y0 (aka t0) is fixed. */ 3447e76048aSMarcel Moolenaar #define t1 y1 3457e76048aSMarcel Moolenaar #define t2 tt 3467e76048aSMarcel Moolenaar q = 0; 3477e76048aSMarcel Moolenaar y2 = 0; 3487e76048aSMarcel Moolenaar bit = 1 << 31; 3497e76048aSMarcel Moolenaar EVEN_DOUBLE; 3507e76048aSMarcel Moolenaar t2 = bit; 3517e76048aSMarcel Moolenaar FPU_SUBS(d2, x2, t2); 3527e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1); 3537e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); 3547e76048aSMarcel Moolenaar if ((int)d0 >= 0) { 3557e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2; 3567e76048aSMarcel Moolenaar q |= bit; 3577e76048aSMarcel Moolenaar y1 |= 1; /* now t1, y1 are set in concrete */ 3587e76048aSMarcel Moolenaar } 3597e76048aSMarcel Moolenaar ODD_DOUBLE; 3607e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { 3617e76048aSMarcel Moolenaar EVEN_DOUBLE; 3627e76048aSMarcel Moolenaar t2 = y2 | bit; 3637e76048aSMarcel Moolenaar FPU_SUBS(d2, x2, t2); 3647e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1); 3657e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); 3667e76048aSMarcel Moolenaar if ((int)d0 >= 0) { 3677e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2; 3687e76048aSMarcel Moolenaar q |= bit; 3697e76048aSMarcel Moolenaar y2 |= bit << 1; 3707e76048aSMarcel Moolenaar } 3717e76048aSMarcel Moolenaar ODD_DOUBLE; 3727e76048aSMarcel Moolenaar } 3737e76048aSMarcel Moolenaar x->fp_mant[2] = q; 3747e76048aSMarcel Moolenaar #undef t2 3757e76048aSMarcel Moolenaar 3767e76048aSMarcel Moolenaar /* calculate q3. y0, t0, y1, t1 all fixed; y2, t2, almost done. */ 3777e76048aSMarcel Moolenaar #define t2 y2 3787e76048aSMarcel Moolenaar #define t3 tt 3797e76048aSMarcel Moolenaar q = 0; 3807e76048aSMarcel Moolenaar y3 = 0; 3817e76048aSMarcel Moolenaar bit = 1 << 31; 3827e76048aSMarcel Moolenaar EVEN_DOUBLE; 3837e76048aSMarcel Moolenaar t3 = bit; 3847e76048aSMarcel Moolenaar FPU_SUBS(d3, x3, t3); 3857e76048aSMarcel Moolenaar FPU_SUBCS(d2, x2, t2); 3867e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1); 3877e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); 3887e76048aSMarcel Moolenaar ODD_DOUBLE; 3897e76048aSMarcel Moolenaar if ((int)d0 >= 0) { 3907e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2; 3917e76048aSMarcel Moolenaar q |= bit; 3927e76048aSMarcel Moolenaar y2 |= 1; 3937e76048aSMarcel Moolenaar } 3947e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { 3957e76048aSMarcel Moolenaar EVEN_DOUBLE; 3967e76048aSMarcel Moolenaar t3 = y3 | bit; 3977e76048aSMarcel Moolenaar FPU_SUBS(d3, x3, t3); 3987e76048aSMarcel Moolenaar FPU_SUBCS(d2, x2, t2); 3997e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1); 4007e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); 4017e76048aSMarcel Moolenaar if ((int)d0 >= 0) { 4027e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2; 4037e76048aSMarcel Moolenaar q |= bit; 4047e76048aSMarcel Moolenaar y3 |= bit << 1; 4057e76048aSMarcel Moolenaar } 4067e76048aSMarcel Moolenaar ODD_DOUBLE; 4077e76048aSMarcel Moolenaar } 4087e76048aSMarcel Moolenaar x->fp_mant[3] = q; 4097e76048aSMarcel Moolenaar 4107e76048aSMarcel Moolenaar /* 4117e76048aSMarcel Moolenaar * The result, which includes guard and round bits, is exact iff 4127e76048aSMarcel Moolenaar * x is now zero; any nonzero bits in x represent sticky bits. 4137e76048aSMarcel Moolenaar */ 4147e76048aSMarcel Moolenaar x->fp_sticky = x0 | x1 | x2 | x3; 4157e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 4167e76048aSMarcel Moolenaar return (x); 4177e76048aSMarcel Moolenaar } 418